Algorithmic game theory

Martin Balko

3rd lecture

October 14th 2025

Proof of the Minimax Theorem

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number v such that, for any worst-case optimal strategies x^* and y^* , the strategy profile (x^*, y^*) is a Nash equilibrium and $\beta(x^*) = (x^*)^\top M y^* = \alpha(y^*) = v$.

Figure: John von Neumann (1903–1957) and Oskar Morgenstern (1902–1977).

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number v such that, for any worst-case optimal strategies x^* and y^* , the strategy profile (x^*, y^*) is a Nash equilibrium and $\beta(x^*) = (x^*)^T M y^* = \alpha(y^*) = v$.

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number v such that, for any worst-case optimal strategies x^* and y^* , the strategy profile (x^*, y^*) is a Nash equilibrium and $\beta(x^*) = (x^*)^T M y^* = \alpha(y^*) = v$.

• Recall that $\beta(x) = \min_{y \in S_2} x^\top My$ and $\alpha(y) = \max_{x \in S_1} x^\top My$ is the best possible cost of player 2 to x and payoff and of player 1 to y, respectively.

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number v such that, for any worst-case optimal strategies x^* and y^* , the strategy profile (x^*, y^*) is a Nash equilibrium and $\beta(x^*) = (x^*)^T M y^* = \alpha(y^*) = v$.

- Recall that $\beta(x) = \min_{y \in S_2} x^\top My$ and $\alpha(y) = \max_{x \in S_1} x^\top My$ is the best possible cost of player 2 to x and payoff and of player 1 to y, respectively.
- Also, the worst-case optimal strategy \overline{x} for player 1, satisfies

$$\beta(\overline{x}) = \max_{x \in S_1} \beta(x).$$

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number v such that, for any worst-case optimal strategies x^* and y^* , the strategy profile (x^*, y^*) is a Nash equilibrium and $\beta(x^*) = (x^*)^\top M y^* = \alpha(y^*) = v$.

- Recall that $\beta(x) = \min_{y \in S_2} x^\top My$ and $\alpha(y) = \max_{x \in S_1} x^\top My$ is the best possible cost of player 2 to x and payoff and of player 1 to y, respectively.
- Also, the worst-case optimal strategy \overline{x} for player 1, satisfies

$$\beta(\overline{x}) = \max_{x \in S_1} \beta(x).$$

• The worst-case optimal strategy \overline{y} for player 2, satisfies

$$\alpha(\overline{y}) = \min_{y \in S_2} \alpha(y).$$

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number v such that, for any worst-case optimal strategies x^* and y^* , the strategy profile (x^*, y^*) is a Nash equilibrium and $\beta(x^*) = (x^*)^T M y^* = \alpha(y^*) = v$.

- Recall that $\beta(x) = \min_{y \in S_2} x^\top My$ and $\alpha(y) = \max_{x \in S_1} x^\top My$ is the best possible cost of player 2 to x and payoff and of player 1 to y, respectively.
- Also, the worst-case optimal strategy \overline{x} for player 1, satisfies

$$\beta(\overline{x}) = \max_{x \in S_1} \beta(x).$$

• The worst-case optimal strategy \overline{y} for player 2, satisfies

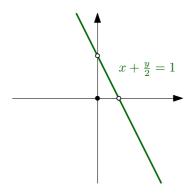
$$\alpha(\overline{y}) = \min_{y \in S_2} \alpha(y).$$

• We prove the theorem using linear programming.

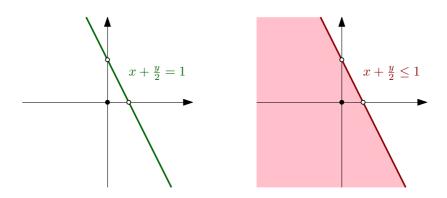
• A hyperplane in \mathbb{R}^d is a set $\{x \in \mathbb{R}^d : v^\top x = w\}$ for some $v \in \mathbb{R}^d$ and $w \in \mathbb{R}$.

- A hyperplane in \mathbb{R}^d is a set $\{x \in \mathbb{R}^d : v^\top x = w\}$ for some $v \in \mathbb{R}^d$ and $w \in \mathbb{R}$.
- A halfspace in \mathbb{R}^d is a set $\{x \in \mathbb{R}^d : v^\top x \leq w\}$.

- A hyperplane in \mathbb{R}^d is a set $\{x \in \mathbb{R}^d : v^\top x = w\}$ for some $v \in \mathbb{R}^d$ and $w \in \mathbb{R}$.
- A halfspace in \mathbb{R}^d is a set $\{x \in \mathbb{R}^d : v^\top x \leq w\}$.



- A hyperplane in \mathbb{R}^d is a set $\{x \in \mathbb{R}^d : v^\top x = w\}$ for some $v \in \mathbb{R}^d$ and $w \in \mathbb{R}$.
- A halfspace in \mathbb{R}^d is a set $\{x \in \mathbb{R}^d : v^\top x \leq w\}$.



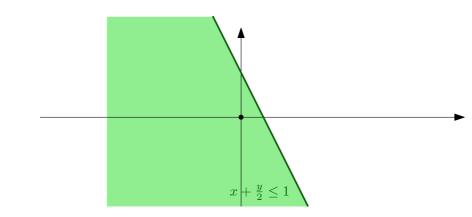
• A (convex) polyhedron P in \mathbb{R}^d is an intersection of finitely many halfspaces in \mathbb{R}^d .

• A (convex) polyhedron P in \mathbb{R}^d is an intersection of finitely many halfspaces in \mathbb{R}^d . That is, $P = \{x \in \mathbb{R}^d : Vx \le u\}$ for some $V \in \mathbb{R}^{n \times d}$ and $u \in \mathbb{R}^n$, where n is the number of halfspaces determining P.

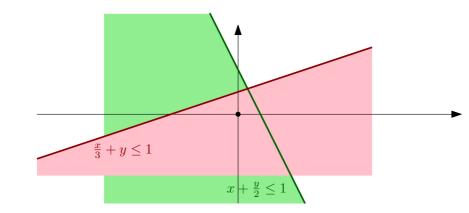
- A (convex) polyhedron P in \mathbb{R}^d is an intersection of finitely many halfspaces in \mathbb{R}^d . That is, $P = \{x \in \mathbb{R}^d : Vx \le u\}$ for some $V \in \mathbb{R}^{n \times d}$ and $u \in \mathbb{R}^n$, where n is the number of halfspaces determining P.
- A bounded polyhedron is called polytope.

- A (convex) polyhedron P in \mathbb{R}^d is an intersection of finitely many halfspaces in \mathbb{R}^d . That is, $P = \{x \in \mathbb{R}^d : Vx \le u\}$ for some $V \in \mathbb{R}^{n \times d}$ and $u \in \mathbb{R}^n$, where n is the number of halfspaces determining P.
- A bounded polyhedron is called polytope. A *d*-dimensional polytope is simple if no point is contained in more than *d* facets.

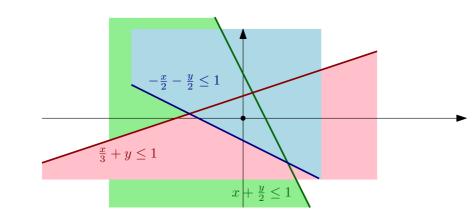
- A (convex) polyhedron P in \mathbb{R}^d is an intersection of finitely many halfspaces in \mathbb{R}^d . That is, $P = \{x \in \mathbb{R}^d : Vx \le u\}$ for some $V \in \mathbb{R}^{n \times d}$ and $u \in \mathbb{R}^n$, where n is the number of halfspaces determining P.
- A bounded polyhedron is called a polytope. A *d*-dimensional polytope is simple if no point is contained in more than *d* facets.



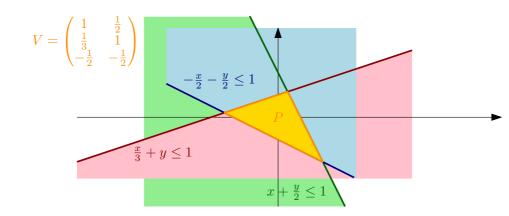
- A (convex) polyhedron P in \mathbb{R}^d is an intersection of finitely many halfspaces in \mathbb{R}^d . That is, $P = \{x \in \mathbb{R}^d : Vx \le u\}$ for some $V \in \mathbb{R}^{n \times d}$ and $u \in \mathbb{R}^n$, where n is the number of halfspaces determining P.
- A bounded polyhedron is called polytope. A *d*-dimensional polytope is simple if no point is contained in more than *d* facets.



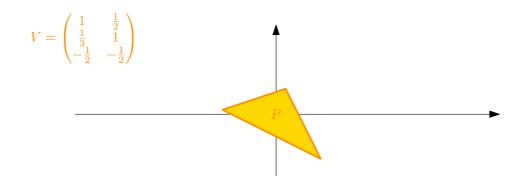
- A (convex) polyhedron P in \mathbb{R}^d is an intersection of finitely many halfspaces in \mathbb{R}^d . That is, $P = \{x \in \mathbb{R}^d : Vx \le u\}$ for some $V \in \mathbb{R}^{n \times d}$ and $u \in \mathbb{R}^n$, where n is the number of halfspaces determining P.
- A bounded polyhedron is called polytope. A *d*-dimensional polytope is simple if no point is contained in more than *d* facets.



- A (convex) polyhedron P in \mathbb{R}^d is an intersection of finitely many halfspaces in \mathbb{R}^d . That is, $P = \{x \in \mathbb{R}^d : Vx \le u\}$ for some $V \in \mathbb{R}^{n \times d}$ and $u \in \mathbb{R}^n$, where n is the number of halfspaces determining P.
- A bounded polyhedron is called polytope. A *d*-dimensional polytope is simple if no point is contained in more than *d* facets.

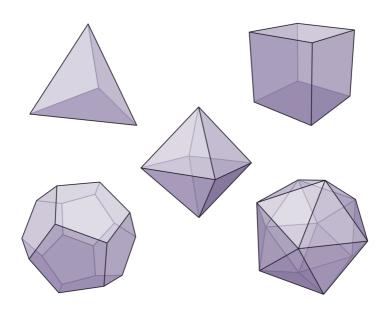


- A (convex) polyhedron P in \mathbb{R}^d is an intersection of finitely many halfspaces in \mathbb{R}^d . That is, $P = \{x \in \mathbb{R}^d : Vx \le u\}$ for some $V \in \mathbb{R}^{n \times d}$ and $u \in \mathbb{R}^n$, where n is the number of halfspaces determining P.
- A bounded polyhedron is called polytope. A *d*-dimensional polytope is simple if no point is contained in more than *d* facets.



Examples of polytopes in \mathbb{R}^3

Examples of polytopes in $\ensuremath{\mathbb{R}}^3$



• A linear program is an optimization problem with a linear objective function and linear constraints.

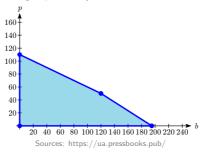
- A linear program is an optimization problem with a linear objective function and linear constraints.
- Every linear program P can be expressed in the canonical form: given $c \in \mathbb{R}^m$, $b \in \mathbb{R}^n$, and $A^{n \times m}$, we want to maximize $c^\top x$ subject to the constraints $Ax \leq b$ and $x \geq 0$.

- A linear program is an optimization problem with a linear objective function and linear constraints.
- Every linear program P can be expressed in the canonical form: given $c \in \mathbb{R}^m$, $b \in \mathbb{R}^n$, and $A^{n \times m}$, we want to maximize $c^\top x$ subject to the constraints $Ax \leq b$ and $x \geq 0$.
- Can be solved in polynomial time.

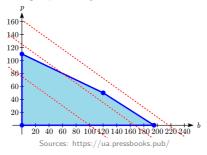
- A linear program is an optimization problem with a linear objective function and linear constraints.
- Every linear program P can be expressed in the canonical form: given $c \in \mathbb{R}^m$, $b \in \mathbb{R}^n$, and $A^{n \times m}$, we want to maximize $c^\top x$ subject to the constraints $Ax \leq b$ and $x \geq 0$.
- Can be solved in polynomial time. In practice, the Simplex method works, although it does not have a polynomial worst-case running time.

- A linear program is an optimization problem with a linear objective function and linear constraints.
- Every linear program P can be expressed in the canonical form: given $c \in \mathbb{R}^m$, $b \in \mathbb{R}^n$, and $A^{n \times m}$, we want to maximize $c^\top x$ subject to the constraints $Ax \leq b$ and $x \geq 0$.
- Can be solved in polynomial time. In practice, the Simplex method works, although it does not have a polynomial worst-case running time. The Ellipsoid method runs in polynomial time even in the worst-case.

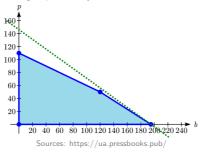
- A linear program is an optimization problem with a linear objective function and linear constraints.
- Every linear program P can be expressed in the canonical form: given $c \in \mathbb{R}^m$, $b \in \mathbb{R}^n$, and $A^{n \times m}$, we want to maximize $c^\top x$ subject to the constraints $Ax \leq b$ and $x \geq 0$.
- Can be solved in polynomial time. In practice, the Simplex method works, although it does not have a polynomial worst-case running time. The Ellipsoid method runs in polynomial time even in the worst-case.
- Solving linear programs graphically:



- A linear program is an optimization problem with a linear objective function and linear constraints.
- Every linear program P can be expressed in the canonical form: given $c \in \mathbb{R}^m$, $b \in \mathbb{R}^n$, and $A^{n \times m}$, we want to maximize $c^\top x$ subject to the constraints $Ax \leq b$ and $x \geq 0$.
- Can be solved in polynomial time. In practice, the Simplex method works, although it does not have a polynomial worst-case running time. The Ellipsoid method runs in polynomial time even in the worst-case.
- Solving linear programs graphically:



- A linear program (LP) is an optimization problem with a linear objective function and linear constraints.
- Every linear program P can be expressed in the canonical form: given $c \in \mathbb{R}^m$, $b \in \mathbb{R}^n$, and $A^{n \times m}$, we want to maximize $c^\top x$ subject to the constraints $Ax \leq b$ and $x \geq 0$.
- LP can be solved in polynomial time. In practice, the Simplex method works, although it does not have a polynomial worst-case running time. The Ellipsoid method runs in polynomial time even in the worst-case.
- Solving linear programs graphically:



Duality of linear programming

• The linear program *P* where we want to

maximize $c^{\top}x$ subject to the constraints $Ax \leq b$ and $x \geq 0$ is called the primal linear program.

• The linear program *P* where we want to

maximize $c^{\top}x$ subject to the constraints $Ax \leq b$ and $x \geq 0$

is called the primal linear program.

• The associated dual linear program *D* is to

minimize $b^{\top}y$ subject to constraints $A^{\top}y \geq c$ and $y \geq 0$.

• The linear program *P* where we want to

maximize
$$c^{\top}x$$
 subject to the constraints $Ax \leq b$ and $x \geq 0$

is called the primal linear program.

• The associated dual linear program *D* is to

minimize
$$b^{\top}y$$
 subject to constraints $A^{\top}y \geq c$ and $y \geq 0$.

• "Solving a system of linear equalities from the rows-perspective instead of the columns-perspective".

• The linear program *P* where we want to

maximize
$$c^{\top}x$$
 subject to the constraints $Ax \leq b$ and $x \geq 0$

is called the primal linear program.

• The associated dual linear program *D* is to

minimize
$$b^{\top}y$$
 subject to constraints $A^{\top}y \geq c$ and $y \geq \mathbf{0}$.

- "Solving a system of linear equalities from the rows-perspective instead of the columns-perspective".
- The following **Duality Theorem** has several important consequences.

The Duality Theorem (Theorem 2.22)

If both linear programs P and D have feasible solutions, then they both have optimal solutions.

• The linear program P where we want to

maximize
$$c^{\top}x$$
 subject to the constraints $Ax \leq b$ and $x \geq 0$

is called the primal linear program.

• The associated dual linear program *D* is to

minimize
$$b^{\top}y$$
 subject to constraints $A^{\top}y \geq c$ and $y \geq 0$.

- "Solving a system of linear equalities from the rows-perspective instead of the columns-perspective".
- The following **Duality Theorem** has several important consequences.

The Duality Theorem (Theorem 2.22)

If both linear programs P and D have feasible solutions, then they both have optimal solutions. Moreover, if x^* and y^* are optimal solutions of P and D, respectively, then $c^{\top}x^* = b^{\top}y^*$.

• The linear program P where we want to

maximize
$$c^{\top}x$$
 subject to the constraints $Ax \leq b$ and $x \geq 0$

is called the primal linear program.

• The associated dual linear program *D* is to

minimize
$$b^{\top}y$$
 subject to constraints $A^{\top}y \geq c$ and $y \geq 0$.

- "Solving a system of linear equalities from the rows-perspective instead of the columns-perspective".
- The following **Duality Theorem** has several important consequences.

The Duality Theorem (Theorem 2.22)

If both linear programs P and D have feasible solutions, then they both have optimal solutions. Moreover, if x^* and y^* are optimal solutions of P and D, respectively, then $c^\top x^* = b^\top y^*$. That is, the maximum of P equals the minimum of D.

• The linear program P where we want to

maximize
$$c^{\top}x$$
 subject to the constraints $Ax \leq b$ and $x \geq 0$

is called the primal linear program.

• The associated dual linear program D is to

minimize
$$b^{\top}y$$
 subject to constraints $A^{\top}y \geq c$ and $y \geq \mathbf{0}$.

- "Solving a system of linear equalities from the rows-perspective instead of the columns-perspective".
- The following **Duality Theorem** has several important consequences.

The Duality Theorem (Theorem 2.22)

If both linear programs P and D have feasible solutions, then they both have optimal solutions. Moreover, if x^* and y^* are optimal solutions of P and D, respectively, then $c^\top x^* = b^\top y^*$. That is, the maximum of P equals the minimum of D.

• Dual programs can be constructed for any linear program.

General recipe for duality

General recipe for duality

	Primal linear program	Dual linear program
Variables	X_1,\ldots,X_m	y_1, \ldots, y_n
Matrix	$A \in \mathbb{R}^{n \times m}$	$A^{\top} \in \mathbb{R}^{m \times n}$
Right-hand side	$b \in \mathbb{R}^n$	$c \in \mathbb{R}^m$
Objective function	$\max c^{\top}x$	$min\ b^\top y$
Constraints	<i>i</i> th constraint has ≤	$y_i \geq 0$
	≥	$y_i \leq 0$
	=	$y_i \in \mathbb{R}$
	$x_j \geq 0$	j th constraint has \geq
	$x_j \leq 0$	<u>≤</u>
	$x_j \in \mathbb{R}$	=

Table: A recipe for making dual programs.

• We now proceed with the proof of the Minimax Theorem.

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number v such that, for any worst-case optimal strategies x^* and y^* , the strategy profile (x^*, y^*) is a Nash equilibrium and $\beta(x^*) = (x^*)^T M y^* = \alpha(y^*) = v$.

• We now proceed with the proof of the Minimax Theorem.

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number v such that, for any worst-case optimal strategies x^* and y^* , the strategy profile (x^*, y^*) is a Nash equilibrium and $\beta(x^*) = (x^*)^T M y^* = \alpha(y^*) = v$.

• We want to compute x^* such that $\beta(x^*) = \max_{x \in S_1} \beta(x)$ where $\beta(x) = \min_{y \in S_2} x^\top My$ using LP.

• We now proceed with the proof of the Minimax Theorem.

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number v such that, for any worst-case optimal strategies x^* and y^* , the strategy profile (x^*, y^*) is a Nash equilibrium and $\beta(x^*) = (x^*)^T M y^* = \alpha(y^*) = v$.

• We want to compute x^* such that $\beta(x^*) = \max_{x \in S_1} \beta(x)$ where $\beta(x) = \min_{y \in S_2} x^\top My$ using LP. We first show how not to do it.

• We now proceed with the proof of the Minimax Theorem.

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number v such that, for any worst-case optimal strategies x^* and y^* , the strategy profile (x^*, y^*) is a Nash equilibrium and $\beta(x^*) = (x^*)^\top M y^* = \alpha(y^*) = v$.

- We want to compute x^* such that $\beta(x^*) = \max_{x \in S_1} \beta(x)$ where $\beta(x) = \min_{v \in S_2} x^\top M y$ using LP. We first show how not to do it.
- Naive straightforward approach with variables x_1, \ldots, x_m :

• We now proceed with the proof of the Minimax Theorem.

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number v such that, for any worst-case optimal strategies x^* and y^* , the strategy profile (x^*, y^*) is a Nash equilibrium and $\beta(x^*) = (x^*)^\top M y^* = \alpha(y^*) = v$.

- We want to compute x^* such that $\beta(x^*) = \max_{x \in S_1} \beta(x)$ where $\beta(x) = \min_{y \in S_2} x^\top My$ using LP. We first show how not to do it.
- Naive straightforward approach with variables x_1, \ldots, x_m :

maximize
$$\beta(x)$$
 subject to the constraints $\sum_{i=1}^{m} x_i = 1$ and $x \ge \mathbf{0}$.

• We now proceed with the proof of the Minimax Theorem.

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number v such that, for any worst-case optimal strategies x^* and y^* , the strategy profile (x^*, y^*) is a Nash equilibrium and $\beta(x^*) = (x^*)^\top M y^* = \alpha(y^*) = v$.

- We want to compute x^* such that $\beta(x^*) = \max_{x \in S_1} \beta(x)$ where $\beta(x) = \min_{y \in S_2} x^\top My$ using LP. We first show how not to do it.
- Naive straightforward approach with variables x_1, \ldots, x_m :

maximize
$$\beta(x)$$
 subject to the constraints $\sum_{i=1}^{m} x_i = 1$ and $x \ge \mathbf{0}$.

• This is not LP!

• We now proceed with the proof of the Minimax Theorem.

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number v such that, for any worst-case optimal strategies x^* and y^* , the strategy profile (x^*, y^*) is a Nash equilibrium and $\beta(x^*) = (x^*)^T M y^* = \alpha(y^*) = v$.

- We want to compute x^* such that $\beta(x^*) = \max_{x \in S_1} \beta(x)$ where $\beta(x) = \min_{y \in S_2} x^\top My$ using LP. We first show how not to do it.
- Naive straightforward approach with variables x_1, \ldots, x_m :

maximize
$$\beta(x)$$
 subject to the constraints $\sum_{i=1}^{m} x_i = 1$ and $x \ge \mathbf{0}$.

• This is not LP! (the objective function $\beta(x) = \min_{y \in S_2} x^\top My$ is not linear in x)

• We now proceed with the proof of the Minimax Theorem.

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number v such that, for any worst-case optimal strategies x^* and y^* , the strategy profile (x^*, y^*) is a Nash equilibrium and $\beta(x^*) = (x^*)^T M y^* = \alpha(y^*) = v$.

- We want to compute x^* such that $\beta(x^*) = \max_{x \in S_1} \beta(x)$ where $\beta(x) = \min_{y \in S_2} x^\top My$ using LP. We first show how not to do it.
- Naive straightforward approach with variables x_1, \ldots, x_m :

maximize
$$\beta(x)$$
 subject to the constraints $\sum_{i=1}^{m} x_i = 1$ and $x \ge \mathbf{0}$.

• This is not LP! (the objective function $\beta(x) = \min_{y \in S_2} x^\top My$ is not linear in x) What can we compute with LP?

• For fixed $x \in S_1$, we can compute a best response of 2 to x.

- For fixed $x \in S_1$, we can compute a best response of 2 to x.
- We use the following linear program P with variables y_1, \ldots, y_n :

(P) minimize
$$x^{\top}My$$
 subject to $\sum_{j=1}^{n} y_j = 1$ and $y \ge \mathbf{0}$.

- For fixed $x \in S_1$, we can compute a best response of 2 to x.
- We use the following linear program P with variables y_1, \ldots, y_n :

(P) minimize
$$x^{\top}My$$
 subject to $\sum_{j=1}^{n} y_j = 1$ and $y \ge \mathbf{0}$.

• Its dual is the following LP D with a single variable x_0 (Exercise):

- For fixed $x \in S_1$, we can compute a best response of 2 to x.
- We use the following linear program P with variables y_1, \ldots, y_n :

(P) minimize
$$x^{\top}My$$
 subject to $\sum_{j=1}^{n} y_j = 1$ and $y \ge \mathbf{0}$.

• Its dual is the following LP D with a single variable x_0 (Exercise):

(D) maximize
$$x_0$$
 subject to $\mathbf{1}x_0 \leq M^{\top}x$.

- For fixed $x \in S_1$, we can compute a best response of 2 to x.
- We use the following linear program P with variables y_1, \ldots, y_n :

(P) minimize
$$x^{\top}My$$
 subject to $\sum_{j=1}^{n} y_j = 1$ and $y \ge \mathbf{0}$.

• Its dual is the following LP D with a single variable x_0 (Exercise):

(D) maximize
$$x_0$$
 subject to $\mathbf{1}x_0 \leq M^{\top}x$.

• By the Duality Theorem, P and D have the same optimal value $\beta(x)$.

- For fixed $x \in S_1$, we can compute a best response of 2 to x.
- We use the following linear program P with variables y_1, \ldots, y_n :

(P) minimize
$$x^{\top}My$$
 subject to $\sum_{j=1}^{n} y_j = 1$ and $y \ge \mathbf{0}$.

• Its dual is the following LP D with a single variable x_0 (Exercise):

(D) maximize
$$x_0$$
 subject to $\mathbf{1}x_0 \leq M^{\top}x$.

- By the Duality Theorem, P and D have the same optimal value $\beta(x)$.
- Thus, if we treat x_1, \ldots, x_m as variables in D, we obtain the following linear program D' with variables x_0, x_1, \ldots, x_m :

- For fixed $x \in S_1$, we can compute a best response of 2 to x.
- We use the following linear program P with variables y_1, \ldots, y_n :

(P) minimize
$$x^{\top}My$$
 subject to $\sum_{j=1}^{n} y_j = 1$ and $y \ge \mathbf{0}$.

• Its dual is the following LP D with a single variable x_0 (Exercise):

(D) maximize
$$x_0$$
 subject to $\mathbf{1}x_0 \leq M^{\top}x$.

- By the Duality Theorem, P and D have the same optimal value $\beta(x)$.
- Thus, if we treat x_1, \ldots, x_m as variables in D, we obtain the following linear program D' with variables x_0, x_1, \ldots, x_m :

(D') maximize
$$x_0$$
 subject to $\mathbf{1}x_0 - M^\top x \leq \mathbf{0}$, $\sum_{i=1}^m x_i = 1$ and $x \geq \mathbf{0}$.

- For fixed $x \in S_1$, we can compute a best response of 2 to x.
- We use the following linear program P with variables y_1, \ldots, y_n :

(P) minimize
$$x^{\top}My$$
 subject to $\sum_{i=1}^{n} y_i = 1$ and $y \ge \mathbf{0}$.

• Its dual is the following LP D with a single variable x_0 (Exercise):

(D) maximize
$$x_0$$
 subject to $\mathbf{1}x_0 \leq M^{\top}x$.

- By the Duality Theorem, P and D have the same optimal value $\beta(x)$.
- Thus, if we treat x_1, \ldots, x_m as variables in D, we obtain the following linear program D' with variables x_0, x_1, \ldots, x_m :

(D') maximize
$$x_0$$
 subject to $\mathbf{1}x_0 - M^\top x \leq \mathbf{0}$, $\sum_{i=1}^m x_i = 1$ and $x \geq \mathbf{0}$.

• The optimum x^* of D' is a worst-case optimum strategy for 1!

• Analogously, we can compute a worst-case optimum strategy y^* for 2 using this linear program P' with variables y_0, y_1, \ldots, y_n :

(P') minimize
$$y_0$$
 subject to $\mathbf{1}y_0 - My \ge \mathbf{0}$, $\sum_{i=1}^n y_i = 1$ and $y \ge \mathbf{0}$.

• Analogously, we can compute a worst-case optimum strategy y^* for 2 using this linear program P' with variables y_0, y_1, \ldots, y_n :

(P') minimize
$$y_0$$
 subject to $\mathbf{1}y_0 - My \ge \mathbf{0}$, $\sum_{j=1}^n y_j = 1$ and $y \ge \mathbf{0}$.

• So we, proved the first part of the Minimax Theorem.

• Analogously, we can compute a worst-case optimum strategy y^* for 2 using this linear program P' with variables y_0, y_1, \ldots, y_n :

(P') minimize
$$y_0$$
 subject to $\mathbf{1}y_0 - My \ge \mathbf{0}$, $\sum_{j=1}^n y_j = 1$ and $y \ge \mathbf{0}$.

• So we, proved the first part of the Minimax Theorem. It remains to show that (x^*, y^*) is NE and $\beta(x^*) = (x^*)^\top M y^* = \alpha(y^*) = v$.

• Analogously, we can compute a worst-case optimum strategy y^* for 2 using this linear program P' with variables y_0, y_1, \ldots, y_n :

(P') minimize
$$y_0$$
 subject to $\mathbf{1}y_0 - My \ge \mathbf{0}$, $\sum_{j=1}^n y_j = 1$ and $y \ge \mathbf{0}$.

- So we, proved the first part of the Minimax Theorem. It remains to show that (x^*, y^*) is NE and $\beta(x^*) = (x^*)^\top M y^* = \alpha(y^*) = v$.
- Using the general recipe for duality, we see that P' and D' are dual to each other! (Exercise)

• Analogously, we can compute a worst-case optimum strategy y^* for 2 using this linear program P' with variables y_0, y_1, \ldots, y_n :

(P') minimize
$$y_0$$
 subject to $\mathbf{1}y_0 - My \ge \mathbf{0}$, $\sum_{j=1}^n y_j = 1$ and $y \ge \mathbf{0}$.

- So we, proved the first part of the Minimax Theorem. It remains to show that (x^*, y^*) is NE and $\beta(x^*) = (x^*)^\top M y^* = \alpha(y^*) = v$.
- Using the general recipe for duality, we see that P' and D' are dual to each other! (Exercise)
- ullet By the Duality Theorem, P' and D' have the same optimal value

$$\beta(x^*) = x_0^* = y_0^* = \alpha(y^*).$$

• Analogously, we can compute a worst-case optimum strategy y^* for 2 using this linear program P' with variables y_0, y_1, \ldots, y_n :

(P') minimize
$$y_0$$
 subject to $\mathbf{1}y_0 - My \ge \mathbf{0}$, $\sum_{j=1}^n y_j = 1$ and $y \ge \mathbf{0}$.

- So we, proved the first part of the Minimax Theorem. It remains to show that (x^*, y^*) is NE and $\beta(x^*) = (x^*)^\top M y^* = \alpha(y^*) = v$.
- Using the general recipe for duality, we see that P' and D' are dual to each other! (Exercise)
- ullet By the Duality Theorem, P' and D' have the same optimal value

$$\beta(x^*) = x_0^* = y_0^* = \alpha(y^*).$$

This value v is attained in any worst-case optimal strategy.

• Analogously, we can compute a worst-case optimum strategy y^* for 2 using this linear program P' with variables y_0, y_1, \ldots, y_n :

(P') minimize
$$y_0$$
 subject to $\mathbf{1}y_0 - My \ge \mathbf{0}$, $\sum_{i=1}^n y_i = 1$ and $y \ge \mathbf{0}$.

- So we, proved the first part of the Minimax Theorem. It remains to show that (x^*, y^*) is NE and $\beta(x^*) = (x^*)^T M y^* = \alpha(y^*) = v$.
- Using the general recipe for duality, we see that P' and D' are dual to each other! (Exercise)
- \bullet By the Duality Theorem, P' and D' have the same optimal value

$$\beta(x^*) = x_0^* = y_0^* = \alpha(y^*).$$

This value v is attained in any worst-case optimal strategy.

• By part (c) of Lemma 2.20, (x^*, y^*) is NE, that is, we have $\beta(x^*) = (x^*)^{\top} M y^* = \alpha(y^*)$.

• Analogously, we can compute a worst-case optimum strategy y^* for 2 using this linear program P' with variables y_0, y_1, \ldots, y_n :

(P') minimize
$$y_0$$
 subject to $\mathbf{1}y_0 - My \ge \mathbf{0}$, $\sum_{j=1}^n y_j = 1$ and $y \ge \mathbf{0}$.

- So we, proved the first part of the Minimax Theorem. It remains to show that (x^*, y^*) is NE and $\beta(x^*) = (x^*)^\top M y^* = \alpha(y^*) = v$.
- Using the general recipe for duality, we see that P' and D' are dual to each other! (Exercise)
- \bullet By the Duality Theorem, P' and D' have the same optimal value

$$\beta(x^*) = x_0^* = y_0^* = \alpha(y^*).$$

This value \mathbf{v} is attained in any worst-case optimal strategy.

• By part (c) of Lemma 2.20, (x^*, y^*) is NE, that is, we have $\beta(x^*) = (x^*)^{\top} M y^* = \alpha(y^*)$.

Nash equilibria in bimatrix games

• Since zero-sum games are solved now, we try to efficiently find Nash equilibria in bimatrix games, that is, games of 2-players (not necessarily zero-sum).

- Since zero-sum games are solved now, we try to efficiently find Nash equilibria in bimatrix games, that is, games of 2-players (not necessarily zero-sum).
- Example: Prisoner's dilemma

- Since zero-sum games are solved now, we try to efficiently find Nash equilibria in bimatrix games, that is, games of 2-players (not necessarily zero-sum).
- Example: Prisoner's dilemma

	Testify	Remain silent
Testify	(-2,-2)	(-3,0)
Remain silent	(0,-3)	(-1 ,- 1)

Sources: https://sciworthy.com/

Bimatrix games examples: collaborative projects

Source: https://filestage.io/

Bimatrix games examples: education, knowledge sharing

Source: https://www.123rf.com/

Bimatrix games examples: the battle for Gotham's soul

	Cooperate	Detonate
Cooperate	(0,0)	(0,1)
Detonate	(1,0)	(<mark>0,0</mark>)

 $Sources:\ https://www.cbr.com/$

• We try to design an algorithm for finding Nash equilibria in games of two players (bimatrix games).

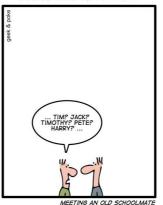
- We try to design an algorithm for finding Nash equilibria in games of two players (bimatrix games).
- We state some observations that yield a brute-force algorithm.

SIMPLY EXPLAINED: BRUTE FORCE ATTACK

Source: https://pinterest.com

- We try to design an algorithm for finding Nash equilibria in games of two players (bimatrix games).
- We state some observations that yield a brute-force algorithm.

SIMPLY EXPLAINED: BRUTE FORCE ATTACK



Source: https://pinterest.com

Later, we show the currently best known algorithm for this problem.

• We first state the perhaps most useful observation in our course.

- We first state the perhaps most useful observation in our course.
- The support of a mixed strategy is $Supp(s_i) = \{a_i \in A_i : s_i(a_i) > 0\}.$

- We first state the perhaps most useful observation in our course.
- The support of a mixed strategy is $Supp(s_i) = \{a_i \in A_i : s_i(a_i) > 0\}.$

Best response condition (Observation 2.23)

In a normal-form game G = (P, A, u) of n players, for every player $i \in P$, a mixed strategy s_i is a best response to s_{-i} if and only if all pure strategies in the support of s_i are best responses to s_{-i} .

- We first state the perhaps most useful observation in our course.
- The support of a mixed strategy is $Supp(s_i) = \{a_i \in A_i : s_i(a_i) > 0\}.$

Best response condition (Observation 2.23)

In a normal-form game G = (P, A, u) of n players, for every player $i \in P$, a mixed strategy s_i is a best response to s_{-i} if and only if all pure strategies in the support of s_i are best responses to s_{-i} .

 Thus, the problem of finding NE is combinatorial problem, not a continuous one.

- We first state the perhaps most useful observation in our course.
- The support of a mixed strategy is $Supp(s_i) = \{a_i \in A_i : s_i(a_i) > 0\}.$

Best response condition (Observation 2.23)

In a normal-form game G = (P, A, u) of n players, for every player $i \in P$, a mixed strategy s_i is a best response to s_{-i} if and only if all pure strategies in the support of s_i are best responses to s_{-i} .

- Thus, the problem of finding NE is combinatorial problem, not a continuous one.
- The hearth of the problem is in finding the right supports.

- We first state the perhaps most useful observation in our course.
- The support of a mixed strategy is $Supp(s_i) = \{a_i \in A_i : s_i(a_i) > 0\}.$

Best response condition (Observation 2.23)

In a normal-form game G = (P, A, u) of n players, for every player $i \in P$, a mixed strategy s_i is a best response to s_{-i} if and only if all pure strategies in the support of s_i are best responses to s_{-i} .

- Thus, the problem of finding NE is combinatorial problem, not a continuous one.
- The hearth of the problem is in finding the right supports.
- Once we have the right supports, the precise mixed strategies can be computed by solving a system of algebraic equations (which are linear in the case of two players).

• First, assume every $a_i \in Supp(s_i)$ satisfies $u_i(a_i; s_{-i}) \ge u_i(s'_i; s_{-i})$ for every $s'_i \in S_i$.

$$u_i(s) = \sum_{a_i \in Supp(s_i)} s_i(a_i)u_i(a_i; s_{-i})$$

$$u_i(s) = \sum_{a_i \in Supp(s_i)} s_i(a_i)u_i(a_i; s_{-i}) \geq \sum_{a_i \in Supp(s_i)} s_i(a_i)u_i(s_i'; s_{-i})$$

$$u_i(s) = \sum_{a_i \in Supp(s_i)} s_i(a_i) u_i(a_i; s_{-i}) \ge \sum_{a_i \in Supp(s_i)} s_i(a_i) u_i(s_i'; s_{-i}) = u_i(s_i'; s_{-i}).$$

• First, assume every $a_i \in Supp(s_i)$ satisfies $u_i(a_i; s_{-i}) \ge u_i(s_i'; s_{-i})$ for every $s_i' \in S_i$. Then, for every $s_i' \in S_i$, the linearity of u_i implies

$$u_i(s) = \sum_{a_i \in Supp(s_i)} s_i(a_i) u_i(a_i; s_{-i}) \ge \sum_{a_i \in Supp(s_i)} s_i(a_i) u_i(s_i'; s_{-i}) = u_i(s_i'; s_{-i}).$$

• Second, assume s_i is a best response of i to s_{-i} .

• First, assume every $a_i \in Supp(s_i)$ satisfies $u_i(a_i; s_{-i}) \ge u_i(s_i'; s_{-i})$ for every $s_i' \in S_i$. Then, for every $s_i' \in S_i$, the linearity of u_i implies

$$u_i(s) = \sum_{a_i \in Supp(s_i)} s_i(a_i) u_i(a_i; s_{-i}) \ge \sum_{a_i \in Supp(s_i)} s_i(a_i) u_i(s_i'; s_{-i}) = u_i(s_i'; s_{-i}).$$

• Second, assume s_i is a best response of i to s_{-i} . Suppose for contradiction there is $\overline{a}_i \in Supp(s_i)$ that is not a best response of i to s_{-i} .

• First, assume every $a_i \in Supp(s_i)$ satisfies $u_i(a_i; s_{-i}) \ge u_i(s_i'; s_{-i})$ for every $s_i' \in S_i$. Then, for every $s_i' \in S_i$, the linearity of u_i implies

$$u_i(s) = \sum_{a_i \in Supp(s_i)} s_i(a_i) u_i(a_i; s_{-i}) \ge \sum_{a_i \in Supp(s_i)} s_i(a_i) u_i(s_i'; s_{-i}) = u_i(s_i'; s_{-i}).$$

• Second, assume s_i is a best response of i to s_{-i} . Suppose for contradiction there is $\overline{a}_i \in Supp(s_i)$ that is not a best response of i to s_{-i} . Then, there is $s'_i \in S_i$ with $u_i(\overline{a}_i; s_{-i}) < u_i(s'_i; s_{-i})$.

• First, assume every $a_i \in Supp(s_i)$ satisfies $u_i(a_i; s_{-i}) \ge u_i(s_i'; s_{-i})$ for every $s_i' \in S_i$. Then, for every $s_i' \in S_i$, the linearity of u_i implies

$$u_i(s) = \sum_{a_i \in Supp(s_i)} s_i(a_i) u_i(a_i; s_{-i}) \ge \sum_{a_i \in Supp(s_i)} s_i(a_i) u_i(s_i'; s_{-i}) = u_i(s_i'; s_{-i}).$$

• Second, assume s_i is a best response of i to s_{-i} . Suppose for contradiction there is $\overline{a}_i \in Supp(s_i)$ that is not a best response of i to s_{-i} . Then, there is $s_i' \in S_i$ with $u_i(\overline{a}_i; s_{-i}) < u_i(s_i'; s_{-i})$. Since s_i is a best response to s_{-i} , we get $s_i(\overline{a}_i) < 1$.

• First, assume every $a_i \in Supp(s_i)$ satisfies $u_i(a_i; s_{-i}) \ge u_i(s_i'; s_{-i})$ for every $s_i' \in S_i$. Then, for every $s_i' \in S_i$, the linearity of u_i implies

$$u_i(s) = \sum_{a_i \in Supp(s_i)} s_i(a_i) u_i(a_i; s_{-i}) \ge \sum_{a_i \in Supp(s_i)} s_i(a_i) u_i(s_i'; s_{-i}) = u_i(s_i'; s_{-i}).$$

• Second, assume s_i is a best response of i to s_{-i} . Suppose for contradiction there is $\overline{a}_i \in Supp(s_i)$ that is not a best response of i to s_{-i} . Then, there is $s_i' \in S_i$ with $u_i(\overline{a}_i; s_{-i}) < u_i(s_i'; s_{-i})$. Since s_i is a best response to s_{-i} , we get $s_i(\overline{a}_i) < 1$. By the linearity of u_i , there is $\hat{a}_i \in Supp(s_i)$ with $u_i(\hat{a}_i; s_{-i}) > u_i(\overline{a}_i; s_{-i})$.

• First, assume every $a_i \in Supp(s_i)$ satisfies $u_i(a_i; s_{-i}) \ge u_i(s_i'; s_{-i})$ for every $s_i' \in S_i$. Then, for every $s_i' \in S_i$, the linearity of u_i implies

$$u_i(s) = \sum_{a_i \in Supp(s_i)} s_i(a_i) u_i(a_i; s_{-i}) \ge \sum_{a_i \in Supp(s_i)} s_i(a_i) u_i(s_i'; s_{-i}) = u_i(s_i'; s_{-i}).$$

• First, assume every $a_i \in Supp(s_i)$ satisfies $u_i(a_i; s_{-i}) \ge u_i(s_i'; s_{-i})$ for every $s_i' \in S_i$. Then, for every $s_i' \in S_i$, the linearity of u_i implies

$$u_i(s) = \sum_{a_i \in Supp(s_i)} s_i(a_i) u_i(a_i; s_{-i}) \ge \sum_{a_i \in Supp(s_i)} s_i(a_i) u_i(s_i'; s_{-i}) = u_i(s_i'; s_{-i}).$$

$$u_i(s_i^*; s_{-i})$$

• First, assume every $a_i \in Supp(s_i)$ satisfies $u_i(a_i; s_{-i}) \ge u_i(s_i'; s_{-i})$ for every $s_i' \in S_i$. Then, for every $s_i' \in S_i$, the linearity of u_i implies

$$u_i(s) = \sum_{a_i \in Supp(s_i)} s_i(a_i) u_i(a_i; s_{-i}) \ge \sum_{a_i \in Supp(s_i)} s_i(a_i) u_i(s_i'; s_{-i}) = u_i(s_i'; s_{-i}).$$

$$u_i(s_i^*; s_{-i}) = \sum_{a_i \in A_i} s_i^*(a_i) u_i(a_i; s_{-i})$$

• First, assume every $a_i \in Supp(s_i)$ satisfies $u_i(a_i; s_{-i}) \ge u_i(s_i'; s_{-i})$ for every $s_i' \in S_i$. Then, for every $s_i' \in S_i$, the linearity of u_i implies

$$u_i(s) = \sum_{a_i \in Supp(s_i)} s_i(a_i) u_i(a_i; s_{-i}) \ge \sum_{a_i \in Supp(s_i)} s_i(a_i) u_i(s_i'; s_{-i}) = u_i(s_i'; s_{-i}).$$

$$u_i(s_i^*; s_{-i}) = \sum_{a_i \in A_i} s_i^*(a_i) u_i(a_i; s_{-i}) > \sum_{a_i \in A_i} s_i(a_i) u_i(a_i; s_{-i})$$

• First, assume every $a_i \in Supp(s_i)$ satisfies $u_i(a_i; s_{-i}) \ge u_i(s_i'; s_{-i})$ for every $s_i' \in S_i$. Then, for every $s_i' \in S_i$, the linearity of u_i implies

$$u_i(s) = \sum_{a_i \in Supp(s_i)} s_i(a_i) u_i(a_i; s_{-i}) \ge \sum_{a_i \in Supp(s_i)} s_i(a_i) u_i(s_i'; s_{-i}) = u_i(s_i'; s_{-i}).$$

$$u_i(s_i^*; s_{-i}) = \sum_{a_i \in A_i} s_i^*(a_i) u_i(a_i; s_{-i}) > \sum_{a_i \in A_i} s_i(a_i) u_i(a_i; s_{-i}) = u_i(s),$$

• First, assume every $a_i \in Supp(s_i)$ satisfies $u_i(a_i; s_{-i}) \ge u_i(s_i'; s_{-i})$ for every $s_i' \in S_i$. Then, for every $s_i' \in S_i$, the linearity of u_i implies

$$u_i(s) = \sum_{a_i \in Supp(s_i)} s_i(a_i) u_i(a_i; s_{-i}) \ge \sum_{a_i \in Supp(s_i)} s_i(a_i) u_i(s_i'; s_{-i}) = u_i(s_i'; s_{-i}).$$

• Second, assume s_i is a best response of i to s_{-i} . Suppose for contradiction there is $\overline{a}_i \in Supp(s_i)$ that is not a best response of i to s_{-i} . Then, there is $s_i' \in S_i$ with $u_i(\overline{a}_i; s_{-i}) < u_i(s_i'; s_{-i})$. Since s_i is a best response to s_{-i} , we get $s_i(\overline{a}_i) < 1$. By the linearity of u_i , there is $\hat{a}_i \in Supp(s_i)$ with $u_i(\hat{a}_i; s_{-i}) > u_i(\overline{a}_i; s_{-i})$. We define a new mixed strategy $s_i^* \in S_i$ by setting $s_i^*(\overline{a}_i) = 0$, $s_i^*(\hat{a}_i) = s_i(\hat{a}_i) + s_i(\overline{a}_i)$ and keeping $s_i^*(a_i) = s_i(a_i)$ otherwise. Then, by the linearity of u_i

$$u_i(s_i^*; s_{-i}) = \sum_{a_i \in A_i} s_i^*(a_i) u_i(a_i; s_{-i}) > \sum_{a_i \in A_i} s_i(a_i) u_i(a_i; s_{-i}) = u_i(s),$$

a contradiction.

Proof of the Best response condition

• First, assume every $a_i \in Supp(s_i)$ satisfies $u_i(a_i; s_{-i}) \ge u_i(s_i'; s_{-i})$ for every $s_i' \in S_i$. Then, for every $s_i' \in S_i$, the linearity of u_i implies

$$u_i(s) = \sum_{a_i \in Supp(s_i)} s_i(a_i) u_i(a_i; s_{-i}) \ge \sum_{a_i \in Supp(s_i)} s_i(a_i) u_i(s_i'; s_{-i}) = u_i(s_i'; s_{-i}).$$

• Second, assume s_i is a best response of i to s_{-i} . Suppose for contradiction there is $\overline{a}_i \in Supp(s_i)$ that is not a best response of i to s_{-i} . Then, there is $s_i' \in S_i$ with $u_i(\overline{a}_i; s_{-i}) < u_i(s_i'; s_{-i})$. Since s_i is a best response to s_{-i} , we get $s_i(\overline{a}_i) < 1$. By the linearity of u_i , there is $\hat{a}_i \in Supp(s_i)$ with $u_i(\hat{a}_i; s_{-i}) > u_i(\overline{a}_i; s_{-i})$. We define a new mixed strategy $s_i^* \in S_i$ by setting $s_i^*(\overline{a}_i) = 0$, $s_i^*(\hat{a}_i) = s_i(\hat{a}_i) + s_i(\overline{a}_i)$ and keeping $s_i^*(a_i) = s_i(a_i)$ otherwise. Then, by the linearity of u_i

$$u_i(s_i^*; s_{-i}) = \sum_{a_i \in A_i} s_i^*(a_i) u_i(a_i; s_{-i}) > \sum_{a_i \in A_i} s_i(a_i) u_i(a_i; s_{-i}) = u_i(s),$$

a contradiction.

• We can use this simple observation to design a brute-force algorithm for finding NE in bimatrix games.

- We can use this simple observation to design a brute-force algorithm for finding NE in bimatrix games.
- Let $G = (\{1,2\}, A = A_1 \times A_2, u)$ be a bimatrix game.

- We can use this simple observation to design a brute-force algorithm for finding NE in bimatrix games.
- Let $G = (\{1,2\}, A = A_1 \times A_2, u)$ be a bimatrix game.
- Let $A_1 = \{1, \dots, m\}$ and $A_2 = \{1, \dots, n\}$

- We can use this simple observation to design a brute-force algorithm for finding NE in bimatrix games.
- Let $G = (\{1,2\}, A = A_1 \times A_2, u)$ be a bimatrix game.
- Let $A_1 = \{1, \dots, m\}$ and $A_2 = \{1, \dots, n\}$ (later considered disjoint).

- We can use this simple observation to design a brute-force algorithm for finding NE in bimatrix games.
- Let $G = (\{1,2\}, A = A_1 \times A_2, u)$ be a bimatrix game.
- Let $A_1 = \{1, \dots, m\}$ and $A_2 = \{1, \dots, n\}$ (later considered disjoint).
- The payoffs u_1 and u_2 can be represented by matrices $M, N \in \mathbb{R}^{m \times n}$ as $M_{i,j} = u_1(i,j)$ and $N_{i,j} = u_2(i,j)$ for every $(i,j) \in A_1 \times A_2$.

- We can use this simple observation to design a brute-force algorithm for finding NE in bimatrix games.
- Let $G = (\{1,2\}, A = A_1 \times A_2, u)$ be a bimatrix game.
- Let $A_1 = \{1, ..., m\}$ and $A_2 = \{1, ..., n\}$ (later considered disjoint).
- The payoffs u_1 and u_2 can be represented by matrices $M, N \in \mathbb{R}^{m \times n}$ as $M_{i,j} = u_1(i,j)$ and $N_{i,j} = u_2(i,j)$ for every $(i,j) \in A_1 \times A_2$.
- \bullet The expected payoffs of s with mixed strategy vectors x and y are then

$$u_1(s) = \mathbf{x}^{\top} \mathbf{M} \mathbf{y}$$
 and $u_2(s) = \mathbf{x}^{\top} \mathbf{N} \mathbf{y}$.

- We can use this simple observation to design a brute-force algorithm for finding NE in bimatrix games.
- Let $G = (\{1,2\}, A = A_1 \times A_2, u)$ be a bimatrix game.
- Let $A_1 = \{1, \dots, m\}$ and $A_2 = \{1, \dots, n\}$ (later considered disjoint).
- The payoffs u_1 and u_2 can be represented by matrices $M, N \in \mathbb{R}^{m \times n}$ as $M_{i,j} = u_1(i,j)$ and $N_{i,j} = u_2(i,j)$ for every $(i,j) \in A_1 \times A_2$.
- The expected payoffs of s with mixed strategy vectors x and y are then

$$u_1(s) = \mathbf{x}^{\top} \mathbf{M} \mathbf{y}$$
 and $u_2(s) = \mathbf{x}^{\top} \mathbf{N} \mathbf{y}$.

• By the Best response condition, x is a best response to y iff

$$\forall i \in A_1 : x_i > 0 \Longrightarrow M_{i,*}y = \max\{M_{k,*}y : k \in A_1\}. \tag{1}$$

- We can use this simple observation to design a brute-force algorithm for finding NE in bimatrix games.
- Let $G = (\{1,2\}, A = A_1 \times A_2, u)$ be a bimatrix game.
- Let $A_1 = \{1, \dots, m\}$ and $A_2 = \{1, \dots, n\}$ (later considered disjoint).
- The payoffs u_1 and u_2 can be represented by matrices $M, N \in \mathbb{R}^{m \times n}$ as $M_{i,j} = u_1(i,j)$ and $N_{i,j} = u_2(i,j)$ for every $(i,j) \in A_1 \times A_2$.
- \bullet The expected payoffs of s with mixed strategy vectors x and y are then

$$u_1(s) = x^{\top} M y$$
 and $u_2(s) = x^{\top} N y$.

By the Best response condition, x is a best response to y iff

$$\forall i \in A_1 : x_i > 0 \Longrightarrow M_{i,*}y = \max\{M_{k,*}y : k \in A_1\}. \tag{1}$$

Analogously, y is a best response to x iff

$$\forall \mathbf{j} \in A_2 : y_j > 0 \Longrightarrow N_{j,*}^\top x = \max\{N_{k,*}^\top x : \mathbf{k} \in A_2\}. \tag{2}$$

• We consider only special bimatrix games (the reason will be clear later).

- We consider only special bimatrix games (the reason will be clear later).
- A bimatrix game is nondegenerate if there are at most k pure best responses to every mixed strategy with support of size k.

- We consider only special bimatrix games (the reason will be clear later).
- A bimatrix game is nondegenerate if there are at most *k* pure best responses to every mixed strategy with support of size *k*.
 - "Most bimatrix games are nondegenerate" and there are perturbation methods to deal with degenerate games.

- We consider only special bimatrix games (the reason will be clear later).
- A bimatrix game is nondegenerate if there are at most *k* pure best responses to every mixed strategy with support of size *k*.
 - "Most bimatrix games are nondegenerate" and there are perturbation methods to deal with degenerate games.
- Let $I \subseteq A_1$ and $J \subseteq A_2$ be supports in a nondegenerate game G.

- We consider only special bimatrix games (the reason will be clear later).
- A bimatrix game is nondegenerate if there are at most k pure best responses to every mixed strategy with support of size k.
 - "Most bimatrix games are nondegenerate" and there are perturbation methods to deal with degenerate games.
- Let $I \subseteq A_1$ and $J \subseteq A_2$ be supports in a nondegenerate game G.
- We define |I| + |J| variables x_i for $i \in I$ and y_j for $j \in J$ that will represent non-zero values in mixed strategy vectors x and y.

- We consider only special bimatrix games (the reason will be clear later).
- A bimatrix game is nondegenerate if there are at most *k* pure best responses to every mixed strategy with support of size *k*.
 - "Most bimatrix games are nondegenerate" and there are perturbation methods to deal with degenerate games.
- Let $I \subseteq A_1$ and $J \subseteq A_2$ be supports in a nondegenerate game G.
- We define |I| + |J| variables x_i for $i \in I$ and y_j for $j \in J$ that will represent non-zero values in mixed strategy vectors x and y.
- We define equations $\sum_{i \in I} x_i = 1$ and $\sum_{j \in J} y_j = 1$, and |I| + |J| equations to ensure that the expected payoffs are equal and maximized at the support (but not necessarily over the entire A_1 or A_2):

- We consider only special bimatrix games (the reason will be clear later).
- A bimatrix game is nondegenerate if there are at most *k* pure best responses to every mixed strategy with support of size *k*.
 - "Most bimatrix games are nondegenerate" and there are perturbation methods to deal with degenerate games.
- Let $I \subseteq A_1$ and $J \subseteq A_2$ be supports in a nondegenerate game G.
- We define |I| + |J| variables x_i for $i \in I$ and y_j for $j \in J$ that will represent non-zero values in mixed strategy vectors x and y.
- We define equations $\sum_{i \in I} x_i = 1$ and $\sum_{j \in J} y_j = 1$, and |I| + |J| equations to ensure that the expected payoffs are equal and maximized at the support (but not necessarily over the entire A_1 or A_2):

$$\sum_{i \in I} N_{j,i}^{\top} x_i = v$$
 and $\sum_{j \in J} M_{i,j} y_j = u$,

- We consider only special bimatrix games (the reason will be clear later).
- A bimatrix game is nondegenerate if there are at most *k* pure best responses to every mixed strategy with support of size *k*.
 - "Most bimatrix games are nondegenerate" and there are perturbation methods to deal with degenerate games.
- Let $I \subseteq A_1$ and $J \subseteq A_2$ be supports in a nondegenerate game G.
- We define |I| + |J| variables x_i for $i \in I$ and y_j for $j \in J$ that will represent non-zero values in mixed strategy vectors x and y.
- We define equations $\sum_{i \in I} x_i = 1$ and $\sum_{j \in J} y_j = 1$, and |I| + |J| equations to ensure that the expected payoffs are equal and maximized at the support (but not necessarily over the entire A_1 or A_2):

$$\sum_{i \in I} N_{j,i}^{ op} x_i = v \quad \text{ and } \quad \sum_{j \in J} M_{i,j} y_j = u,$$

where u and v are two new variables.

- We consider only special bimatrix games (the reason will be clear later).
- A bimatrix game is nondegenerate if there are at most *k* pure best responses to every mixed strategy with support of size *k*.
 - "Most bimatrix games are nondegenerate" and there are perturbation methods to deal with degenerate games.
- Let $I \subseteq A_1$ and $J \subseteq A_2$ be supports in a nondegenerate game G.
- We define |I| + |J| variables x_i for $i \in I$ and y_j for $j \in J$ that will represent non-zero values in mixed strategy vectors x and y.
- We define equations $\sum_{i \in I} x_i = 1$ and $\sum_{j \in J} y_j = 1$, and |I| + |J| equations to ensure that the expected payoffs are equal and maximized at the support (but not necessarily over the entire A_1 or A_2):

$$\sum_{i \in I} N_{j,i}^{\top} x_i = v$$
 and $\sum_{j \in J} M_{i,j} y_j = u$,

where u and v are two new variables. Note that they attain values $u = \max\{M_{i,*}y \colon i \in I\}$ and $v = \max\{N_{i,*}^\top x \colon j \in J\}$.

• We have a system S(I, J) of |I| + |J| + 2 variables $x_1, \ldots, x_{|I|}, y_1, \ldots, y_{|J|}, u, v$ and |I| + |J| + 2 linear equations.

- We have a system S(I, J) of |I| + |J| + 2 variables $x_1, \ldots, x_{|I|}, y_1, \ldots, y_{|J|}, u, v$ and |I| + |J| + 2 linear equations.
- If the numbers in the solution are all positive and satisfy (1) and (2), then we have a NE by the Best response condition.

- We have a system S(I, J) of |I| + |J| + 2 variables $x_1, \ldots, x_{|I|}, y_1, \ldots, y_{|J|}, u, v$ and |I| + |J| + 2 linear equations.
- If the numbers in the solution are all positive and satisfy (1) and (2), then we have a NE by the Best response condition. If G is nondegenerate, then such a solution is unique if it exists (Exercise).

- We have a system S(I, J) of |I| + |J| + 2 variables $x_1, \ldots, x_{|I|}, y_1, \ldots, y_{|J|}, u, v$ and |I| + |J| + 2 linear equations.
- If the numbers in the solution are all positive and satisfy (1) and (2), then we have a NE by the Best response condition. If G is nondegenerate, then such a solution is unique if it exists (Exercise).
- It follows immediately from the Best response condition that supports of strategies in NE of a non-degenerate game have the same size.

- We have a system S(I, J) of |I| + |J| + 2 variables $x_1, \ldots, x_{|I|}, y_1, \ldots, y_{|J|}, u, v$ and |I| + |J| + 2 linear equations.
- If the numbers in the solution are all positive and satisfy (1) and (2), then we have a NE by the Best response condition. If G is nondegenerate, then such a solution is unique if it exists (Exercise).
- It follows immediately from the Best response condition that supports of strategies in NE of a non-degenerate game have the same size.
- This suggests a simple algorithm for finding NE of G.

- We have a system S(I, J) of |I| + |J| + 2 variables $x_1, \ldots, x_{|I|}, y_1, \ldots, y_{|J|}, u, v$ and |I| + |J| + 2 linear equations.
- If the numbers in the solution are all positive and satisfy (1) and (2), then we have a NE by the Best response condition. If G is nondegenerate, then such a solution is unique if it exists (Exercise).
- It follows immediately from the Best response condition that supports of strategies in NE of a non-degenerate game have the same size.
- This suggests a simple algorithm for finding NE of G.
- Support enumeration: go through all possible supports $I \subseteq A_1$ and $J \subseteq A_2$ of size $k \in \{1, ..., \min\{m, n\}\}$ and verify whether the supports I and J yield NE by solving the system S(I, J) of linear equations.

- We have a system S(I, J) of |I| + |J| + 2 variables $x_1, \ldots, x_{|I|}, y_1, \ldots, y_{|J|}, u, v$ and |I| + |J| + 2 linear equations.
- If the numbers in the solution are all positive and satisfy (1) and (2), then we have a NE by the Best response condition. If G is nondegenerate, then such a solution is unique if it exists (Exercise).
- It follows immediately from the Best response condition that supports of strategies in NE of a non-degenerate game have the same size.
- This suggests a simple algorithm for finding NE of G.
- Support enumeration: go through all possible supports $I \subseteq A_1$ and $J \subseteq A_2$ of size $k \in \{1, ..., \min\{m, n\}\}$ and verify whether the supports I and J yield NE by solving the system S(I, J) of linear equations.
- The running time is then about 4^n for m = n.

• We show the Support enumeration on the Battle of sexes game.

	Football (1)	Opera (2)
Football (1)	(2,1)	(0,0)
Opera (2)	(0,0)	(<mark>1,2</mark>)

• We show the Support enumeration on the Battle of sexes game.

	Football (1)	Opera (2)
Football (1)	(2,1)	(0,0)
Opera (2)	(0,0)	(1,2)

• That is, we have $M = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$ and $N = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} = N^{\top}$.

• We show the Support enumeration on the Battle of sexes game.

	Football (1)	Opera (2)
Football (1)	(2,1)	(<mark>0,0</mark>)
Opera (2)	(0,0)	(1,2)

- That is, we have $M = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$ and $N = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} = N^{\top}$.
- If $I = \{1, 2\}$ and $J = \{1, 2\}$, then we want to solve the following system of 6 equations with 6 variables x_1, x_2, y_1, y_2, u, v :

$$x_1 = v$$
, $2x_2 = v$, $x_1 + x_2 = 1$
 $2y_1 = u$, $y_2 = u$, ; $y_1 + y_2 = 1$

• We show the Support enumeration on the Battle of sexes game.

	Football (1)	Opera (2)
Football (1)	(2,1)	(0,0)
Opera (2)	(0,0)	(1,2)

- That is, we have $M = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$ and $N = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} = N^{\top}$.
- If $I = \{1, 2\}$ and $J = \{1, 2\}$, then we want to solve the following system of 6 equations with 6 variables x_1, x_2, y_1, y_2, u, v :

$$x_1 = v$$
, $2x_2 = v$, $x_1 + x_2 = 1$
 $2y_1 = u$, $y_2 = u$, $y_1 + y_2 = 1$

• This yields a unique solution $(x_1, x_2) = (\frac{2}{3}, \frac{1}{3})$ and $(y_1, y_2) = (\frac{1}{3}, \frac{2}{3})$.

• We show the Support enumeration on the Battle of sexes game.

	Football (1)	Opera (2)
Football (1)	(2,1)	(0,0)
Opera (2)	(0,0)	(1,2)

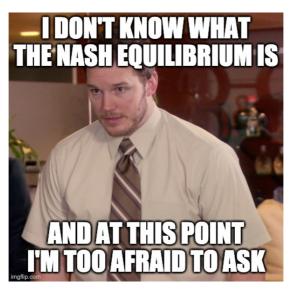
- That is, we have $M = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$ and $N = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} = N^{\top}$.
- If $I = \{1, 2\}$ and $J = \{1, 2\}$, then we want to solve the following system of 6 equations with 6 variables x_1, x_2, y_1, y_2, u, v :

$$x_1 = v$$
, $2x_2 = v$, $x_1 + x_2 = 1$
 $2y_1 = u$, $y_2 = u$, $y_1 + y_2 = 1$

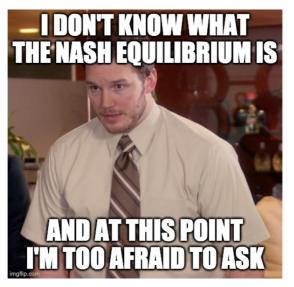
• This yields a unique solution $(x_1, x_2) = (\frac{2}{3}, \frac{1}{3})$ and $(y_1, y_2) = (\frac{1}{3}, \frac{2}{3})$. Since x, y > 0 and there is no better pure strategy, we have NE.

• Next lecture we learn the Lemke–Howson algorithm, the best known algorithm to find Nash equilibria in bimatrix games.

• Next lecture we learn the Lemke–Howson algorithm, the best known algorithm to find Nash equilibria in bimatrix games.



• Next lecture we learn the Lemke–Howson algorithm, the best known algorithm to find Nash equilibria in bimatrix games.



Thank you for your attention.