Algorithmic game theory

Martin Balko

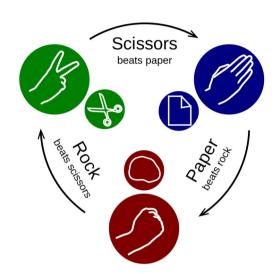
2nd lecture

October 7th 2025

Proof of Nash's Theorem

Nash equilibria in normal-form games

	Rock	Paper	Scissors
Rock	(0,0)	(-1,1)	(<mark>1,-1</mark>)
Paper	(1,-1)	(0,0)	(-1,1)
Scissors	(-1,1)	(1,-1)	(0,0)



Sources: https://en.wikipedia.org/

- We introduced perhaps the most influential solution concept, which captures a notion of stability.
- The best response of player i to a strategy profile s_{-i} is a mixed strategy s_i^* such that $u_i(s_i^*; s_{-i}) \ge u_i(s_i'; s_{-i})$ for each $s_i' \in S_i$.
- For a normal-form game G = (P, A, u) of n players, a Nash equilibrium (NE) in G is a strategy profile (s_1, \ldots, s_n) such that s_i is a best response of player i to s_{-i} for every $i \in P$.
- Amazingly, every normal-form game has a Nash equilibrium.

Nash's Theorem

Nash's Theorem (Theorem 2.16)

Every normal-form game has a Nash equilibrium.

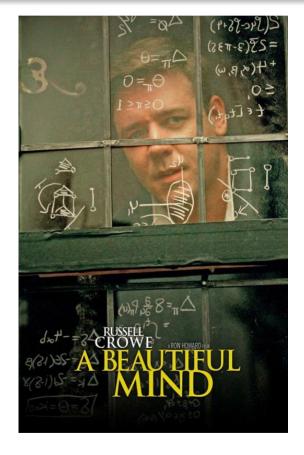


Figure: John Forbes Nash Jr. (1928–2015) and his depiction in the movie A Beautiful mind.

Preparations for the proof of Nash's theorem

- The proof is essentially topological, as its main ingredient is a fixed-point theorem. We use a theorem due to Brouwer.
- For $d \in \mathbb{N}$, a subset X of \mathbb{R}^d is compact if X is closed and bounded.
- We say that a subset Y of \mathbb{R}^d is convex if every line segment containing two points from Y is fully contained in Y. Formally: for all x, y from Y, $tx + (1 t)y \in Y$ for every $t \in [0, 1]$.
- For n affinely independent points $x_1, \ldots, x_n \in \mathbb{R}^d$, an (n-1)-simplex Δ_n on x_1, \ldots, x_n is the set of convex combinations of the points x_1, \ldots, x_n . Each simplex is a compact convex set in \mathbb{R}^d .

Lemma (Lemma 2.18)

For $n, d_1, \ldots, d_n \in \mathbb{N}$, let K_1, \ldots, K_n be compact sets, each K_i lying in \mathbb{R}^{d_i} . Then, $K_1 \times \cdots \times K_n$ is a compact set in $\mathbb{R}^{d_1 + \cdots + d_n}$.

Brouwer's Fixed Point Theorem

• For each $d \in \mathbb{N}$, let K be a non-empty compact convex set in \mathbb{R}^d and $f: K \to K$ be a continuous mapping. Then, there exists a fixed point $x_0 \in K$ for f, that is, $f(x_0) = x_0$.

Figure: L. E. J. Brouwer (1881–1966).

Source: https://arxiv.org/pdf/1612.06820.pdf

• https://www.youtube.com/watch?v=csInNn6pfT4&t=268s&ab_

Proof of Nash's Theorem I

- Let G = (P, A, u) be a normal-form game of n players. Recall that S_i is the set of mixed strategies of player i.
- We want to apply Brouwer's theorem, thus we need to find a suitable compact convex body K and a continuous mapping $f: K \to K$ whose fixed points are NE in G.
- We start with K. Let $K = S_1 \times \cdots \times S_n$ be the set of all mixed strategies.
 - \circ We verify that K is compact and convex.
 - \circ By definition, each S_i is, a simplex which is compact and convex.
 - By Lemma 2.18, the set $K = S_1 \times \cdots \times S_n$ is compact.
 - For any strategy profiles $s = (s_1, \ldots, s_n), s' = (s'_1, \ldots, s'_n) \in K$ and a number $t \in [0, 1]$, the point

$$ts + (1-t)s' = (ts_1 + (1-t)s'_1, \ldots, ts_n + (1-t)s'_n)$$

is also a mixed-strategy profile in K. Thus, K is convex.

Proof of Nash's Theorem II

- We now find the continuous mapping $f: K \to K$.
- For every player $i \in P$ and action $a_i \in A_i$, we define a mapping $\varphi_{i,a_i} \colon K \to \mathbb{R}$ by setting

$$\varphi_{i,a_i}(s) = \max\{0, u_i(a_i; s_{-i}) - u_i(s)\}.$$

- $\circ \varphi_{i,a_i}(s) > 0$ iff i can improve his payoff by using a_i instead of s_i .
- \circ By the definition of u_i , this mapping is continuous.
- Given $s \in K$, we define a new "improved" strategy profile $s' \in K$ as

$$s_i'(a_i) = \frac{s_i(a_i) + \varphi_{i,a_i}(s)}{\sum_{b_i \in A_i} (s_i(b_i) + \varphi_{i,b_i}(s))} = \frac{s_i(a_i) + \varphi_{i,a_i}(s)}{1 + \sum_{b_i \in A_i} \varphi_{i,b_i}(s)}.$$

- \circ "Increase probability at actions that are better responses to s_{-i} ."
- \circ $s' \in K$ as each $s'_i(a_i)$ lies in [0,1] and $\sum_{a_i \in A_i} s'_i(a_i) = 1$.
- We then define f by setting f(s) = s'.

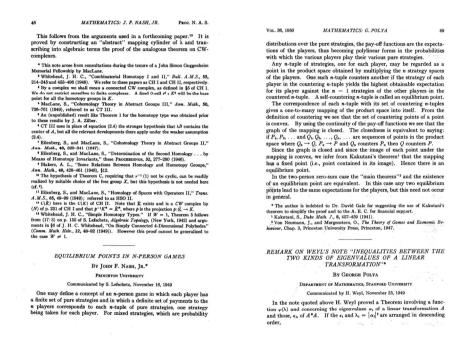
Proof of Nash's Theorem III

- Then, f is continuous, since the mappings φ_{i,a_i} are.
- It remains to show that fixed points of f are exactly NE in G. Then, Brouwer's theorem gives us a fixed point of f, which is NE in G.
- First, if s is NE, then all functions φ_{i,a_i} are constant zero functions and thus f(s) = s. So s is a fixed point for f.
- Second, assume that $s = (s_1, \ldots, s_n) \in K$ is a fixed point for f.
 - For any player i, there is $a'_i \in A_i$ with $s_i(a_i) > 0$ such that $u_i(a'_i; s_{-i}) \le u_i(s)$. Otherwise, $u_i(s) < \sum_{a_i \in A_i} s_i(a_i) u_i(a_i; s_{-i})$, which is impossible by the linearity of the expected payoff.
 - \circ Then, $\varphi_{i,a_i'}(s)=0$ and we get $s_i'(a_i')=rac{s_i(a_i')}{1+\sum_{b_i\in A_i}\varphi_{i,b_i}(s)}$.
 - Since s is a fixed point, we get $s_i'(a_i') = s_i(a_i')$ and, since $s_i(a_i') > 0$, the denominator in the denominator is 1. This means that $\varphi_{i,b_i}(s) = 0$ for every $b_i \in A_i$. It follows that s is NE as

$$u_i(s_i'';s_{-i}) = \sum_{b_i \in A_i} s_i''(b_i)u_i(b_i;s_{-i}) \leq \sum_{b_i \in A_i} s_i''(b_i)u_i(s) = u_i(s).$$

Nash's Theorem: remarks

Two pages worth of Nobel prize!



Sources: J. F. Nash: Equilibrium points in *n*-person games (1950).

- Requires finite numbers of players and actions, both assumptions are necessary. (Consider 2-player game "who guesses larger number wins".)
- The proof is non-constructive. How to find NE efficiently?

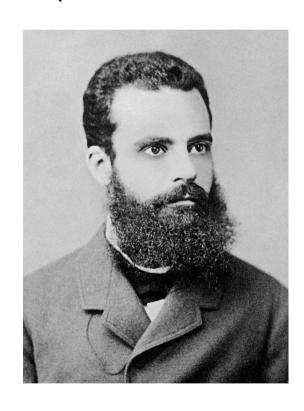
Pareto optimality

Pareto optimality

- A brief detour: another example of an interesting solution concept, other than NE.
- We want to capture "the best" state of a game. Might be difficult, consider the Battle of sexes.
- A strategy profile s in G Pareto dominates s', written $s' \prec s$, if, for every player i, $u_i(s) \geq u_i(s')$, and there exists a player j such that $u_j(s) > u_j(s')$.
 - \circ The relation \prec is a partial ordering of the set S of all strategy profiles of G.
 - \circ The outcomes of G that are considered best are the maximal elements of S in \prec .
- A strategy profile $s \in S$ is Pareto optimal if there does not exist another strategy profile $s' \in S$ that Pareto dominates s.
 - o In zero-sum games, all strategy profiles are Pareto-optimal.
 - Not all NE are Pareto-optimal (the NE in Prisoner's dilemma)

Vilfredo Pareto

• an Italian engineer, sociologist, economist, political scientist, and philosopher.



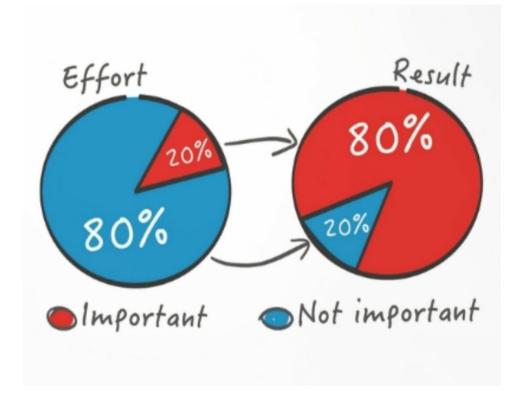


Figure: Vilfredo Pareto (1848–1923).

Sources: https://en.wikipedia.org and https://medium.com/

• Pareto principle: for many outcomes roughly 80% of consequences come from 20% of the causes.

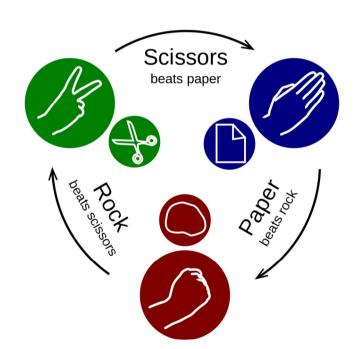
Finding Nash equilibria

- We know that NE exist in every normal-form game (Nash's theorem).
- However, we do not have any algorithm for how to find them yet.
- We start with a simple class of 2-player games, so-called zero-sum games.
- We show that we can find NE efficiently in this case. In fact, we show that NE "solves" zero-sum games completely.
- Historically, zero-sum games were considered first in game game theory (by Morgenstern and Von Neumann in the 1940s).

Zero-sum games

• Two-player games (P, A, u) where $u_1(a) = -u_2(a)$ for every $a \in A$.

	Rock	Paper	Scissors
Rock	(0,0)	(-1,1)	(<mark>1,-1</mark>)
Paper	(1,-1)	(0,0)	(-1,1)
Scissors	$\left(-1,1\right)$	(1,-1)	(0,0)



Sources: https://en.wikipedia.org/

Zero-sum games examples: chess

Source: https://edition.cnn.com/

Zero-sum games examples: table tennis

Source: https://www.reddit.com/

Zero-sum games examples: derivative trading

Source: https://www.linkedin.com/

Zero-sum games examples: elections

Source: https://youtube.com/

Zero-sum games examples: many more



Source: https://lhongtortai.com/collection/what-is-a-non-zero-sum-game

Representing zero-sum games

- With zero-sum games, our notation simplifies.
- Let $G = (P, A = A_1 \times A_2, u)$ be a zero-sum game. That is, $u_1(a) + u_2(a) = 0$ for every $a \in A$.
- If $A_1 = \{1, ..., m\}$ and $A_2 = \{1, ..., n\}$, then G can be represented with an $m \times n$ payoff matrix M where $M_{i,j} = u_1(i,j) = -u_2(i,j)$.
- For a strategy profile (s_1, s_2) , we write $x_i = s_1(i)$ and $y_j = s_2(j)$, representing (s_1, s_2) with mixed strategy vectors $x = (x_1, \ldots, x_m)$ and $y = (y_1, \ldots, y_n)$ that satisfy $\sum_{i=1}^m x_i = 1$ and $\sum_{j=1}^n y_j = 1$.
- The expected payoff of player 1 then equals

$$u_1(s) = \sum_{a=(i,j)\in A} u_1(a)s_1(i)s_2(j) = \sum_{i=1}^m \sum_{j=1}^n M_{i,j}x_iy_j = \mathbf{x}^\top M\mathbf{y} = -u_2(s).$$

Worst-case optimal strategies

- Thus, player's 2 best response to a strategy x of 1, is a vector $y \in S_2$ that minimizes $x^\top My$. Player's 1 best response to a strategy y of 2 is $x \in S_1$ that maximizes $x^\top My$.
- Let $\beta(x) = \min_{y \in S_2} x^\top My$ be the best expected payoff of 2 against x. Let $\alpha(y) = \max_{x \in S_1} x^\top My$ be the best expected payoff of 1 to y.
- A strategy profile (x, y) is then a NE if and only if it satisfies $\beta(x) = x^{\top} M y = \alpha(y)$.
- Assume player 1 expects player 2 to select a best response to every strategy x he can come up with. Player 1 then chooses a mixed strategy \overline{x} from S_1 that maximizes his expected payoff under this, rather pessimistic, assumption.
- This worst-case optimal strategy for 1 satisfies $\beta(\overline{x}) = \max_{x \in S_1} \beta(x)$. The worst-case optimal strategy for 2 is a mixed strategy $\overline{y} \in S_2$ that satisfies $\alpha(\overline{y}) = \min_{y \in S_2} \alpha(y)$.

Worst-case optimal strategies and NE

• To achieve NE in a zero-sum game, both players must select their worst-case optimal strategies.

Lemma 2.20

- (a) For all $x \in S_1$ and $y \in S_2$, we have $\beta(x) \leq x^{\top} M y \leq \alpha(y)$.
- (b) If a strategy profile (x^*, y^*) is NE, then both strategies x^* and y^* are worst-case optimal.
- (c) Any strategies $x^* \in S_1$ and $y^* \in S_2$ satisfying $\beta(x^*) = \alpha(y^*)$ form NE (x^*, y^*) .
- (a) This follows immediately from the definitions of β and α .
- (b) Part (a) implies that $\beta(x) \leq \alpha(y^*)$ for every $x \in S_1$. Since (x^*, y^*) is NE, we have $\beta(x^*) = \alpha(y^*)$ and thus $\beta(x) \leq \beta(x^*)$ for every $x \in S_1$. Thus, x^* is a worst-case optimal for 1. Analogously for player 2.
- (c) If $\beta(x^*) = \alpha(y^*)$, then (a) implies $\beta(x^*) = (x^*)^\top M y^* = \alpha(y^*)$.

The Minimax Theorem

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number v such that, for any worst-case optimal strategies x^* and y^* , the strategy profile (x^*, y^*) is a Nash equilibrium and $\beta(x^*) = (x^*)^\top M y^* = \alpha(y^*) = v$.

Figure: John von Neumann (1903–1957) and Oskar Morgenstern (1902–1977).

The Minimax Theorem: remarks

- It was a starting point of game theory.
- Proved by Von Neumann in 1928 (predates Nash's Theorem).
- "As far as I can see, there could be no theory of games . . . without that theorem . . . I thought there was nothing worth publishing until the Minimax Theorem was proved." (Von Neumann).
- The Minimax theorem tells us everything about zero-sum games: there is NE and it can be found efficiently. Moreover, there is a unique value of the game $v = (x^*)^\top M(y^*)$ of the payoff attained in any NE (x^*, y^*) .
- There are no secrets in zero-sum games: strategies known in advance change nothing, each player can choose a worst-case optimal strategy and get payoff $\geq v$. If the opponent chooses his worst-case optimal strategy, then his payoff is always $\leq v$.
- The name: the expanded equality $\beta(x^*) = v = \alpha(y^*)$ becomes

$$\max_{x \in S_1} \min_{y \in S_2} x^\top M y = v = \min_{y \in S_2} \max_{x \in S_1} x^\top M y.$$

• Original proof uses Brouwer's theorem. We will use linear programming.

Source: https://czthomas.files.wordpress.com

Thank you for your attention.