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captures a notion of stability.

e The best response of player / to a strategy profile s_; is a mixed
strategy s’ such that u;(sf;s_;) > ui(s!;s_;) for each s € §;.
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e Amazingly, every normal-form game has a Nash equilibrium.



Nash's Theorem

Nash's Theorem (Theorem 2.16)

Every normal-form game has a Nash equilibrium.

RUS\ELL 5

A BEAAiJTlBUL

Figure: John Forbes Nash Jr. (1928-2015) and his depiction in the movie A
Beautiful mind.

Sources: https://britannica.com and https://medium.com
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e The proof is essentially topological, as its main ingredient is a
fixed-point theorem. We use a theorem due to Brouwer.

e For d € N, a subset X of RY is compact if X is closed and bounded.

e We say that a subset Y of R is convex if every line segment
containing two points from Y is fully contained in Y. Formally: for all
x,y from Y, tx+ (1 —t)y € Y for every t € [0,1].

e For n affinely independent points xi,...,x, € RY an (n — 1)-simplex
A, on xq,...,X, is the set of convex combinations of the points
X1,...,%,. Each simplex is a compact convex set in RY.

Lemma (Lemma 2.18)

For n,di,...,d, €N, let Ky, ..., K, be compact sets, each K; lying in R%.
Then, K; x --- x K, is a compact set in R+ +dn.
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https://www.youtube.com/watch?v=csInNn6pfT4&t=268s&ab_channel=Vsauce
https://www.youtube.com/watch?v=csInNn6pfT4&t=268s&ab_channel=Vsauce

Brouwer’s Fixed Point Theorem

e For each d € N, let K be a non-empty compact convex set in R? and
f: K — K be a continuous mapping. Then, there exists a fixed point
xo € K for f, that is, f(x) = Xo.

Figure: L. E. J. Brouwer (1881-1966).
Source: https://arxiv.org/pdf/1612.06820.pdf

e https://www.youtube.com/watch?v=csInNn6pfT4&t=268s&ab_
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e For every player i € P and action a; € A;, we define a mapping
©ia: K — R by setting
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si(ai) =

o “Increase probability at actions that are better responses to s_;."
o s’ € K as each s/(a;) liesin [0,1] and >, ., s/(a;) = 1.

e We then define f by setting f(s) =5’
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Sources: J. F. Nash: Equilibrium points in n-person games (1950).
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Nash's Theorem: remarks

e Two pages worth of Nobel prize!

Sources: J. F. Nash: Equilibrium points in n-person games (1950).

e Requires finite numbers of players and actions, both assumptions are
necessary. (Consider 2-player game “who guesses larger number wins".)

e The proof is non-constructive. How to find NE efficiently?
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Pareto optimality

e A brief detour: another example of an interesting solution concept,
other than NE.

e We want to capture “the best” state of a game. Might be difficult,
consider the Battle of sexes.

e A strategy profile s in G Pareto dominates s’, written s’ < s, if, for
every player i, u;(s) > u;(s’), and there exists a player j such that
uj(s) > u;(s’).

o The relation < is a partial ordering of the set S of all strategy
profiles of G.

o The outcomes of G that are considered best are the maximal
elements of S in <.

e A strategy profile s € S is Pareto optimal if there does not exist
another strategy profile s' € S that Pareto dominates s.

o In zero-sum games, all strategy profiles are Pareto-optimal.
o Not all NE are Pareto-optimal (the NE in Prisoner’s dilemma)
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e an ltalian engineer, sociologist, economist, political scientist, and
philosopher.

@ mportant  @Not important

Figure: Vilfredo Pareto (1848-1923).

Sources: https://en.wikipedia.org and https://medium.com/



Vilfredo Pareto

e an ltalian engineer, sociologist, economist, political scientist, and
philosopher.

Result

’Q)
20%
7

@ mportant  @Not important

Figure: Vilfredo Pareto (1848-1923).
Sources: https://en.wikipedia.org and https://medium.com/
e Pareto principle: for many outcomes roughly 80% of consequences
come from 20% of the causes.
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Finding Nash equilibria

We know that NE exist in every normal-form game (Nash's theorem).

However, we do not have any algorithm for how to find them yet.

e We start with a simple class of 2-player games, so-called zero-sum
games.
e We show that we can find NE efficiently in this case. In fact, we show

that NE “solves” zero-sum games completely.

Historically, zero-sum games were considered first in game game theory
(by Morgenstern and Von Neumann in the 1940s).
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Zero-sum games

e Two-player games (P, A, u) where uy(a) = —uy(a) for every a € A.

Scissors

Rock | Paper | Scissors @ beats paper

Rock | (0.0) | (-11) | (1-1) ®
- _ q\%,p

Paper | (1,-1) | (0,0) | (-1,1) \%f @

Scissors | (-1,1) | (1,-1) | (0,0)

Sources: https://en.wikipedia.org



Zero-sum games examples: chess

Source: https://edition.cnn.com/
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Zero-sum games examples: derivative trading

Source: https://www.linkedin.com/



Zero-sum games examples: elections

g FIALA vs BABIS
EPICKA PREDVOLEBNI DEBATA

Source: https://youtube.com




Zero-sum games examples: many more

Source: https://Ihongtortai.com/collection/what-is-a-non-zero-sum-game



BN
Representing zero-sum games



Representing zero-sum games

e With zero-sum games, our notation simplifies.



Representing zero-sum games

e With zero-sum games, our notation simplifies.

o Let G =(P,A= A; X Ay, u) be a zero-sum game.



Representing zero-sum games

e With zero-sum games, our notation simplifies.

o Let G =(P,A= A; X Ay, u) be a zero-sum game. That is,
u1(a) + ux(a) = 0 for every a € A.



Representing zero-sum games

e With zero-sum games, our notation simplifies.

o Let G =(P,A= A; X Ay, u) be a zero-sum game. That is,
u1(a) + ux(a) = 0 for every a € A.

o If Ay ={1,...,m} and A, ={1,...,n}, then G can be represented
with an m x n payoff matrix M where M;; = uy(i, )



Representing zero-sum games

e With zero-sum games, our notation simplifies.

o Let G =(P,A= A; X Ay, u) be a zero-sum game. That is,
u1(a) + ux(a) = 0 for every a € A.

o If Ay ={1,...,m} and A, ={1,...,n}, then G can be represented
with an m x n payoff matrix M where M; ; = u1(i,j) = —ua(1f, ).



Representing zero-sum games

e With zero-sum games, our notation simplifies.
o Let G =(P,A= A; X Ay, u) be a zero-sum game. That is,
u1(a) + ux(a) = 0 for every a € A.

o If Ay ={1,...,m} and A, ={1,...,n}, then G can be represented
with an m x n payoff matrix M where M; ; = u1(i,j) = —ua(1f, ).

e For a strategy profile (s, s,), we write x; = s1(/) and y; = s,(j),



Representing zero-sum games

e With zero-sum games, our notation simplifies.

o Let G =(P,A= A; X Ay, u) be a zero-sum game. That is,
u1(a) + ux(a) = 0 for every a € A.

o If Ay ={1,...,m} and A, ={1,...,n}, then G can be represented
with an m x n payoff matrix M where M; ; = u1(i,j) = —ua(1f, ).

e For a strategy profile (s, s,), we write x; = s1(/) and y; = s,(j),
representing (s, s) with mixed strategy vectors x = (xq,...,Xy) and
y = (y,...,yn) that satisfy > 7", x; = 1 and Zf:ﬂ’j =1.



Representing zero-sum games

e With zero-sum games, our notation simplifies.

o Let G =(P,A= A; X Ay, u) be a zero-sum game. That is,
u1(a) + ux(a) = 0 for every a € A.

o If Ay ={1,...,m} and A, ={1,...,n}, then G can be represented
with an m x n payoff matrix M where M; ; = u1(i,j) = —ua(1f, ).

e For a strategy profile (s, s,), we write x; = s1(/) and y; = s,(j),
representing (s, s) with mixed strategy vectors x = (xq,...,Xy) and
y =1, --,yn) that satisfy 327", x; =1and 37, y; = 1.

e The expected payoff of player 1 then equals

u(s) = Z u(a)s1(i)s2())

a=(ij)eA



Representing zero-sum games

e With zero-sum games, our notation simplifies.

o Let G =(P,A= A; X Ay, u) be a zero-sum game. That is,
u1(a) + ux(a) = 0 for every a € A.

o If Ay ={1,...,m} and A, ={1,...,n}, then G can be represented
with an m x n payoff matrix M where M; ; = u1(i,j) = —ua(1f, ).

e For a strategy profile (s, s,), we write x; = s1(/) and y; = s,(j),
representing (s, s) with mixed strategy vectors x = (xq,...,Xy) and

y =1, --,yn) that satisfy 327", x; =1and 37, y; = 1.
e The expected payoff of player 1 then equals

uy(s) = Z u(a)s1(i)s2()) ZZM/JX:YJ

a=(i,j)cA i=1 j=1



Representing zero-sum games

e With zero-sum games, our notation simplifies.

o Let G =(P,A= A; X Ay, u) be a zero-sum game. That is,
u1(a) + ux(a) = 0 for every a € A.

o If Ay ={1,...,m} and A, ={1,...,n}, then G can be represented
with an m x n payoff matrix M where M; ; = u1(i,j) = —ua(1f, ).

e For a strategy profile (s, s,), we write x; = s1(/) and y; = s,(j),
representing (s, s) with mixed strategy vectors x = (xq,...,Xy) and

y =1, --,yn) that satisfy 327", x; =1and 37, y; = 1.
e The expected payoff of player 1 then equals

u(s) = Z ui(a)si(i)s2()) Z Z M; jxiy; = x My

a=(i,j)cA i=1 j=1



Representing zero-sum games

e With zero-sum games, our notation simplifies.

o Let G =(P,A= A; X Ay, u) be a zero-sum game. That is,
u1(a) + ux(a) = 0 for every a € A.

o If Ay ={1,...,m} and A, ={1,...,n}, then G can be represented
with an m x n payoff matrix M where M; ; = u1(i,j) = —ua(1f, ).

e For a strategy profile (s, s,), we write x; = s1(/) and y; = s,(j),
representing (s, s) with mixed strategy vectors x = (xq,...,Xy) and

y =1, --,yn) that satisfy 327", x; =1and 37, y; = 1.
e The expected payoff of player 1 then equals

u(s) = Z u(a)s1(1)s2()) ZZ M jxiy; = x My = —up(s).

a=(i,j)cA i=1 j=1



IS
Worst-case optimal strategies



Worst-case optimal strategies

e Thus, player's 2 best response to a strategy x of 1, is a vector y € S,
that minimizes x ' My.



Worst-case optimal strategies

e Thus, player's 2 best response to a strategy x of 1, is a vector y € S,
that minimizes x" My. Player's 1 best response to a strategy y of 2 is
x € S; that maximizes x ' My.



Worst-case optimal strategies

e Thus, player's 2 best response to a strategy x of 1, is a vector y € S,
that minimizes x" My. Player's 1 best response to a strategy y of 2 is
x € S; that maximizes x ' My.

e Let J(x) = minycs, x' My be the best expected payoff of 2 against x.



Worst-case optimal strategies

e Thus, player's 2 best response to a strategy x of 1, is a vector y € S,
that minimizes x" My. Player's 1 best response to a strategy y of 2 is
x € S; that maximizes x ' My.

e Let J(x) = minycs, x' My be the best expected payoff of 2 against x.
Let a(y) = maxyes, x' My be the best expected payoff of 1 to y.



Worst-case optimal strategies

e Thus, player's 2 best response to a strategy x of 1, is a vector y € S,
that minimizes x" My. Player's 1 best response to a strategy y of 2 is
x € S; that maximizes x ' My.

e Let J(x) = minycs, x' My be the best expected payoff of 2 against x.
Let a(y) = maxyes, x' My be the best expected payoff of 1 to y.

e A strategy profile (x, y) is then a NE if and only if it satisfies
Bx) = x"My = a(y).



Worst-case optimal strategies

e Thus, player's 2 best response to a strategy x of 1, is a vector y € S,
that minimizes x" My. Player's 1 best response to a strategy y of 2 is
x € S; that maximizes x ' My.

e Let J(x) = minycs, x' My be the best expected payoff of 2 against x.
Let a(y) = maxyes, x' My be the best expected payoff of 1 to y.

e A strategy profile (x, y) is then a NE if and only if it satisfies
B(x) = x" My = a(y).

e Assume player 1 expects player 2 to select a best response to every
strategy x he can come up with.



Worst-case optimal strategies

e Thus, player's 2 best response to a strategy x of 1, is a vector y € S,
that minimizes x" My. Player's 1 best response to a strategy y of 2 is
x € S; that maximizes x ' My.

e Let J(x) = minycs, x' My be the best expected payoff of 2 against x.
Let a(y) = maxyes, x' My be the best expected payoff of 1 to y.

e A strategy profile (x, y) is then a NE if and only if it satisfies
B(x) = x" My = a(y).

e Assume player 1 expects player 2 to select a best response to every
strategy x he can come up with. Player 1 then chooses a mixed

strategy X from S; that maximizes his expected payoff under this,
rather pessimistic, assumption.



Worst-case optimal strategies

e Thus, player's 2 best response to a strategy x of 1, is a vector y € S,
that minimizes x" My. Player's 1 best response to a strategy y of 2 is
x € S; that maximizes x ' My.

e Let J(x) = minycs, x' My be the best expected payoff of 2 against x.
Let a(y) = maxyes, x' My be the best expected payoff of 1 to y.

e A strategy profile (x, y) is then a NE if and only if it satisfies
B(x) = x" My = a(y).

e Assume player 1 expects player 2 to select a best response to every
strategy x he can come up with. Player 1 then chooses a mixed

strategy X from S; that maximizes his expected payoff under this,
rather pessimistic, assumption.

e This worst-case optimal strategy for 1 satisfies 5(X) = max,cs, 5(x).



Worst-case optimal strategies

e Thus, player's 2 best response to a strategy x of 1, is a vector y € S,
that minimizes x" My. Player's 1 best response to a strategy y of 2 is
x € S; that maximizes x ' My.

e Let J(x) = minycs, x' My be the best expected payoff of 2 against x.
Let a(y) = maxyes, x' My be the best expected payoff of 1 to y.

e A strategy profile (x, y) is then a NE if and only if it satisfies
B(x) = x" My = a(y).

e Assume player 1 expects player 2 to select a best response to every
strategy x he can come up with. Player 1 then chooses a mixed
strategy X from S; that maximizes his expected payoff under this,
rather pessimistic, assumption.

e This worst-case optimal strategy for 1 satisfies 5(X) = max,cs, 5(x).
The worst-case optimal strategy for 2 is a mixed strategy y € S, that
satisfies a(y) = minycs, a(y).
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e To achieve NE in a zero-sum game, both players must select their
worst-case optimal strategies.

Lemma 2.20

(a) Forall x € S; and y € S,, we have 8(x) < x' My < a(y).
(b) If a strategy profile (x*, y*) is NE, then both strategies x* and y* are

worst-case optimal.
(c) Any strategies x* € S; and y* € S, satisfying (x*) = a(y*) form NE
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The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players
exist and can be efficiently computed. There is a number v such that, for
any worst-case optimal strategies x* and y*, the strategy profile (x*,y*) is a
Nash equilibrium and B(x*) = (x*)"My* = a(y*) = v.

Figure: John von Neumann (1903-1957) and Oskar Morgenstern (1902-1977).

Sources: https://en.wikiquote.org and https://austriainusa.org
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e Proved by Von Neumann in 1928 (predates Nash's Theorem).

e “As far as | can see, there could be no theory of games ... without
that theorem ... | thought there was nothing worth publishing until the
Minimax Theorem was proved.” (Von Neumann).

e The Minimax theorem tells us everything about zero-sum games: there
is NE and it can be found efficiently. Moreover, there is a unique value
of the game v = (x*)T M(y*) of the payoff attained in any NE (x*, y*).

e There are no secrets in zero-sum games: strategies known in advance
change nothing, each player can choose a worst-case optimal strategy
and get payoff > v. If the opponent chooses his worst-case optimal
strategy, then his payoff is always < v.

e The name: the expanded equality 5(x*) = v = a(y*) becomes

max min x' My = v = min maxx ' My.
x€S51 yeSy yES) xES

e Original proof uses Brouwer's theorem. We will use linear programming.



HEY IT'S NOT A ZERO $UM
GAME, YOU KNOW --
EVERYBODY CAN
HAVE A
GOOD DAY.

Source: https://czthomas.files.wordpress.com

Thank you for your attention.



