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Basic info

e Webpage: https://kam.mff.cuni.cz/"balko/ath2526/ATH.html|
o lecture info, topics covered, presentations, lecture notes ...
o Recommended literature:
o M. Balko: Algorithmic game theory: lecture notes.
o The notes are still under construction. Comments are welcome.

Algorithmic Game Theory

Figure: Algorithmic game theory by Nisan et al.

Source: https://amazon.com
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e We focus on the algorithmic side of the game theory.
e Several real-word applications.
e More than ten game theorists have won the Nobel Prize in economics.
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Other game theory classes

e There are two other classes taught by people from our group.

e Modern Algorithmic Game Theory (NOPT021)
o Taught by Martin Schmid and Radovan Haluska,
o runs simultaneously with this class in the winter term; still a
chance to enroll,
o covers similar topics as this class, plus some more,
o focuses on the implementation of the algorithms such as support
enumeration or regret minimization.

e Advanced Modern Algorithmic Game Theory (NOPT022) (long title)

o A brand new course taught by Martin Schmid and Radovan
Halugka,

o a continuation of the previous class that focuses on approximation
methods and large games.
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Further info and sylabus

e You can earn up to 100 points for completing small weekly quizzes and
homeworks.

e To receive credit, you need at least 65 points. If you earn at least 85
points, you will not be required to solve a problem during the exam.

e Preliminary plan:
o Finding Nash equilibria

@)

Nash equilibria and Nash's Theorem,
o zero-sum games,

o bimatrix games and the Lemke—Howson algorithm,
o other notions of equilibria,

o regret minimization.

o Mechanism design,
o auctions (Vickrey),
o Myerson's lemma and its applications,
o revenue maximization.



Finding Nash equilibria
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Normal-form games

We use the following most fundamental representation of games.

A normal-form game is a triple (P, A, u), where

o P is a finite set of n players,

o A=A; x--- X A, is a set of action profiles, where A; is a set of
actions available to player /,

o and u = (uy,...,u,) is an n-tuple, where each uv;: A — R is the
utility function for player i.

Knowing the utility function, all players i simultaneously choose an
action a; from A;. The resulting action profile a = (ay,. .., a,) is then
evaluated using the utility function.

The ith coordinate u;(a) of u(a) is the gain of player i on a.
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Normal-form games: Rock-Paper-Scissors

Rock | Paper | Scissors
Rock | (0,0) | (-1,1) | (1,-1)
Paper | (1,-1) | (0,0) | (-1,1) @
Scissors | (-1,1) | (1,-1) | (0,0) §

Sources: https://en.wikipedia.org
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Normal-form games: Rock-Paper-Scissors-Lizard-Spock

Rock | Paper | Scissors | Lizard | Spock
Rock (0,0) | (-1,1) | (1,-1) | (1,-1) | (-1,1) &
Paper | (1,-1)
Scissors | (-1,1) -1)
Lizard | (-1,1) | (1,-1)
Spock | (1,-1) )

Sources: https://bigbangtheory.fandom.com

e "“Scissors cuts Paper, Paper covers Rock, Rock crushes Lizard, Lizard
poisons Spock, Spock smashes Scissors, Scissors decapitates Lizard,
Lizard eats Paper, Paper disproves Spock, Spock vaporizes Rock (and
as it always has) Rock crushes Scissors."



Normal-form games: Rock-Paper-Scissors-Lizard-Spock

Scissors cuts paper.

Paper covers rock.

Rock crushes lizard.
} \ Lizard poisons Spock.

Spock zaps wizard.

Wizard stuns Batman.

Batman scares Spider-Man.

Spider-Man disarms glock.

Glock breaks rock.

Rock interrupts wizard.

Wizard burns paper.

Paper disproves Spock.

Spock befuddles Spider-Man.

Spider-Man defeats lizard.

Lizard confuses Batman

(because he looks like Killer Croc).

Batman dismantles scissors.

Scissors cut wizard.

Wizard transforms lizard.

Lizard eats paper.

Paper jams glock.

Glock kills Batman's mom.

Batman explodes rock.

Rock crushes scissors.
h Scissors decapitates lizard.

Lizard is too small for glock.

Glock shoots Spock.

Spock vaporizes rock.
ROCK PAPER SCISSORS
Spider-Man rips paper.
Paper delays Batman.
Batman hangs Spock.
Spock smashes scissors.
SPI DER-MAN BATMAN Scissors cut Spider-Man.
Spider-Man annoys wizard.
WIZARD GLOCK &
Glock dents scissors.
ROCK PAPER SCISSORS SPOCK LIZARD by Sam Kass and Karen Bryla, and then, Brian Yan messed it up into this.

Source: https://www.naturphilosophie.co.uk/
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Normal-form games: Chess

Source: https://edition.cnn.com/

e Chess as a normal-form game: Each action of player i € {black, white}
is a list of all possible situations that can happen on the board together
with the move player i would make in that situation. Then we can
simulate the whole game of chess in one round.
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Strategies

e Each player i follows a certain strategy (a prescription how he chooses
his actions from A;).
e A pure strategy s; of player / is an action from A;.
o “select a single action and play it",
o a pure-strategy profile is an n-tuple (s1,...,s,), where s; € A; for
each player i.
e A mixed strategy s; of player / is a probability distribution over A;.
o that is, s; assigns a value s;(a;) € [0, 1] to each a; € A; so that

Z s,-(a,-) =1.

a;i€A;

o s;(a;) = "probability that i chooses a; as his action”.
o We let S; be the set of all mixed strategies of player i.
o a mixed-strategy profile is an n-tuple (sy,...,s,), where s; € S; for
each player i.
e Every pure strategy is a mixed strategy.
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Expected payoff

e The goal of each player is to maximize his expected payoff.

e In G = (P, A, u), the expected payoff for player i of the mixed-strategy
profile s = (s1,...,5,) is

u()= Y (@) [s(@) = 3 X@)-Prifwl.

weN

o that is, u;(s) is the expected value of u; under the product
distribution [/, s;.
e It satisfies the linearity of the expected payoff (Exercise):

ui(s) = Z si(a;) - ui(ai; s—i),

a;EA;

where s ; = (s1,...,Si_1,Si+1,---,Sn) and
/. _ / /
(siis-i) = (s1,--.,Si-1,5],Sit1, ..., 5,) for any s; € 5.
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Rock | Paper | Scissors
Rock | (0,0) | (-1,1) | (1,-1)
Paper | (1,-1) | (0,0) | (-1,1)
Scissors | (-1,1) | (1,-1) | (0,0)



Example: expected payoff in Rock-Paper-Scissors

e Consider the Rock-Paper-Scissors game where each player / uses a
strategy s; that assigns each action the probability 1/3.

Rock

Rock
Paper

Scissors

(0,0)
(1-1)
(-1.1)

Paper | Scissors
(-1,1) | (1,-1)
(0,0) | (-1,1)
(1,-1) | (0,0)

e By definition, the expected payoff of player 1 on s = (s1, 5,) is

11 11

w9 =1-(355°3
40 1 1+1 1
33 33

+

+

1
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1
3
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Example: expected payoff in Rock-Paper-Scissors

e Consider the Rock-Paper-Scissors game where each player / uses a
strategy s; that assigns each action the probability 1/3.

Rock | Paper | Scissors
Rock | (0,0) | (-1,1) | (1,-1)
Paper | (1,-1) | (0,0) | (-1,1)
Scissors | (-1,1) | (1,-1) | (0,0)
e By definition, the expected payoff of player 1 on s = (s1, 5,) is

11 11 11 11 11 11
n(s) = '(5'5%'5*55) - (5'5*5 373 §>
o (Bl
33 3 3 3 3
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Examples of normal-form games

e We now give four more examples of normal-form games.

e Several of these are used later in the lecture and the tutorials.

e We focus here only on two-player games, that is, P = {1,2}.

e These games are called bimatrix games, as they can be represented
with two real matrices.

e Player 1 will be the “row player” while player 2 will be the “column
player”.
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e Two prisoners, are being held in solitary confinement and cannot
communicate with the other. Each can either betray the other one by
testifying or cooperate with the other one by remaining silent.

‘ Testify ‘ Remain silent
Testify | (-2,-2) 0-3) 1S
Remain silent | (-3,0) (-1,-1)

Sources: Serena Maylon (MtG)

e Paradoxically, the only stable solution is when both testify.
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Matching pennies

e We introduce an easier variant of the Rock-Paper-Scissors game.

e Each of the two players has a penny and chooses either Heads of Tails.
If the pennies match, then player 1 wins and keeps both pennies.
Otherwise, player 2 keeps both pennies.

‘ Heads ‘ Tails
Heads | (1,-1) | (-1,1)
Tails | (-1,1) | (1,-1)

Sources: https://www.fourstateshomepage.com/

e Like Rock-Papers-Scissors, this is a zero-sum game (whatever one
player gets, the other one loses). Prisoner's dilemma is not.
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Battle of sexes

e A husband and wife wish to spend an evening together rather than
separately, but cannot decide which event to attend. The husband
wishes to go to a football match while the wife wants to go to opera.

‘ Football ‘ Opera
Football | (2,1) (0,0)
Opera (0,0) (1,2)

Sources: https://media.istockphoto.com

e This game displays both cooperation and competition.



BN
Game of chicken



Game of chicken

e Two drivers drive towards each other on a collision course: one must
swerve, or both die in the crash. However, if one driver swerves and the
other does not, the one who swerved will be called a “chicken”



Game of chicken
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Game of chicken

e Two drivers drive towards each other on a collision course: one must
swerve, or both die in the crash. However, if one driver swerves and the
other does not, the one who swerved will be called a “chicken”

PI?—Y'ng the amel-lﬂ(ea ghmmy
'r* P % ¢

‘ Turn ‘ Go straight
Turn (0,0) (-1,1)
Go straight | (1,-1) | (-10,-10)

Sources: https://peakd.com/

e What is the best strategy for the players?
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Nash equilibrium

e In game theory, we typically study rules for predicting how a game will
be played, called solution concepts.

e We now introduce perhaps the most influential solution concept, which
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Nash equilibrium

e In game theory, we typically study rules for predicting how a game will
be played, called solution concepts.

e We now introduce perhaps the most influential solution concept, which
captures a notion of stability.

e The best response of player / to a strategy profile s_; is a mixed
strategy s’ such that u;(sf;s_;) > u(s!;s_;) for each s € §;.
o If i knew what strategies the others follow, he would choose this
one. It maximizes his expected payoff if others play s_;.

e For a normal-form game G = (P, A, u) of n players, a Nash equilibrium
(NE) in G is a strategy profile (si,...,s,) such that s; is a best
response of player i to s_; for every | € P.

o A stable solution concept: no player would like to change his
strategy if he knew the strategies of the other players.
o Introduced by Nash and by Von Neumann and Morgenstern.
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Nash equilibria: remarks

e Neither best responses nor Nash equilibria are determined uniquely.

e Example 1: In the Rock-Paper-Scissors game, there is a unique mixed
Nash equilibrium (both players play everything with probability 1/3).

e Example 2: In the Battle of sexes game, there are three Nash equilibria,
two pure and one mixed.

e Do Nash equilibria always exist in every game? Is there always a stable
solution concept?
e Yes, they do! Shown by Nash in 1950.

e Maybe the most influential result in game theory. Later, Nash received
a Nobel prize for economics.
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Nash's Theorem

Nash's Theorem (Theorem 2.16)

Every normal-form game has a Nash equilibrium.

RUS\ELL 5
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Figure: John Forbes Nash Jr. (1928-2015) and his depiction in the movie A
Beautiful mind.

Sources: https://britannica.com and https://medium.com
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Preparations for the proof of Nash's theorem

e The proof is essentially topological, as its main ingredient is a
fixed-point theorem. We use a theorem due to Brouwer.

e For d € N, a subset X of RY is compact if X is closed and bounded.

e We say that a subset Y of R is convex if every line segment
containing two points from Y is fully contained in Y. Formally: for all
x, y from Y, tx+ (1 —t)y € Y for every t € [0,1].

e For n affinely independent points xi, ..., x, € RY an (n — 1)-simplex
A, on xq,...,X, is the set of convex combinations of the points
X1,...,%,. Each simplex is a compact convex set in RY.

Lemma (Lemma 2.18)

For n,di,...,d, €N, let Ky, ..., K, be compact sets, each K; lying in R%.
Then, K; x --- x K, is a compact set in R+ +dn.
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Brouwer's Fixed Point Theorem (Thoerem 2.17)

For each d € N, let K be a non-empty compact convex set in RY and
f: K — K be a continuous mapping. Then, there exists a fixed point
xo € K for f, that is, f(x0) = Xo.

Figure: L. E. J. Brouwer (1881-1966).

Source: https://arxiv.org/pdf/1612.06820.pdf
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Source: https://pbs.org

Thank you for your attention.



