Algorithmic game theory — Homework 2^1 Nash equilibria

assigned 4.11.2024, deadline 18.11.2024

Homework 1. Draw the best response polyhedron and normalized best response polytope for the Battle for Gotham's soul. Then, find all completely labeled pairs of vertices that correspond to Nash equilibria. [4]

	Cooperate (3)	Detonate (4)
Cooperate (1)	(1, 1)	(1, 2)
Detonate (2)	(2, 1)	(1, 1)

Table 1: 1	Battle for	Gotham's	soul.
------------	------------	----------	-------

Homework 2. Use the Lemke–Howson algorithm and compute a Nash equilibrium of the following bimatrix game: [3]

$$M = \begin{pmatrix} 0 & 12 \\ 1 & 4 \\ 3 & 0 \end{pmatrix} \quad a \quad N = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 2 & 3 \end{pmatrix}.$$

Start by choosing the label 1.

Homework 3. [Sperner's Lemma] Let S be a given subdivision of a triangle T in the plane. A legal coloring the vertices of S assigns one of three colors (red, blue, and green) to each vertex of S such that all the three colors are used on the vertices of T. Moreover, a vertex of S lying on an edge of T must have one of the two colors of the endpoints of this edge.

Prove that, in every legal coloring of S, there is a triangular face of S whose vertices are colored with all three colors.

Hint: Use a reduction to the END-OF-THE-LINE problem.

[3]

 $^{^1 \}mathrm{Information}$ about the course can be found at http://kam.mff.cuni.cz/~balko/