
Algorithmic game theory

Martin Balko

9th lecture

November 29th 2024



Games in extensive form



Games in extensive form

• Last lecture, we introduced a new notion of games, so-called games in
extensive form, which are described using trees.

• Today, we describe strategies for such games and how to compute Nash
equilibria.



Games in extensive form

• Last lecture, we introduced a new notion of games, so-called games in
extensive form, which are described using trees.

• Today, we describe strategies for such games and how to compute Nash
equilibria.



Games in extensive form

• Last lecture, we introduced a new notion of games, so-called games in
extensive form, which are described using trees.

• Today, we describe strategies for such games and how to compute Nash
equilibria.



Basic definitions

• Extensive game consists of a directed tree where nodes represent game
states.

• The game starts at the root of the tree and ends at a leaf, where each
player receives a payoff. Each node that is not a leaf is a decision node.

• Moves a player can make in a given state are assigned to the outgoing
edges of the corresponding decision node.

• We partition decision nodes into information sets where all nodes in an
information set belong to the same player and have the same moves.

• For player i , we let Hi be the set of information sets of i and, for an
information set h ∈ Hi , we let Ch be the set of moves at h.

• In perfect-information games all information sets are singletons.
Otherwise, we have an imperfect-information game where players have
only partial knowledge of the states that they are in.
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Example: imperfect-information game

• An example of an imperfect-information game in extensive form
(part (a)) and its normal-form (part (b)).
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(R, T ) (3,3) (3,3)
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Example: Prisoner’s dilemma

• Prisoner’s dilemma in extensive form (part (a)) and its normal-form
(part (b)).
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• Every normal-form game can be expressed as an imperfect-information
extensive game.
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Strategies in extensive games

• A pure strategy for player i is a complete specification of which
deterministic action to take at every information set belonging to i .
◦ Formally, a pure strategy of player i is a vector (ch)h∈Hi

from the
Cartesian product

∏
h∈Hi

Ch.
◦ Using pure strategies, we can transform an extensive game G into
a normal-form game G ′ simply by tabulating all pure strategies of
the players and recording the resulting expected payoffs.

• Mixed strategies of G are the mixed strategies of G ′.
• In the same way, we also define the set of Nash equilibria of G .
• A behavioral strategy of player i is a probability distribution on Ch for
each h ∈ Hi .
◦ This is a strategy in which each player’s choice at each information
set is made independently of his choices at other information sets.

◦ So a behavioral strategy is a vector of probability distributions
while a mixed strategy is a probability distribution over vectors.

◦ Unlike in mixed strategy, here a player might play different moves
in different encounters of h.
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Example: behavioral strategy

• An example of a perfect-information game in extensive form (part (a))
and its normal-form (part (b)).
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(8, 3)(3, 8)
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(C,E) (C,F ) (D,E) (D,F )
(A,G) (3,8) (3,8) (8,3) (8,3)
(A,H) (3,8) (3,8) (8,3) (8,3)
(B,G) (5,5) (2,10) (5,5) (2,10)
(B,H) (5,5) (1,0) (5,5) (1,0)

• A strategy of player 1 that selects A with probability 1
2
and G with

probability 1
3
is a behavioral strategy.

• The mixed strategy (3
5
(A,G ), 2

5
(B ,H)) is not a behavioral strategy for

1 as the choices made by him at the two nodes are not independent.
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Games of perfect recall

• In general, the expressive power of behavioral strategies and mixed
strategies are incomparable.

• However, there is a large class of extensive games for which the two
definitions coincide. To define it, we need some auxiliary terms.

• A sequence σi(t) of moves of player i to a node t is the sequence of his
moves (disregarding the moves of other players) on the unique path
from the root of the tree to t. The empty sequence is denoted ∅.

• Player i has perfect recall if and only if, for every h ∈ Hi and any nodes
t, t ′ ∈ h, we have σi(t) = σi(t

′).

• In such case, we use σh to denote the unique sequence leading to any
node t in h.

• A game G is a game of perfect recall if each player has perfect recall.

◦ No player forgets any information he knew about moves made so
far. That is, each player remembers what he did in prior moves,
and each player remembers everything that he knew before.

◦ Every perfect-information game is a game of perfect recall.
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Kuhn’s Theorem

• In games of perfect recall, mixed strategies and behavioral strategies
are equivalent.

Kuhn’s theorem (Theorem 2.62)

In a game of perfect recall, any mixed strategy of a given player can be
replaced by an equivalent behavioral strategy, and any behavioral strategy
can be replaced by an equivalent mixed strategy.

Figure: Harold William Kuhn (1925–2014).
Sources: https://alchetron.com/Harold-W-Kuhn and https://www.cantorsparadise.com/
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Finding NE in extensive games

• Every extensive game G can be converted into an equivalent
normal-form game G ′.

• So we can find NE of G by converting it into G ′ and applying the
Lemke–Howson algorithm to G ′.

• However, this is inefficient, as the number of actions in G ′ is exponential
in the size of G . So the number of steps can be double exponential!

• To avoid this problem, we will work directly with G using so-called
sequence form.

• From now on, we consider only games of perfect recall.

• By Kuhn’s Theorem, NE do not change if we restrict ourselves to
behavioral strategies. So we will work with them.



Finding NE in extensive games

• Every extensive game G can be converted into an equivalent
normal-form game G ′.

• So we can find NE of G by converting it into G ′ and applying the
Lemke–Howson algorithm to G ′.

• However, this is inefficient, as the number of actions in G ′ is exponential
in the size of G . So the number of steps can be double exponential!

• To avoid this problem, we will work directly with G using so-called
sequence form.

• From now on, we consider only games of perfect recall.

• By Kuhn’s Theorem, NE do not change if we restrict ourselves to
behavioral strategies. So we will work with them.



Finding NE in extensive games

• Every extensive game G can be converted into an equivalent
normal-form game G ′.

• So we can find NE of G by converting it into G ′ and applying the
Lemke–Howson algorithm to G ′.

• However, this is inefficient, as the number of actions in G ′ is exponential
in the size of G . So the number of steps can be double exponential!

• To avoid this problem, we will work directly with G using so-called
sequence form.

• From now on, we consider only games of perfect recall.

• By Kuhn’s Theorem, NE do not change if we restrict ourselves to
behavioral strategies. So we will work with them.



Finding NE in extensive games

• Every extensive game G can be converted into an equivalent
normal-form game G ′.

• So we can find NE of G by converting it into G ′ and applying the
Lemke–Howson algorithm to G ′.

• However, this is inefficient, as the number of actions in G ′ is exponential
in the size of G .

So the number of steps can be double exponential!

• To avoid this problem, we will work directly with G using so-called
sequence form.

• From now on, we consider only games of perfect recall.

• By Kuhn’s Theorem, NE do not change if we restrict ourselves to
behavioral strategies. So we will work with them.



Finding NE in extensive games

• Every extensive game G can be converted into an equivalent
normal-form game G ′.

• So we can find NE of G by converting it into G ′ and applying the
Lemke–Howson algorithm to G ′.

• However, this is inefficient, as the number of actions in G ′ is exponential
in the size of G . So the number of steps can be double exponential!

• To avoid this problem, we will work directly with G using so-called
sequence form.

• From now on, we consider only games of perfect recall.

• By Kuhn’s Theorem, NE do not change if we restrict ourselves to
behavioral strategies. So we will work with them.



Finding NE in extensive games

• Every extensive game G can be converted into an equivalent
normal-form game G ′.

• So we can find NE of G by converting it into G ′ and applying the
Lemke–Howson algorithm to G ′.

• However, this is inefficient, as the number of actions in G ′ is exponential
in the size of G . So the number of steps can be double exponential!

• To avoid this problem, we will work directly with G using so-called
sequence form.

• From now on, we consider only games of perfect recall.

• By Kuhn’s Theorem, NE do not change if we restrict ourselves to
behavioral strategies. So we will work with them.



Finding NE in extensive games

• Every extensive game G can be converted into an equivalent
normal-form game G ′.

• So we can find NE of G by converting it into G ′ and applying the
Lemke–Howson algorithm to G ′.

• However, this is inefficient, as the number of actions in G ′ is exponential
in the size of G . So the number of steps can be double exponential!

• To avoid this problem, we will work directly with G using so-called
sequence form.

• From now on, we consider only games of perfect recall.

• By Kuhn’s Theorem, NE do not change if we restrict ourselves to
behavioral strategies. So we will work with them.



Finding NE in extensive games

• Every extensive game G can be converted into an equivalent
normal-form game G ′.

• So we can find NE of G by converting it into G ′ and applying the
Lemke–Howson algorithm to G ′.

• However, this is inefficient, as the number of actions in G ′ is exponential
in the size of G . So the number of steps can be double exponential!

• To avoid this problem, we will work directly with G using so-called
sequence form.

• From now on, we consider only games of perfect recall.

• By Kuhn’s Theorem, NE do not change if we restrict ourselves to
behavioral strategies.

So we will work with them.



Finding NE in extensive games

• Every extensive game G can be converted into an equivalent
normal-form game G ′.

• So we can find NE of G by converting it into G ′ and applying the
Lemke–Howson algorithm to G ′.

• However, this is inefficient, as the number of actions in G ′ is exponential
in the size of G . So the number of steps can be double exponential!

• To avoid this problem, we will work directly with G using so-called
sequence form.

• From now on, we consider only games of perfect recall.

• By Kuhn’s Theorem, NE do not change if we restrict ourselves to
behavioral strategies. So we will work with them.



Sequence form

• The sequence form of an imperfect-information game G is a 4-tuple
(P , S , u, C) where
◦ P is a set of n players,
◦ S = (S1, . . . , Sn), where Si is a set of sequences of player i ,
◦ u = (u1, . . . , un), where ui : S → R is the payoff function of player
i , and

◦ C = (C1, . . . , Cn) is a set of linear constraints on the realization
probabilities of player i .

• Now, we will define all these terms properly. It will take some time...

• First, we explain the set of sequences S in more detail.

◦ Any sequence σ from Si is either the empty sequence ∅ or it is
uniquely determined by the last move c at the information set h,
that is, σ = σhc .

◦ Thus, Si = {∅} ∪ {σhc : h ∈ Hi , c ∈ Ch}.
◦ It follows that |Si | = 1 +

∑
h∈Hi

|Ch|, which is linear in the size of
the tree of G .
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Still defining the sequence form

• We now explain the payoff function u in more detail.

◦ For player i and sequences σ = (σ1, . . . , σn) ∈ S , the payoff ui(σ)
equals ui(ℓ) where ℓ is the leaf that would be reached if each
player j played his sequence σj . Otherwise, ui(σ) = 0.

◦ Similarly as in normal-form games, we can represent the payoffs u
using matrices with entries indexed by elements from S .

◦ Note that these matrices are sparse as most entries are 0.
◦ If there are only two players, then we capture their payoffs with
matrices A and B .
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Example: sequence form payoff matrices

• An example of an imperfect-information game in extensive form
(part (a)) and its sequence form payoff matrices (part (b)).
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Finally finishing the definition of the sequence form

• We now explain the linear constraints C in more detail.
◦ We still do not have everything to describe G since a player cannot
choose sequences as actions because other players might not play
in a way that would allow him to follow to a leaf. This is why we
will work with behavioral strategies.

◦ However, working with them directly is computationally difficult.
So we develop an alternate concept of a realization plan.

◦ The realization plan of a behavioral strategy βi for player i is a
mapping x : Si → [0, 1] defined as x(σi) =

∏
c∈σi

βi(c). The value
x(σi) is called the realization probability.
⋄ The realization plan is the probability that a sequence arises
under a given behavioral strategy.

⋄ Equivalently, we can work with it using a set of linear
equations: A realization plan for player i is a mapping
x : Si → [0, 1] satisfying x(∅) = 1, and

∑
c∈Ch

x(σhc) = x(σh)
for every h ∈ Hi .

⋄ We let Ci be the set of constraints of the second type.
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Using the sequence form

• Consider an extensive game G of two players.

• We show how to actually use the sequence form to compute NE.

• Consider realization plans as vectors x = (xσ)σ∈S1 ∈ R|S1| and
y = (yτ )τ∈S2 ∈ R|S2|.

• Then, the linear constraints from C can be written as

Ex = e, x ≥ 0 and Fy = f , y ≥ 0

where the constraint matrices E and F have 1 + |H1| and 1 + |H2| rows
with first row of Ex = e and Fy = f corresponding to x(∅) = 1 for E
and y(∅) = 1 for F .

• The other rows of Ex = e are −x(σh) +
∑

c∈Ch
x(σhc) = 0 for every

h ∈ H1.

• For Fy = f , we have the rows −y(σh) +
∑

c∈Ch
y(σhc) = 0 for every

h ∈ H2.

• The vectors e and f also have 1 + |H1| and 1 + |H2| rows.
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with first row of Ex = e and Fy = f corresponding to x(∅) = 1 for E
and y(∅) = 1 for F .

• The other rows of Ex = e are −x(σh) +
∑

c∈Ch
x(σhc) = 0 for every

h ∈ H1.

• For Fy = f , we have the rows −y(σh) +
∑

c∈Ch
y(σhc) = 0 for every

h ∈ H2.

• The vectors e and f also have 1 + |H1| and 1 + |H2| rows.
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Example: sequence form constraints

• An example of an imperfect-information game in extensive form
(part (a)) and linear constraints in its sequence form (part (b)).
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2

L R

` r

S T S T

(3, 3)

(6, 1)(5, 6)(0, 3)(2, 2)

(a) (b)

E =

 1
−1 1 1

−1 1 1

 , e =

1
0
0

 ,

F =

(
1
−1 1 1

)
, f =

(
1
0

)
.

• We can uniquely recover behavioral strategy βi from a realization plan
x for player i in all relevant information sets h ∈ Hi with x(σh) > 0.

• For each such h ∈ Hi and c ∈ Ch, we set βi(h, c) =
x(σhc)
x(σh)
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Using the sequence form to find best responses

• We first show how to compute best responses.

• For a fixed realization plan y of player 2, a best response of player 1 is
a realization plan x that maximizes the expected payoff.

• Thus, x is a solution to the following linear program P

max x⊤Ay subject to

Ex = e,

x ≥ 0.

• The dual D of P uses unconstrained variables u and is of the form

min e⊤u subject to

E⊤u ≥ Ay .

• Analogous LPs can be used to compute best responses of player 2.
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Using the sequence form to find NE in zero-sum games

• Assume G is zero-sum, that is, A = −B .
• Then, using the Duality Theorem to P and D, similarly as we did in the
proof of the Minimax theorem, gives an LP for finding NE in G .

• The reason is that player 2 wants to minimize x⊤Ay , which by duality
equals e⊤u if player 1 maximizes his payoff x⊤Ay .

Theorem 2.65

NE of a 2-player zero-sum extensive game of perfect recall are solutions of
the following LP:

min
u,y

e⊤u subject to Fy = f ,E⊤u − Ay ≥ 0, y ≥ 0.

• The dual of this program has variables x and v and is of the form

max
v ,x

f ⊤v subject to Ex = e,F⊤v − A⊤x ≤ 0, x ≥ 0.

• This LP finds realization plan x with payoff f ⊤v for player 1.
• The number of nonzero entries in matrices E ,F .A,B is linear in the
size of the game tree. Thus, the LPs can be solved in polynomial time
with respect to the size of G . This is an exponential improvement!
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Using the sequence form to find NE in 2-player games

• A similar idea based on the Duality theorem and complementary
slackness, we can also compute NE in 2-player extensive games. See
the lecture notes for more details.

Theorem 2.66

A pair (x , y) of realization plans in a 2-player game in the extensive form of
perfect recall is NE iff there are vectors u and v such that:

x⊤(E⊤u − Ay) = 0, y⊤(F⊤v − B⊤x) = 0,

Ex = e, x ≥ 0, Fy = f , y ≥ 0,

E⊤u − Ay ≥ 0, F⊤v − B⊤x ≥ 0.

• This is not an LP. It is the so-called linear complementarity problem.

• These can be solved with Lemke’s algorithm, which can take
exponentially many steps, similarly to the Lemke–Howson algorithm.

• Still, it is exponentially faster than to run the Lemke–Howson algorithm
on the induced normal-form game.
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Theorem 2.66

A pair (x , y) of realization plans in a 2-player game in the extensive form of
perfect recall is NE iff there are vectors u and v such that:

x⊤(E⊤u − Ay) = 0, y⊤(F⊤v − B⊤x) = 0,

Ex = e, x ≥ 0, Fy = f , y ≥ 0,

E⊤u − Ay ≥ 0, F⊤v − B⊤x ≥ 0.

• This is not an LP. It is the so-called linear complementarity problem.

• These can be solved with Lemke’s algorithm, which can take
exponentially many steps, similarly to the Lemke–Howson algorithm.

• Still, it is exponentially faster than to run the Lemke–Howson algorithm
on the induced normal-form game.



• More about games in extensive form + implementation of the
algorithms is taught in a lecture by Martin Schmid.

Thank you for your attention.



• More about games in extensive form + implementation of the
algorithms is taught in a lecture by Martin Schmid.

Thank you for your attention.



• More about games in extensive form + implementation of the
algorithms is taught in a lecture by Martin Schmid.

Thank you for your attention.



• More about games in extensive form + implementation of the
algorithms is taught in a lecture by Martin Schmid.

Thank you for your attention.


