
Algorithmic game theory

Martin Balko

8th lecture

November 22nd 2024



Applications of

regret minimization



Concluding the story of NE

• We learned that Nash equilibria (NE) always exist. However, there
seem to be no polynomial-time algorithm for computing NE.

• Therefore we came up with “relaxations” of NE. Correlated equilibria
(CE) look particularly interesting as they are natural and we can
compute them in polynomial time using linear programming.

• Using external regret minimization, we can apply No-regret dynamics to
converge to more general coarse correlated equilibria (CCE).

Coarse correlated equilibria,

Correlated equilibria,

Mixed Nash equilibria,

Pure Nash equilibria,

CCE

CE

MNE

PNE
not always exist

always exist, hard to compute

easy to compute

even easier to compute

• Today, we show that the No-swap-regret dynamics converges to CE.



Concluding the story of NE

• We learned that Nash equilibria (NE) always exist.

However, there
seem to be no polynomial-time algorithm for computing NE.

• Therefore we came up with “relaxations” of NE. Correlated equilibria
(CE) look particularly interesting as they are natural and we can
compute them in polynomial time using linear programming.

• Using external regret minimization, we can apply No-regret dynamics to
converge to more general coarse correlated equilibria (CCE).

Coarse correlated equilibria,

Correlated equilibria,

Mixed Nash equilibria,

Pure Nash equilibria,

CCE

CE

MNE

PNE
not always exist

always exist, hard to compute

easy to compute

even easier to compute

• Today, we show that the No-swap-regret dynamics converges to CE.



Concluding the story of NE

• We learned that Nash equilibria (NE) always exist. However, there
seem to be no polynomial-time algorithm for computing NE.

• Therefore we came up with “relaxations” of NE. Correlated equilibria
(CE) look particularly interesting as they are natural and we can
compute them in polynomial time using linear programming.

• Using external regret minimization, we can apply No-regret dynamics to
converge to more general coarse correlated equilibria (CCE).

Coarse correlated equilibria,

Correlated equilibria,

Mixed Nash equilibria,

Pure Nash equilibria,

CCE

CE

MNE

PNE
not always exist

always exist, hard to compute

easy to compute

even easier to compute

• Today, we show that the No-swap-regret dynamics converges to CE.



Concluding the story of NE

• We learned that Nash equilibria (NE) always exist. However, there
seem to be no polynomial-time algorithm for computing NE.

• Therefore we came up with “relaxations” of NE.

Correlated equilibria
(CE) look particularly interesting as they are natural and we can
compute them in polynomial time using linear programming.

• Using external regret minimization, we can apply No-regret dynamics to
converge to more general coarse correlated equilibria (CCE).

Coarse correlated equilibria,

Correlated equilibria,

Mixed Nash equilibria,

Pure Nash equilibria,

CCE

CE

MNE

PNE
not always exist

always exist, hard to compute

easy to compute

even easier to compute

• Today, we show that the No-swap-regret dynamics converges to CE.



Concluding the story of NE

• We learned that Nash equilibria (NE) always exist. However, there
seem to be no polynomial-time algorithm for computing NE.

• Therefore we came up with “relaxations” of NE. Correlated equilibria
(CE) look particularly interesting as they are natural and we can
compute them in polynomial time using linear programming.

• Using external regret minimization, we can apply No-regret dynamics to
converge to more general coarse correlated equilibria (CCE).

Coarse correlated equilibria,

Correlated equilibria,

Mixed Nash equilibria,

Pure Nash equilibria,

CCE

CE

MNE

PNE
not always exist

always exist, hard to compute

easy to compute

even easier to compute

• Today, we show that the No-swap-regret dynamics converges to CE.



Concluding the story of NE

• We learned that Nash equilibria (NE) always exist. However, there
seem to be no polynomial-time algorithm for computing NE.

• Therefore we came up with “relaxations” of NE. Correlated equilibria
(CE) look particularly interesting as they are natural and we can
compute them in polynomial time using linear programming.

• Using external regret minimization, we can apply No-regret dynamics to
converge to more general coarse correlated equilibria (CCE).

Coarse correlated equilibria,

Correlated equilibria,

Mixed Nash equilibria,

Pure Nash equilibria,

CCE

CE

MNE

PNE
not always exist

always exist, hard to compute

easy to compute

even easier to compute

• Today, we show that the No-swap-regret dynamics converges to CE.



Concluding the story of NE

• We learned that Nash equilibria (NE) always exist. However, there
seem to be no polynomial-time algorithm for computing NE.

• Therefore we came up with “relaxations” of NE. Correlated equilibria
(CE) look particularly interesting as they are natural and we can
compute them in polynomial time using linear programming.

• Using external regret minimization, we can apply No-regret dynamics to
converge to more general coarse correlated equilibria (CCE).

Coarse correlated equilibria,

Correlated equilibria,

Mixed Nash equilibria,

Pure Nash equilibria,

CCE

CE

MNE

PNE
not always exist

always exist, hard to compute

easy to compute

even easier to compute

• Today, we show that the No-swap-regret dynamics converges to CE.



Concluding the story of NE

• We learned that Nash equilibria (NE) always exist. However, there
seem to be no polynomial-time algorithm for computing NE.

• Therefore we came up with “relaxations” of NE. Correlated equilibria
(CE) look particularly interesting as they are natural and we can
compute them in polynomial time using linear programming.

• Using external regret minimization, we can apply No-regret dynamics to
converge to more general coarse correlated equilibria (CCE).

Coarse correlated equilibria,

Correlated equilibria,

Mixed Nash equilibria,

Pure Nash equilibria,

CCE

CE

MNE

PNE
not always exist

always exist, hard to compute

easy to compute

even easier to compute

• Today, we show that the No-swap-regret dynamics converges to CE.



Our notation

• At each step t = 1, . . . ,T :

◦ Our agent A selects a probability distribution pt = (pt1, . . . , p
t
N)

over X , where pti is the probability that A selects i in step t.
◦ Then, the adversary chooses a loss vector ℓt = (ℓt1, . . . , ℓ

t
N), where

ℓti ∈ [−1, 1] is the loss of action i in step t.

• The agent A receives loss ℓtA =
∑N

i=1 p
t
i ℓ

t
i at step t. The cumulative

loss of A is LTA =
∑T

t=1 ℓ
t
A. The cumulative loss of i is LTi =

∑T
t=1 ℓ

t
i .

• We modify a sequence (pt)Tt=1 with F : X → X by replacing it with a
sequence (f t)Tt=1, where f t = (f t1 , . . . , f

t
N) and f ti =

∑
j : F (j)=i p

t
j .

• The cumulative loss of A modified by F is LTA,F =
∑T

t=1

∑N
i=1 f

t
i ℓ

t
i .



Our notation

• At each step t = 1, . . . ,T :

◦ Our agent A selects a probability distribution pt = (pt1, . . . , p
t
N)

over X , where pti is the probability that A selects i in step t.
◦ Then, the adversary chooses a loss vector ℓt = (ℓt1, . . . , ℓ

t
N), where

ℓti ∈ [−1, 1] is the loss of action i in step t.

• The agent A receives loss ℓtA =
∑N

i=1 p
t
i ℓ

t
i at step t. The cumulative

loss of A is LTA =
∑T

t=1 ℓ
t
A. The cumulative loss of i is LTi =

∑T
t=1 ℓ

t
i .

• We modify a sequence (pt)Tt=1 with F : X → X by replacing it with a
sequence (f t)Tt=1, where f t = (f t1 , . . . , f

t
N) and f ti =

∑
j : F (j)=i p

t
j .

• The cumulative loss of A modified by F is LTA,F =
∑T

t=1

∑N
i=1 f

t
i ℓ

t
i .



Our notation

• At each step t = 1, . . . ,T :

◦ Our agent A selects a probability distribution pt = (pt1, . . . , p
t
N)

over X ,

where pti is the probability that A selects i in step t.
◦ Then, the adversary chooses a loss vector ℓt = (ℓt1, . . . , ℓ

t
N), where

ℓti ∈ [−1, 1] is the loss of action i in step t.

• The agent A receives loss ℓtA =
∑N

i=1 p
t
i ℓ

t
i at step t. The cumulative

loss of A is LTA =
∑T

t=1 ℓ
t
A. The cumulative loss of i is LTi =

∑T
t=1 ℓ

t
i .

• We modify a sequence (pt)Tt=1 with F : X → X by replacing it with a
sequence (f t)Tt=1, where f t = (f t1 , . . . , f

t
N) and f ti =

∑
j : F (j)=i p

t
j .

• The cumulative loss of A modified by F is LTA,F =
∑T

t=1

∑N
i=1 f

t
i ℓ

t
i .



Our notation

• At each step t = 1, . . . ,T :

◦ Our agent A selects a probability distribution pt = (pt1, . . . , p
t
N)

over X , where pti is the probability that A selects i in step t.

◦ Then, the adversary chooses a loss vector ℓt = (ℓt1, . . . , ℓ
t
N), where

ℓti ∈ [−1, 1] is the loss of action i in step t.

• The agent A receives loss ℓtA =
∑N

i=1 p
t
i ℓ

t
i at step t. The cumulative

loss of A is LTA =
∑T

t=1 ℓ
t
A. The cumulative loss of i is LTi =

∑T
t=1 ℓ

t
i .

• We modify a sequence (pt)Tt=1 with F : X → X by replacing it with a
sequence (f t)Tt=1, where f t = (f t1 , . . . , f

t
N) and f ti =

∑
j : F (j)=i p

t
j .

• The cumulative loss of A modified by F is LTA,F =
∑T

t=1

∑N
i=1 f

t
i ℓ

t
i .



Our notation

• At each step t = 1, . . . ,T :

◦ Our agent A selects a probability distribution pt = (pt1, . . . , p
t
N)

over X , where pti is the probability that A selects i in step t.
◦ Then, the adversary chooses a loss vector ℓt = (ℓt1, . . . , ℓ

t
N),

where
ℓti ∈ [−1, 1] is the loss of action i in step t.

• The agent A receives loss ℓtA =
∑N

i=1 p
t
i ℓ

t
i at step t. The cumulative

loss of A is LTA =
∑T

t=1 ℓ
t
A. The cumulative loss of i is LTi =

∑T
t=1 ℓ

t
i .

• We modify a sequence (pt)Tt=1 with F : X → X by replacing it with a
sequence (f t)Tt=1, where f t = (f t1 , . . . , f

t
N) and f ti =

∑
j : F (j)=i p

t
j .

• The cumulative loss of A modified by F is LTA,F =
∑T

t=1

∑N
i=1 f

t
i ℓ

t
i .



Our notation

• At each step t = 1, . . . ,T :

◦ Our agent A selects a probability distribution pt = (pt1, . . . , p
t
N)

over X , where pti is the probability that A selects i in step t.
◦ Then, the adversary chooses a loss vector ℓt = (ℓt1, . . . , ℓ

t
N), where

ℓti ∈ [−1, 1] is the loss of action i in step t.

• The agent A receives loss ℓtA =
∑N

i=1 p
t
i ℓ

t
i at step t. The cumulative

loss of A is LTA =
∑T

t=1 ℓ
t
A. The cumulative loss of i is LTi =

∑T
t=1 ℓ

t
i .

• We modify a sequence (pt)Tt=1 with F : X → X by replacing it with a
sequence (f t)Tt=1, where f t = (f t1 , . . . , f

t
N) and f ti =

∑
j : F (j)=i p

t
j .

• The cumulative loss of A modified by F is LTA,F =
∑T

t=1

∑N
i=1 f

t
i ℓ

t
i .



Our notation

• At each step t = 1, . . . ,T :

◦ Our agent A selects a probability distribution pt = (pt1, . . . , p
t
N)

over X , where pti is the probability that A selects i in step t.
◦ Then, the adversary chooses a loss vector ℓt = (ℓt1, . . . , ℓ

t
N), where

ℓti ∈ [−1, 1] is the loss of action i in step t.

• The agent A receives loss ℓtA =
∑N

i=1 p
t
i ℓ

t
i at step t.

The cumulative

loss of A is LTA =
∑T

t=1 ℓ
t
A. The cumulative loss of i is LTi =

∑T
t=1 ℓ

t
i .

• We modify a sequence (pt)Tt=1 with F : X → X by replacing it with a
sequence (f t)Tt=1, where f t = (f t1 , . . . , f

t
N) and f ti =

∑
j : F (j)=i p

t
j .

• The cumulative loss of A modified by F is LTA,F =
∑T

t=1

∑N
i=1 f

t
i ℓ

t
i .



Our notation

• At each step t = 1, . . . ,T :

◦ Our agent A selects a probability distribution pt = (pt1, . . . , p
t
N)

over X , where pti is the probability that A selects i in step t.
◦ Then, the adversary chooses a loss vector ℓt = (ℓt1, . . . , ℓ

t
N), where

ℓti ∈ [−1, 1] is the loss of action i in step t.

• The agent A receives loss ℓtA =
∑N

i=1 p
t
i ℓ

t
i at step t. The cumulative

loss of A is LTA =
∑T

t=1 ℓ
t
A.

The cumulative loss of i is LTi =
∑T

t=1 ℓ
t
i .

• We modify a sequence (pt)Tt=1 with F : X → X by replacing it with a
sequence (f t)Tt=1, where f t = (f t1 , . . . , f

t
N) and f ti =

∑
j : F (j)=i p

t
j .

• The cumulative loss of A modified by F is LTA,F =
∑T

t=1

∑N
i=1 f

t
i ℓ

t
i .



Our notation

• At each step t = 1, . . . ,T :

◦ Our agent A selects a probability distribution pt = (pt1, . . . , p
t
N)

over X , where pti is the probability that A selects i in step t.
◦ Then, the adversary chooses a loss vector ℓt = (ℓt1, . . . , ℓ

t
N), where

ℓti ∈ [−1, 1] is the loss of action i in step t.

• The agent A receives loss ℓtA =
∑N

i=1 p
t
i ℓ

t
i at step t. The cumulative

loss of A is LTA =
∑T

t=1 ℓ
t
A. The cumulative loss of i is LTi =

∑T
t=1 ℓ

t
i .

• We modify a sequence (pt)Tt=1 with F : X → X by replacing it with a
sequence (f t)Tt=1, where f t = (f t1 , . . . , f

t
N) and f ti =

∑
j : F (j)=i p

t
j .

• The cumulative loss of A modified by F is LTA,F =
∑T

t=1

∑N
i=1 f

t
i ℓ

t
i .



Our notation

• At each step t = 1, . . . ,T :

◦ Our agent A selects a probability distribution pt = (pt1, . . . , p
t
N)

over X , where pti is the probability that A selects i in step t.
◦ Then, the adversary chooses a loss vector ℓt = (ℓt1, . . . , ℓ

t
N), where

ℓti ∈ [−1, 1] is the loss of action i in step t.

• The agent A receives loss ℓtA =
∑N

i=1 p
t
i ℓ

t
i at step t. The cumulative

loss of A is LTA =
∑T

t=1 ℓ
t
A. The cumulative loss of i is LTi =

∑T
t=1 ℓ

t
i .

• We modify a sequence (pt)Tt=1 with F : X → X by replacing it with a
sequence (f t)Tt=1, where f t = (f t1 , . . . , f

t
N) and f ti =

∑
j : F (j)=i p

t
j .

• The cumulative loss of A modified by F is LTA,F =
∑T

t=1

∑N
i=1 f

t
i ℓ

t
i .



Our notation

• At each step t = 1, . . . ,T :

◦ Our agent A selects a probability distribution pt = (pt1, . . . , p
t
N)

over X , where pti is the probability that A selects i in step t.
◦ Then, the adversary chooses a loss vector ℓt = (ℓt1, . . . , ℓ

t
N), where

ℓti ∈ [−1, 1] is the loss of action i in step t.

• The agent A receives loss ℓtA =
∑N

i=1 p
t
i ℓ

t
i at step t. The cumulative

loss of A is LTA =
∑T

t=1 ℓ
t
A. The cumulative loss of i is LTi =

∑T
t=1 ℓ

t
i .

• We modify a sequence (pt)Tt=1 with F : X → X by replacing it with a
sequence (f t)Tt=1, where f t = (f t1 , . . . , f

t
N) and f ti =

∑
j : F (j)=i p

t
j .

• The cumulative loss of A modified by F is LTA,F =
∑T

t=1

∑N
i=1 f

t
i ℓ

t
i .



Our notation

• At each step t = 1, . . . ,T :

◦ Our agent A selects a probability distribution pt = (pt1, . . . , p
t
N)

over X , where pti is the probability that A selects i in step t.
◦ Then, the adversary chooses a loss vector ℓt = (ℓt1, . . . , ℓ

t
N), where

ℓti ∈ [−1, 1] is the loss of action i in step t.

• The agent A receives loss ℓtA =
∑N

i=1 p
t
i ℓ

t
i at step t. The cumulative

loss of A is LTA =
∑T

t=1 ℓ
t
A. The cumulative loss of i is LTi =

∑T
t=1 ℓ

t
i .

• We modify a sequence (pt)Tt=1 with F : X → X by replacing it with a
sequence (f t)Tt=1, where f t = (f t1 , . . . , f

t
N) and f ti =

∑
j : F (j)=i p

t
j .

• The cumulative loss of A modified by F is LTA,F =
∑T

t=1

∑N
i=1 f

t
i ℓ

t
i .



All the regrets we have

• We also recall all variants of regret that we discussed.

• For a set F ex = {Fi : i ∈ X} of rules where Fi always outputs action i ,
we obtain exactly the external regret:

RT
A,Fex = max

F∈Fex

{
LTA − LTA,F

}
.

◦ “Agent A vs. agents who always play the same action.”

• For F in = {Fi ,j : (i , j) ∈ X × X , i ̸= j} where Fi ,j is defined by
Fi ,j(i) = j and Fi ,j(i

′) = i ′ for each i ′ ̸= i , we get the internal regret:

RT
A,F in = max

F∈F in

{
LTA − LTA,F

}
.

◦ “Agent A vs. agents who play j whenever A plays i .”

• For the set F sw of all modification rules, we get the swap regret:

RT
A,F sw = max

F∈F sw

{
LTA − LTA,F

}
.

◦ “Agent A vs. all his modifications.” Note: RT
A,Fex ,RT

A,F in ≤ RT
A,F sw .



All the regrets we have

• We also recall all variants of regret that we discussed.

• For a set F ex = {Fi : i ∈ X} of rules where Fi always outputs action i ,
we obtain exactly the external regret:

RT
A,Fex = max

F∈Fex

{
LTA − LTA,F

}
.

◦ “Agent A vs. agents who always play the same action.”

• For F in = {Fi ,j : (i , j) ∈ X × X , i ̸= j} where Fi ,j is defined by
Fi ,j(i) = j and Fi ,j(i

′) = i ′ for each i ′ ̸= i , we get the internal regret:

RT
A,F in = max

F∈F in

{
LTA − LTA,F

}
.

◦ “Agent A vs. agents who play j whenever A plays i .”

• For the set F sw of all modification rules, we get the swap regret:

RT
A,F sw = max

F∈F sw

{
LTA − LTA,F

}
.

◦ “Agent A vs. all his modifications.” Note: RT
A,Fex ,RT

A,F in ≤ RT
A,F sw .



All the regrets we have

• We also recall all variants of regret that we discussed.

• For a set F ex = {Fi : i ∈ X} of rules where Fi always outputs action i ,
we obtain exactly the external regret:

RT
A,Fex = max

F∈Fex

{
LTA − LTA,F

}
.

◦ “Agent A vs. agents who always play the same action.”

• For F in = {Fi ,j : (i , j) ∈ X × X , i ̸= j} where Fi ,j is defined by
Fi ,j(i) = j and Fi ,j(i

′) = i ′ for each i ′ ̸= i , we get the internal regret:

RT
A,F in = max

F∈F in

{
LTA − LTA,F

}
.

◦ “Agent A vs. agents who play j whenever A plays i .”

• For the set F sw of all modification rules, we get the swap regret:

RT
A,F sw = max

F∈F sw

{
LTA − LTA,F

}
.

◦ “Agent A vs. all his modifications.” Note: RT
A,Fex ,RT

A,F in ≤ RT
A,F sw .



All the regrets we have

• We also recall all variants of regret that we discussed.

• For a set F ex = {Fi : i ∈ X} of rules where Fi always outputs action i ,
we obtain exactly the external regret:

RT
A,Fex = max

F∈Fex

{
LTA − LTA,F

}
.

◦ “Agent A vs. agents who always play the same action.”

• For F in = {Fi ,j : (i , j) ∈ X × X , i ̸= j} where Fi ,j is defined by
Fi ,j(i) = j and Fi ,j(i

′) = i ′ for each i ′ ̸= i , we get the internal regret:

RT
A,F in = max

F∈F in

{
LTA − LTA,F

}
.

◦ “Agent A vs. agents who play j whenever A plays i .”

• For the set F sw of all modification rules, we get the swap regret:

RT
A,F sw = max

F∈F sw

{
LTA − LTA,F

}
.

◦ “Agent A vs. all his modifications.” Note: RT
A,Fex ,RT

A,F in ≤ RT
A,F sw .



All the regrets we have

• We also recall all variants of regret that we discussed.

• For a set F ex = {Fi : i ∈ X} of rules where Fi always outputs action i ,
we obtain exactly the external regret:

RT
A,Fex = max

F∈Fex

{
LTA − LTA,F

}
.

◦ “Agent A vs. agents who always play the same action.”

• For F in = {Fi ,j : (i , j) ∈ X × X , i ̸= j} where Fi ,j is defined by
Fi ,j(i) = j and Fi ,j(i

′) = i ′ for each i ′ ̸= i , we get the internal regret:

RT
A,F in = max

F∈F in

{
LTA − LTA,F

}
.

◦ “Agent A vs. agents who play j whenever A plays i .”

• For the set F sw of all modification rules, we get the swap regret:

RT
A,F sw = max

F∈F sw

{
LTA − LTA,F

}
.

◦ “Agent A vs. all his modifications.” Note: RT
A,Fex ,RT

A,F in ≤ RT
A,F sw .



All the regrets we have

• We also recall all variants of regret that we discussed.

• For a set F ex = {Fi : i ∈ X} of rules where Fi always outputs action i ,
we obtain exactly the external regret:

RT
A,Fex = max

F∈Fex

{
LTA − LTA,F

}
.

◦ “Agent A vs. agents who always play the same action.”

• For F in = {Fi ,j : (i , j) ∈ X × X , i ̸= j} where Fi ,j is defined by
Fi ,j(i) = j and Fi ,j(i

′) = i ′ for each i ′ ̸= i , we get the internal regret:

RT
A,F in = max

F∈F in

{
LTA − LTA,F

}
.

◦ “Agent A vs. agents who play j whenever A plays i .”

• For the set F sw of all modification rules, we get the swap regret:

RT
A,F sw = max

F∈F sw

{
LTA − LTA,F

}
.

◦ “Agent A vs. all his modifications.” Note: RT
A,Fex ,RT

A,F in ≤ RT
A,F sw .



All the regrets we have

• We also recall all variants of regret that we discussed.

• For a set F ex = {Fi : i ∈ X} of rules where Fi always outputs action i ,
we obtain exactly the external regret:

RT
A,Fex = max

F∈Fex

{
LTA − LTA,F

}
.

◦ “Agent A vs. agents who always play the same action.”

• For F in = {Fi ,j : (i , j) ∈ X × X , i ̸= j} where Fi ,j is defined by
Fi ,j(i) = j and Fi ,j(i

′) = i ′ for each i ′ ̸= i , we get the internal regret:

RT
A,F in = max

F∈F in

{
LTA − LTA,F

}
.

◦ “Agent A vs. agents who play j whenever A plays i .”

• For the set F sw of all modification rules, we get the swap regret:

RT
A,F sw = max

F∈F sw

{
LTA − LTA,F

}
.

◦ “Agent A vs. all his modifications.” Note: RT
A,Fex ,RT

A,F in ≤ RT
A,F sw .



All the regrets we have

• We also recall all variants of regret that we discussed.

• For a set F ex = {Fi : i ∈ X} of rules where Fi always outputs action i ,
we obtain exactly the external regret:

RT
A,Fex = max

F∈Fex

{
LTA − LTA,F

}
.

◦ “Agent A vs. agents who always play the same action.”

• For F in = {Fi ,j : (i , j) ∈ X × X , i ̸= j} where Fi ,j is defined by
Fi ,j(i) = j and Fi ,j(i

′) = i ′ for each i ′ ̸= i , we get the internal regret:

RT
A,F in = max

F∈F in

{
LTA − LTA,F

}
.

◦ “Agent A vs. agents who play j whenever A plays i .”

• For the set F sw of all modification rules, we get the swap regret:

RT
A,F sw = max

F∈F sw

{
LTA − LTA,F

}
.

◦ “Agent A vs. all his modifications.”

Note: RT
A,Fex ,RT

A,F in ≤ RT
A,F sw .



All the regrets we have

• We also recall all variants of regret that we discussed.

• For a set F ex = {Fi : i ∈ X} of rules where Fi always outputs action i ,
we obtain exactly the external regret:

RT
A,Fex = max

F∈Fex

{
LTA − LTA,F

}
.

◦ “Agent A vs. agents who always play the same action.”

• For F in = {Fi ,j : (i , j) ∈ X × X , i ̸= j} where Fi ,j is defined by
Fi ,j(i) = j and Fi ,j(i

′) = i ′ for each i ′ ̸= i , we get the internal regret:

RT
A,F in = max

F∈F in

{
LTA − LTA,F

}
.

◦ “Agent A vs. agents who play j whenever A plays i .”

• For the set F sw of all modification rules, we get the swap regret:

RT
A,F sw = max

F∈F sw

{
LTA − LTA,F

}
.

◦ “Agent A vs. all his modifications.” Note: RT
A,Fex ,RT

A,F in ≤ RT
A,F sw .



Reduction from external regret to swap regret

• We have the PW algorithm with arbitrarily small external regret.

• Can we design such an algorithm also for swap regret? Yes, using a
clever black-box reduction!

• An R-external regret algorithm A guarantees that for every sequence
(ℓt)Tt=1 of loss vectors and for every action j ∈ X , we have

LTA =
T∑
t=1

ℓtA ≤
T∑
t=1

ℓtj + R = LTj + R .

Theorem 2.55

For every R-external regret algorithm A, there exists an algorithm
M = M(A) such that, for every F : X → X and T ∈ N, we have

LTM ≤ LTM,F + NR .

That is, the swap regret of M is at most NR .



Reduction from external regret to swap regret

• We have the PW algorithm with arbitrarily small external regret.

• Can we design such an algorithm also for swap regret? Yes, using a
clever black-box reduction!

• An R-external regret algorithm A guarantees that for every sequence
(ℓt)Tt=1 of loss vectors and for every action j ∈ X , we have

LTA =
T∑
t=1

ℓtA ≤
T∑
t=1

ℓtj + R = LTj + R .

Theorem 2.55

For every R-external regret algorithm A, there exists an algorithm
M = M(A) such that, for every F : X → X and T ∈ N, we have

LTM ≤ LTM,F + NR .

That is, the swap regret of M is at most NR .



Reduction from external regret to swap regret

• We have the PW algorithm with arbitrarily small external regret.

• Can we design such an algorithm also for swap regret?

Yes, using a
clever black-box reduction!

• An R-external regret algorithm A guarantees that for every sequence
(ℓt)Tt=1 of loss vectors and for every action j ∈ X , we have

LTA =
T∑
t=1

ℓtA ≤
T∑
t=1

ℓtj + R = LTj + R .

Theorem 2.55

For every R-external regret algorithm A, there exists an algorithm
M = M(A) such that, for every F : X → X and T ∈ N, we have

LTM ≤ LTM,F + NR .

That is, the swap regret of M is at most NR .



Reduction from external regret to swap regret

• We have the PW algorithm with arbitrarily small external regret.

• Can we design such an algorithm also for swap regret? Yes, using a
clever black-box reduction!

• An R-external regret algorithm A guarantees that for every sequence
(ℓt)Tt=1 of loss vectors and for every action j ∈ X , we have

LTA =
T∑
t=1

ℓtA ≤
T∑
t=1

ℓtj + R = LTj + R .

Theorem 2.55

For every R-external regret algorithm A, there exists an algorithm
M = M(A) such that, for every F : X → X and T ∈ N, we have

LTM ≤ LTM,F + NR .

That is, the swap regret of M is at most NR .



Reduction from external regret to swap regret

• We have the PW algorithm with arbitrarily small external regret.

• Can we design such an algorithm also for swap regret? Yes, using a
clever black-box reduction!

• An R-external regret algorithm A guarantees that for every sequence
(ℓt)Tt=1 of loss vectors and for every action j ∈ X , we have

LTA =
T∑
t=1

ℓtA ≤
T∑
t=1

ℓtj + R = LTj + R .

Theorem 2.55

For every R-external regret algorithm A, there exists an algorithm
M = M(A) such that, for every F : X → X and T ∈ N, we have

LTM ≤ LTM,F + NR .

That is, the swap regret of M is at most NR .



Reduction from external regret to swap regret

• We have the PW algorithm with arbitrarily small external regret.

• Can we design such an algorithm also for swap regret? Yes, using a
clever black-box reduction!

• An R-external regret algorithm A guarantees that for every sequence
(ℓt)Tt=1 of loss vectors and for every action j ∈ X , we have

LTA =
T∑
t=1

ℓtA ≤
T∑
t=1

ℓtj + R = LTj + R .

Theorem 2.55

For every R-external regret algorithm A, there exists an algorithm
M = M(A) such that, for every F : X → X and T ∈ N, we have

LTM ≤ LTM,F + NR .

That is, the swap regret of M is at most NR .



Reduction from external regret to swap regret

• We have the PW algorithm with arbitrarily small external regret.

• Can we design such an algorithm also for swap regret? Yes, using a
clever black-box reduction!

• An R-external regret algorithm A guarantees that for every sequence
(ℓt)Tt=1 of loss vectors and for every action j ∈ X , we have

LTA =
T∑
t=1

ℓtA ≤
T∑
t=1

ℓtj + R = LTj + R .

Theorem 2.55

For every R-external regret algorithm A, there exists an algorithm
M = M(A) such that, for every F : X → X and T ∈ N, we have

LTM ≤ LTM,F + NR .

That is, the swap regret of M is at most NR .



Reduction from external regret to swap regret

• We have the PW algorithm with arbitrarily small external regret.

• Can we design such an algorithm also for swap regret? Yes, using a
clever black-box reduction!

• An R-external regret algorithm A guarantees that for every sequence
(ℓt)Tt=1 of loss vectors and for every action j ∈ X , we have

LTA =
T∑
t=1

ℓtA ≤
T∑
t=1

ℓtj + R = LTj + R .

Theorem 2.55

For every R-external regret algorithm A, there exists an algorithm
M = M(A) such that, for every F : X → X and T ∈ N, we have

LTM ≤ LTM,F + NR .

That is, the swap regret of M is at most NR .



Reduction from external regret to swap regret

• We have the PW algorithm with arbitrarily small external regret.

• Can we design such an algorithm also for swap regret? Yes, using a
clever black-box reduction!

• An R-external regret algorithm A guarantees that for every sequence
(ℓt)Tt=1 of loss vectors and for every action j ∈ X , we have

LTA =
T∑
t=1

ℓtA ≤
T∑
t=1

ℓtj + R = LTj + R .

Theorem 2.55

For every R-external regret algorithm A, there exists an algorithm
M = M(A) such that, for every F : X → X and T ∈ N, we have

LTM ≤ LTM,F + NR .

That is, the swap regret of M is at most NR .



Proof of the reduction I

• Assume that A1, . . . ,AN are copies of the algorithm A. In every time
step t, each Ai outputs a probability distribution qt

i = (qt
i ,1, . . . , q

t
i ,N),

where qt
i ,j is the fraction Ai assigns to an action j ∈ X .

• We construct the master algorithm M by combining these copies of A.

• We construct a single probability distribution pt = (pt1, . . . , p
t
N) by

letting ptj =
∑N

i=1 p
t
i q

t
i ,j for every j ∈ X . That is, (pt)⊤ = (pt)⊤Qt ,

where Qt is an N × N matrix with Qt
i ,j = qt

i ,j .

• It can be shown that pt exists and is efficiently computable.

◦ It is a “stationary distribution of the transition matrix of a Markov
chain”.

• This choice of pt guarantees that we can consider action selection in
two equivalent ways. An action j ∈ X is either selected with a
probability ptj or we first select an algorithm Ai with probability pti and
then use the algorithm Ai to select j with probability qt

i ,j .



Proof of the reduction I

• Assume that A1, . . . ,AN are copies of the algorithm A.

In every time
step t, each Ai outputs a probability distribution qt

i = (qt
i ,1, . . . , q

t
i ,N),

where qt
i ,j is the fraction Ai assigns to an action j ∈ X .

• We construct the master algorithm M by combining these copies of A.

• We construct a single probability distribution pt = (pt1, . . . , p
t
N) by

letting ptj =
∑N

i=1 p
t
i q

t
i ,j for every j ∈ X . That is, (pt)⊤ = (pt)⊤Qt ,

where Qt is an N × N matrix with Qt
i ,j = qt

i ,j .

• It can be shown that pt exists and is efficiently computable.

◦ It is a “stationary distribution of the transition matrix of a Markov
chain”.

• This choice of pt guarantees that we can consider action selection in
two equivalent ways. An action j ∈ X is either selected with a
probability ptj or we first select an algorithm Ai with probability pti and
then use the algorithm Ai to select j with probability qt

i ,j .



Proof of the reduction I

• Assume that A1, . . . ,AN are copies of the algorithm A. In every time
step t, each Ai outputs a probability distribution qt

i = (qt
i ,1, . . . , q

t
i ,N),

where qt
i ,j is the fraction Ai assigns to an action j ∈ X .

• We construct the master algorithm M by combining these copies of A.

• We construct a single probability distribution pt = (pt1, . . . , p
t
N) by

letting ptj =
∑N

i=1 p
t
i q

t
i ,j for every j ∈ X . That is, (pt)⊤ = (pt)⊤Qt ,

where Qt is an N × N matrix with Qt
i ,j = qt

i ,j .

• It can be shown that pt exists and is efficiently computable.

◦ It is a “stationary distribution of the transition matrix of a Markov
chain”.

• This choice of pt guarantees that we can consider action selection in
two equivalent ways. An action j ∈ X is either selected with a
probability ptj or we first select an algorithm Ai with probability pti and
then use the algorithm Ai to select j with probability qt

i ,j .



Proof of the reduction I

• Assume that A1, . . . ,AN are copies of the algorithm A. In every time
step t, each Ai outputs a probability distribution qt

i = (qt
i ,1, . . . , q

t
i ,N),

where qt
i ,j is the fraction Ai assigns to an action j ∈ X .

• We construct the master algorithm M by combining these copies of A.

• We construct a single probability distribution pt = (pt1, . . . , p
t
N) by

letting ptj =
∑N

i=1 p
t
i q

t
i ,j for every j ∈ X . That is, (pt)⊤ = (pt)⊤Qt ,

where Qt is an N × N matrix with Qt
i ,j = qt

i ,j .

• It can be shown that pt exists and is efficiently computable.

◦ It is a “stationary distribution of the transition matrix of a Markov
chain”.

• This choice of pt guarantees that we can consider action selection in
two equivalent ways. An action j ∈ X is either selected with a
probability ptj or we first select an algorithm Ai with probability pti and
then use the algorithm Ai to select j with probability qt

i ,j .



Proof of the reduction I

• Assume that A1, . . . ,AN are copies of the algorithm A. In every time
step t, each Ai outputs a probability distribution qt

i = (qt
i ,1, . . . , q

t
i ,N),

where qt
i ,j is the fraction Ai assigns to an action j ∈ X .

• We construct the master algorithm M by combining these copies of A.

• We construct a single probability distribution pt = (pt1, . . . , p
t
N)

by

letting ptj =
∑N

i=1 p
t
i q

t
i ,j for every j ∈ X . That is, (pt)⊤ = (pt)⊤Qt ,

where Qt is an N × N matrix with Qt
i ,j = qt

i ,j .

• It can be shown that pt exists and is efficiently computable.

◦ It is a “stationary distribution of the transition matrix of a Markov
chain”.

• This choice of pt guarantees that we can consider action selection in
two equivalent ways. An action j ∈ X is either selected with a
probability ptj or we first select an algorithm Ai with probability pti and
then use the algorithm Ai to select j with probability qt

i ,j .



Proof of the reduction I

• Assume that A1, . . . ,AN are copies of the algorithm A. In every time
step t, each Ai outputs a probability distribution qt

i = (qt
i ,1, . . . , q

t
i ,N),

where qt
i ,j is the fraction Ai assigns to an action j ∈ X .

• We construct the master algorithm M by combining these copies of A.

• We construct a single probability distribution pt = (pt1, . . . , p
t
N) by

letting ptj =
∑N

i=1 p
t
i q

t
i ,j for every j ∈ X .

That is, (pt)⊤ = (pt)⊤Qt ,
where Qt is an N × N matrix with Qt

i ,j = qt
i ,j .

• It can be shown that pt exists and is efficiently computable.

◦ It is a “stationary distribution of the transition matrix of a Markov
chain”.

• This choice of pt guarantees that we can consider action selection in
two equivalent ways. An action j ∈ X is either selected with a
probability ptj or we first select an algorithm Ai with probability pti and
then use the algorithm Ai to select j with probability qt

i ,j .



Proof of the reduction I

• Assume that A1, . . . ,AN are copies of the algorithm A. In every time
step t, each Ai outputs a probability distribution qt

i = (qt
i ,1, . . . , q

t
i ,N),

where qt
i ,j is the fraction Ai assigns to an action j ∈ X .

• We construct the master algorithm M by combining these copies of A.

• We construct a single probability distribution pt = (pt1, . . . , p
t
N) by

letting ptj =
∑N

i=1 p
t
i q

t
i ,j for every j ∈ X . That is, (pt)⊤ = (pt)⊤Qt ,

where Qt is an N × N matrix with Qt
i ,j = qt

i ,j .

• It can be shown that pt exists and is efficiently computable.

◦ It is a “stationary distribution of the transition matrix of a Markov
chain”.

• This choice of pt guarantees that we can consider action selection in
two equivalent ways. An action j ∈ X is either selected with a
probability ptj or we first select an algorithm Ai with probability pti and
then use the algorithm Ai to select j with probability qt

i ,j .



Proof of the reduction I

• Assume that A1, . . . ,AN are copies of the algorithm A. In every time
step t, each Ai outputs a probability distribution qt

i = (qt
i ,1, . . . , q

t
i ,N),

where qt
i ,j is the fraction Ai assigns to an action j ∈ X .

• We construct the master algorithm M by combining these copies of A.

• We construct a single probability distribution pt = (pt1, . . . , p
t
N) by

letting ptj =
∑N

i=1 p
t
i q

t
i ,j for every j ∈ X . That is, (pt)⊤ = (pt)⊤Qt ,

where Qt is an N × N matrix with Qt
i ,j = qt

i ,j .

• It can be shown that pt exists and is efficiently computable.

◦ It is a “stationary distribution of the transition matrix of a Markov
chain”.

• This choice of pt guarantees that we can consider action selection in
two equivalent ways. An action j ∈ X is either selected with a
probability ptj or we first select an algorithm Ai with probability pti and
then use the algorithm Ai to select j with probability qt

i ,j .



Proof of the reduction I

• Assume that A1, . . . ,AN are copies of the algorithm A. In every time
step t, each Ai outputs a probability distribution qt

i = (qt
i ,1, . . . , q

t
i ,N),

where qt
i ,j is the fraction Ai assigns to an action j ∈ X .

• We construct the master algorithm M by combining these copies of A.

• We construct a single probability distribution pt = (pt1, . . . , p
t
N) by

letting ptj =
∑N

i=1 p
t
i q

t
i ,j for every j ∈ X . That is, (pt)⊤ = (pt)⊤Qt ,

where Qt is an N × N matrix with Qt
i ,j = qt

i ,j .

• It can be shown that pt exists and is efficiently computable.

◦ It is a “stationary distribution of the transition matrix of a Markov
chain”.

• This choice of pt guarantees that we can consider action selection in
two equivalent ways. An action j ∈ X is either selected with a
probability ptj or we first select an algorithm Ai with probability pti and
then use the algorithm Ai to select j with probability qt

i ,j .



Proof of the reduction I

• Assume that A1, . . . ,AN are copies of the algorithm A. In every time
step t, each Ai outputs a probability distribution qt

i = (qt
i ,1, . . . , q

t
i ,N),

where qt
i ,j is the fraction Ai assigns to an action j ∈ X .

• We construct the master algorithm M by combining these copies of A.

• We construct a single probability distribution pt = (pt1, . . . , p
t
N) by

letting ptj =
∑N

i=1 p
t
i q

t
i ,j for every j ∈ X . That is, (pt)⊤ = (pt)⊤Qt ,

where Qt is an N × N matrix with Qt
i ,j = qt

i ,j .

• It can be shown that pt exists and is efficiently computable.

◦ It is a “stationary distribution of the transition matrix of a Markov
chain”.

• This choice of pt guarantees that we can consider action selection in
two equivalent ways.

An action j ∈ X is either selected with a
probability ptj or we first select an algorithm Ai with probability pti and
then use the algorithm Ai to select j with probability qt

i ,j .



Proof of the reduction I

• Assume that A1, . . . ,AN are copies of the algorithm A. In every time
step t, each Ai outputs a probability distribution qt

i = (qt
i ,1, . . . , q

t
i ,N),

where qt
i ,j is the fraction Ai assigns to an action j ∈ X .

• We construct the master algorithm M by combining these copies of A.

• We construct a single probability distribution pt = (pt1, . . . , p
t
N) by

letting ptj =
∑N

i=1 p
t
i q

t
i ,j for every j ∈ X . That is, (pt)⊤ = (pt)⊤Qt ,

where Qt is an N × N matrix with Qt
i ,j = qt

i ,j .

• It can be shown that pt exists and is efficiently computable.

◦ It is a “stationary distribution of the transition matrix of a Markov
chain”.

• This choice of pt guarantees that we can consider action selection in
two equivalent ways. An action j ∈ X is either selected with a
probability ptj

or we first select an algorithm Ai with probability pti and
then use the algorithm Ai to select j with probability qt

i ,j .



Proof of the reduction I

• Assume that A1, . . . ,AN are copies of the algorithm A. In every time
step t, each Ai outputs a probability distribution qt

i = (qt
i ,1, . . . , q

t
i ,N),

where qt
i ,j is the fraction Ai assigns to an action j ∈ X .

• We construct the master algorithm M by combining these copies of A.

• We construct a single probability distribution pt = (pt1, . . . , p
t
N) by

letting ptj =
∑N

i=1 p
t
i q

t
i ,j for every j ∈ X . That is, (pt)⊤ = (pt)⊤Qt ,

where Qt is an N × N matrix with Qt
i ,j = qt

i ,j .

• It can be shown that pt exists and is efficiently computable.

◦ It is a “stationary distribution of the transition matrix of a Markov
chain”.

• This choice of pt guarantees that we can consider action selection in
two equivalent ways. An action j ∈ X is either selected with a
probability ptj or we first select an algorithm Ai with probability pti and
then use the algorithm Ai to select j with probability qt

i ,j .



Proof of the reduction II

• We show that the total loss of all algorithms Ai at step t equals pt · ℓt ,
the actual loss of M .

• After receiving a loss vector ℓt , we give, for each i ∈ X , a loss vector
pti ℓ

t to Ai . Then, Ai experiences loss (p
t
i ℓ

t) · qt
i = pti (q

t
i · ℓt).

• Since Ai is an R-external regret algorithm, we have, for each j ∈ X ,

T∑
t=1

pti (q
t
i · ℓt) ≤

T∑
t=1

pti ℓ
t
j + R .

• Summing the losses of all algorithms Ai over i ∈ X , we get the total
loss

∑N
i=1 p

t
i (q

t
i · ℓt) = (pt)⊤Qtℓt of all algorithms Ai at time step t.

• By the choice of pt , we have (pt)⊤ = (pt)⊤Qt . Thus we get what we
wanted.



Proof of the reduction II

• We show that the total loss of all algorithms Ai at step t equals pt · ℓt ,

the actual loss of M .

• After receiving a loss vector ℓt , we give, for each i ∈ X , a loss vector
pti ℓ

t to Ai . Then, Ai experiences loss (p
t
i ℓ

t) · qt
i = pti (q

t
i · ℓt).

• Since Ai is an R-external regret algorithm, we have, for each j ∈ X ,

T∑
t=1

pti (q
t
i · ℓt) ≤

T∑
t=1

pti ℓ
t
j + R .

• Summing the losses of all algorithms Ai over i ∈ X , we get the total
loss

∑N
i=1 p

t
i (q

t
i · ℓt) = (pt)⊤Qtℓt of all algorithms Ai at time step t.

• By the choice of pt , we have (pt)⊤ = (pt)⊤Qt . Thus we get what we
wanted.



Proof of the reduction II

• We show that the total loss of all algorithms Ai at step t equals pt · ℓt ,
the actual loss of M .

• After receiving a loss vector ℓt , we give, for each i ∈ X , a loss vector
pti ℓ

t to Ai . Then, Ai experiences loss (p
t
i ℓ

t) · qt
i = pti (q

t
i · ℓt).

• Since Ai is an R-external regret algorithm, we have, for each j ∈ X ,

T∑
t=1

pti (q
t
i · ℓt) ≤

T∑
t=1

pti ℓ
t
j + R .

• Summing the losses of all algorithms Ai over i ∈ X , we get the total
loss

∑N
i=1 p

t
i (q

t
i · ℓt) = (pt)⊤Qtℓt of all algorithms Ai at time step t.

• By the choice of pt , we have (pt)⊤ = (pt)⊤Qt . Thus we get what we
wanted.



Proof of the reduction II

• We show that the total loss of all algorithms Ai at step t equals pt · ℓt ,
the actual loss of M .

• After receiving a loss vector ℓt , we give, for each i ∈ X , a loss vector
pti ℓ

t to Ai .

Then, Ai experiences loss (p
t
i ℓ

t) · qt
i = pti (q

t
i · ℓt).

• Since Ai is an R-external regret algorithm, we have, for each j ∈ X ,

T∑
t=1

pti (q
t
i · ℓt) ≤

T∑
t=1

pti ℓ
t
j + R .

• Summing the losses of all algorithms Ai over i ∈ X , we get the total
loss

∑N
i=1 p

t
i (q

t
i · ℓt) = (pt)⊤Qtℓt of all algorithms Ai at time step t.

• By the choice of pt , we have (pt)⊤ = (pt)⊤Qt . Thus we get what we
wanted.



Proof of the reduction II

• We show that the total loss of all algorithms Ai at step t equals pt · ℓt ,
the actual loss of M .

• After receiving a loss vector ℓt , we give, for each i ∈ X , a loss vector
pti ℓ

t to Ai . Then, Ai experiences loss (p
t
i ℓ

t) · qt
i = pti (q

t
i · ℓt).

• Since Ai is an R-external regret algorithm, we have, for each j ∈ X ,

T∑
t=1

pti (q
t
i · ℓt) ≤

T∑
t=1

pti ℓ
t
j + R .

• Summing the losses of all algorithms Ai over i ∈ X , we get the total
loss

∑N
i=1 p

t
i (q

t
i · ℓt) = (pt)⊤Qtℓt of all algorithms Ai at time step t.

• By the choice of pt , we have (pt)⊤ = (pt)⊤Qt . Thus we get what we
wanted.



Proof of the reduction II

• We show that the total loss of all algorithms Ai at step t equals pt · ℓt ,
the actual loss of M .

• After receiving a loss vector ℓt , we give, for each i ∈ X , a loss vector
pti ℓ

t to Ai . Then, Ai experiences loss (p
t
i ℓ

t) · qt
i = pti (q

t
i · ℓt).

• Since Ai is an R-external regret algorithm, we have, for each j ∈ X ,

T∑
t=1

pti (q
t
i · ℓt) ≤

T∑
t=1

pti ℓ
t
j + R .

• Summing the losses of all algorithms Ai over i ∈ X , we get the total
loss

∑N
i=1 p

t
i (q

t
i · ℓt) = (pt)⊤Qtℓt of all algorithms Ai at time step t.

• By the choice of pt , we have (pt)⊤ = (pt)⊤Qt . Thus we get what we
wanted.



Proof of the reduction II

• We show that the total loss of all algorithms Ai at step t equals pt · ℓt ,
the actual loss of M .

• After receiving a loss vector ℓt , we give, for each i ∈ X , a loss vector
pti ℓ

t to Ai . Then, Ai experiences loss (p
t
i ℓ

t) · qt
i = pti (q

t
i · ℓt).

• Since Ai is an R-external regret algorithm, we have, for each j ∈ X ,

T∑
t=1

pti (q
t
i · ℓt)

≤
T∑
t=1

pti ℓ
t
j + R .

• Summing the losses of all algorithms Ai over i ∈ X , we get the total
loss

∑N
i=1 p

t
i (q

t
i · ℓt) = (pt)⊤Qtℓt of all algorithms Ai at time step t.

• By the choice of pt , we have (pt)⊤ = (pt)⊤Qt . Thus we get what we
wanted.



Proof of the reduction II

• We show that the total loss of all algorithms Ai at step t equals pt · ℓt ,
the actual loss of M .

• After receiving a loss vector ℓt , we give, for each i ∈ X , a loss vector
pti ℓ

t to Ai . Then, Ai experiences loss (p
t
i ℓ

t) · qt
i = pti (q

t
i · ℓt).

• Since Ai is an R-external regret algorithm, we have, for each j ∈ X ,

T∑
t=1

pti (q
t
i · ℓt) ≤

T∑
t=1

pti ℓ
t
j + R .

• Summing the losses of all algorithms Ai over i ∈ X , we get the total
loss

∑N
i=1 p

t
i (q

t
i · ℓt) = (pt)⊤Qtℓt of all algorithms Ai at time step t.

• By the choice of pt , we have (pt)⊤ = (pt)⊤Qt . Thus we get what we
wanted.



Proof of the reduction II

• We show that the total loss of all algorithms Ai at step t equals pt · ℓt ,
the actual loss of M .

• After receiving a loss vector ℓt , we give, for each i ∈ X , a loss vector
pti ℓ

t to Ai . Then, Ai experiences loss (p
t
i ℓ

t) · qt
i = pti (q

t
i · ℓt).

• Since Ai is an R-external regret algorithm, we have, for each j ∈ X ,

T∑
t=1

pti (q
t
i · ℓt) ≤

T∑
t=1

pti ℓ
t
j + R .

• Summing the losses of all algorithms Ai over i ∈ X , we get the total
loss

∑N
i=1 p

t
i (q

t
i · ℓt) = (pt)⊤Qtℓt of all algorithms Ai at time step t.

• By the choice of pt , we have (pt)⊤ = (pt)⊤Qt . Thus we get what we
wanted.



Proof of the reduction II

• We show that the total loss of all algorithms Ai at step t equals pt · ℓt ,
the actual loss of M .

• After receiving a loss vector ℓt , we give, for each i ∈ X , a loss vector
pti ℓ

t to Ai . Then, Ai experiences loss (p
t
i ℓ

t) · qt
i = pti (q

t
i · ℓt).

• Since Ai is an R-external regret algorithm, we have, for each j ∈ X ,

T∑
t=1

pti (q
t
i · ℓt) ≤

T∑
t=1

pti ℓ
t
j + R .

• Summing the losses of all algorithms Ai over i ∈ X , we get the total
loss

∑N
i=1 p

t
i (q

t
i · ℓt) = (pt)⊤Qtℓt of all algorithms Ai at time step t.

• By the choice of pt , we have (pt)⊤ = (pt)⊤Qt .

Thus we get what we
wanted.



Proof of the reduction II

• We show that the total loss of all algorithms Ai at step t equals pt · ℓt ,
the actual loss of M .

• After receiving a loss vector ℓt , we give, for each i ∈ X , a loss vector
pti ℓ

t to Ai . Then, Ai experiences loss (p
t
i ℓ

t) · qt
i = pti (q

t
i · ℓt).

• Since Ai is an R-external regret algorithm, we have, for each j ∈ X ,

T∑
t=1

pti (q
t
i · ℓt) ≤

T∑
t=1

pti ℓ
t
j + R .

• Summing the losses of all algorithms Ai over i ∈ X , we get the total
loss

∑N
i=1 p

t
i (q

t
i · ℓt) = (pt)⊤Qtℓt of all algorithms Ai at time step t.

• By the choice of pt , we have (pt)⊤ = (pt)⊤Qt . Thus we get what we
wanted.



Proof of the reduction III

• Thus, summing
T∑
t=1

pti (q
t
i · ℓt) ≤

T∑
t=1

pti ℓ
t
j + R .

over all actions i ∈ X , the left-hand side equals LTM .

• The right-hand side of is true for every action j ∈ X , so we obtain, for
every function F : X → X ,

LTM ≤
N∑
i=1

T∑
t=1

pti ℓ
t
F (i) + NR = LTM,F + NR .

• Using the PW algorithm as A, we get an algorithm with swap regret at
most O(N

√
T logN).

• That is, its average swap regret goes to 0 with T →∞.



Proof of the reduction III

• Thus, summing
T∑
t=1

pti (q
t
i · ℓt) ≤

T∑
t=1

pti ℓ
t
j + R .

over all actions i ∈ X , the left-hand side equals LTM .

• The right-hand side of is true for every action j ∈ X , so we obtain, for
every function F : X → X ,

LTM ≤
N∑
i=1

T∑
t=1

pti ℓ
t
F (i) + NR = LTM,F + NR .

• Using the PW algorithm as A, we get an algorithm with swap regret at
most O(N

√
T logN).

• That is, its average swap regret goes to 0 with T →∞.



Proof of the reduction III

• Thus, summing
T∑
t=1

pti (q
t
i · ℓt) ≤

T∑
t=1

pti ℓ
t
j + R .

over all actions i ∈ X , the left-hand side equals LTM .

• The right-hand side of is true for every action j ∈ X ,

so we obtain, for
every function F : X → X ,

LTM ≤
N∑
i=1

T∑
t=1

pti ℓ
t
F (i) + NR = LTM,F + NR .

• Using the PW algorithm as A, we get an algorithm with swap regret at
most O(N

√
T logN).

• That is, its average swap regret goes to 0 with T →∞.



Proof of the reduction III

• Thus, summing
T∑
t=1

pti (q
t
i · ℓt) ≤

T∑
t=1

pti ℓ
t
j + R .

over all actions i ∈ X , the left-hand side equals LTM .

• The right-hand side of is true for every action j ∈ X , so we obtain, for
every function F : X → X ,

LTM ≤
N∑
i=1

T∑
t=1

pti ℓ
t
F (i) + NR

= LTM,F + NR .

• Using the PW algorithm as A, we get an algorithm with swap regret at
most O(N

√
T logN).

• That is, its average swap regret goes to 0 with T →∞.



Proof of the reduction III

• Thus, summing
T∑
t=1

pti (q
t
i · ℓt) ≤

T∑
t=1

pti ℓ
t
j + R .

over all actions i ∈ X , the left-hand side equals LTM .

• The right-hand side of is true for every action j ∈ X , so we obtain, for
every function F : X → X ,

LTM ≤
N∑
i=1

T∑
t=1

pti ℓ
t
F (i) + NR = LTM,F + NR .

• Using the PW algorithm as A, we get an algorithm with swap regret at
most O(N

√
T logN).

• That is, its average swap regret goes to 0 with T →∞.



Proof of the reduction III

• Thus, summing
T∑
t=1

pti (q
t
i · ℓt) ≤

T∑
t=1

pti ℓ
t
j + R .

over all actions i ∈ X , the left-hand side equals LTM .

• The right-hand side of is true for every action j ∈ X , so we obtain, for
every function F : X → X ,

LTM ≤
N∑
i=1

T∑
t=1

pti ℓ
t
F (i) + NR = LTM,F + NR .

• Using the PW algorithm as A, we get an algorithm with swap regret at
most O(N

√
T logN).

• That is, its average swap regret goes to 0 with T →∞.



Proof of the reduction III

• Thus, summing
T∑
t=1

pti (q
t
i · ℓt) ≤

T∑
t=1

pti ℓ
t
j + R .

over all actions i ∈ X , the left-hand side equals LTM .

• The right-hand side of is true for every action j ∈ X , so we obtain, for
every function F : X → X ,

LTM ≤
N∑
i=1

T∑
t=1

pti ℓ
t
F (i) + NR = LTM,F + NR .

• Using the PW algorithm as A, we get an algorithm with swap regret at
most O(N

√
T logN).

• That is, its average swap regret goes to 0 with T →∞.



Proof of the reduction III

• Thus, summing
T∑
t=1

pti (q
t
i · ℓt) ≤

T∑
t=1

pti ℓ
t
j + R .

over all actions i ∈ X , the left-hand side equals LTM .

• The right-hand side of is true for every action j ∈ X , so we obtain, for
every function F : X → X ,

LTM ≤
N∑
i=1

T∑
t=1

pti ℓ
t
F (i) + NR = LTM,F + NR .

• Using the PW algorithm as A, we get an algorithm with swap regret at
most O(N

√
T logN).

• That is, its average swap regret goes to 0 with T →∞.



No-swap-regret dynamics

• Using swap regret instead of external regret, we get:

Algorithm 0.1: No-swap-regret dynamics(G ,T , ε)

Input : A normal-form game G = (P,A,C ) of n players, T ∈ N, and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and t ∈ {1, . . . ,T}.
for every step t = 1, . . . ,T

do



Each player i ∈ P independently chooses a mixed strategy pti
using an algorithm with average swap regret at most ε, with
actions corresponding to pure strategies.
Each player i ∈ P receives a loss vector ℓti = (ℓti (ai ))ai∈Ai

, where
ℓti (ai )← Eat−i∼pt−i

[Ci (ai ; a
t
−i )] for the product distribution

pt−i =
∏

j ̸=i p
t
j .

Output {pt : t ∈ {1, . . . ,T}}.

• No-swap-regret dynamics then converges to a correlated equilibrium.



No-swap-regret dynamics

• Using swap regret instead of external regret, we get:

Algorithm 0.2: No-swap-regret dynamics(G ,T , ε)

Input : A normal-form game G = (P,A,C ) of n players, T ∈ N, and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and t ∈ {1, . . . ,T}.
for every step t = 1, . . . ,T

do



Each player i ∈ P independently chooses a mixed strategy pti
using an algorithm with average swap regret at most ε, with
actions corresponding to pure strategies.
Each player i ∈ P receives a loss vector ℓti = (ℓti (ai ))ai∈Ai

, where
ℓti (ai )← Eat−i∼pt−i

[Ci (ai ; a
t
−i )] for the product distribution

pt−i =
∏

j ̸=i p
t
j .

Output {pt : t ∈ {1, . . . ,T}}.

• No-swap-regret dynamics then converges to a correlated equilibrium.



No-swap-regret dynamics

• Using swap regret instead of external regret, we get:

Algorithm 0.3: No-swap-regret dynamics(G ,T , ε)

Input : A normal-form game G = (P,A,C ) of n players, T ∈ N, and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and t ∈ {1, . . . ,T}.
for every step t = 1, . . . ,T

do



Each player i ∈ P independently chooses a mixed strategy pti
using an algorithm with average swap regret at most ε, with
actions corresponding to pure strategies.
Each player i ∈ P receives a loss vector ℓti = (ℓti (ai ))ai∈Ai

, where
ℓti (ai )← Eat−i∼pt−i

[Ci (ai ; a
t
−i )] for the product distribution

pt−i =
∏

j ̸=i p
t
j .

Output {pt : t ∈ {1, . . . ,T}}.

• No-swap-regret dynamics then converges to a correlated equilibrium.



No-swap-regret dynamics

• Using swap regret instead of external regret, we get:

Algorithm 0.4: No-swap-regret dynamics(G ,T , ε)

Input : A normal-form game G = (P,A,C ) of n players, T ∈ N, and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and t ∈ {1, . . . ,T}.
for every step t = 1, . . . ,T

do



Each player i ∈ P independently chooses a mixed strategy pti
using an algorithm with average swap regret at most ε, with
actions corresponding to pure strategies.
Each player i ∈ P receives a loss vector ℓti = (ℓti (ai ))ai∈Ai

, where
ℓti (ai )← Eat−i∼pt−i

[Ci (ai ; a
t
−i )] for the product distribution

pt−i =
∏

j ̸=i p
t
j .

Output {pt : t ∈ {1, . . . ,T}}.

• No-swap-regret dynamics then converges to a correlated equilibrium.



Converging to CE

Theorem 2.57

For every G = (P ,A,C ), ε > 0, and T = T (ε) ∈ N, if after T steps of the
No-swap-regret dynamics, each player i ∈ P has time-averaged expected
regret at most ε, then p is ε-CE where pt =

∏n
i=1 p

t
i and p = 1

T

∑T
t=1 p

t .

• Proof: We want to prove Ea∼p[Ci(a)] ≤ Ea∼p[Ci(F (ai); a−i)] + ε.
• By the definition of p, we have, for every player i ∈ P and F : X → X ,

E
a∼p

[Ci(a)] =
1

T

T∑
t=1

E
a∼pt

[Ci(a)], E
a∼p

[Ci(F (ai); a−i)] =
1

T

T∑
t=1

E
a∼pt

[Ci(F (ai); a−i)].

• The right-hand sides are time-averaged expected costs of i when playing
according to the algorithm with small swap regret and when playing
F (ai) instead of ai . Since every player has regret at most ε, we obtain

1

T

T∑
t=1

Ea∼pt [Ci(a)] ≤
1

T

T∑
t=1

Ea∼pt [Ci(F (ai); a−i)] + ε.

• This verifies the ε-CE condition for p = 1
T

∑T
t=1 pt .



Converging to CE

Theorem 2.57

For every G = (P ,A,C ), ε > 0, and T = T (ε) ∈ N, if after T steps of the
No-swap-regret dynamics, each player i ∈ P has time-averaged expected
regret at most ε, then p is ε-CE where pt =

∏n
i=1 p

t
i and p = 1

T

∑T
t=1 p

t .

• Proof: We want to prove Ea∼p[Ci(a)] ≤ Ea∼p[Ci(F (ai); a−i)] + ε.
• By the definition of p, we have, for every player i ∈ P and F : X → X ,

E
a∼p

[Ci(a)] =
1

T

T∑
t=1

E
a∼pt

[Ci(a)], E
a∼p

[Ci(F (ai); a−i)] =
1

T

T∑
t=1

E
a∼pt

[Ci(F (ai); a−i)].

• The right-hand sides are time-averaged expected costs of i when playing
according to the algorithm with small swap regret and when playing
F (ai) instead of ai . Since every player has regret at most ε, we obtain

1

T

T∑
t=1

Ea∼pt [Ci(a)] ≤
1

T

T∑
t=1

Ea∼pt [Ci(F (ai); a−i)] + ε.

• This verifies the ε-CE condition for p = 1
T

∑T
t=1 pt .



Converging to CE

Theorem 2.57

For every G = (P ,A,C ), ε > 0, and T = T (ε) ∈ N, if after T steps of the
No-swap-regret dynamics, each player i ∈ P has time-averaged expected
regret at most ε, then p is ε-CE where pt =

∏n
i=1 p

t
i and p = 1

T

∑T
t=1 p

t .

• Proof:

We want to prove Ea∼p[Ci(a)] ≤ Ea∼p[Ci(F (ai); a−i)] + ε.
• By the definition of p, we have, for every player i ∈ P and F : X → X ,

E
a∼p

[Ci(a)] =
1

T

T∑
t=1

E
a∼pt

[Ci(a)], E
a∼p

[Ci(F (ai); a−i)] =
1

T

T∑
t=1

E
a∼pt

[Ci(F (ai); a−i)].

• The right-hand sides are time-averaged expected costs of i when playing
according to the algorithm with small swap regret and when playing
F (ai) instead of ai . Since every player has regret at most ε, we obtain

1

T

T∑
t=1

Ea∼pt [Ci(a)] ≤
1

T

T∑
t=1

Ea∼pt [Ci(F (ai); a−i)] + ε.

• This verifies the ε-CE condition for p = 1
T

∑T
t=1 pt .



Converging to CE

Theorem 2.57

For every G = (P ,A,C ), ε > 0, and T = T (ε) ∈ N, if after T steps of the
No-swap-regret dynamics, each player i ∈ P has time-averaged expected
regret at most ε, then p is ε-CE where pt =

∏n
i=1 p

t
i and p = 1

T

∑T
t=1 p

t .

• Proof: We want to prove Ea∼p[Ci(a)] ≤ Ea∼p[Ci(F (ai); a−i)] + ε.

• By the definition of p, we have, for every player i ∈ P and F : X → X ,

E
a∼p

[Ci(a)] =
1

T

T∑
t=1

E
a∼pt

[Ci(a)], E
a∼p

[Ci(F (ai); a−i)] =
1

T

T∑
t=1

E
a∼pt

[Ci(F (ai); a−i)].

• The right-hand sides are time-averaged expected costs of i when playing
according to the algorithm with small swap regret and when playing
F (ai) instead of ai . Since every player has regret at most ε, we obtain

1

T

T∑
t=1

Ea∼pt [Ci(a)] ≤
1

T

T∑
t=1

Ea∼pt [Ci(F (ai); a−i)] + ε.

• This verifies the ε-CE condition for p = 1
T

∑T
t=1 pt .



Converging to CE

Theorem 2.57

For every G = (P ,A,C ), ε > 0, and T = T (ε) ∈ N, if after T steps of the
No-swap-regret dynamics, each player i ∈ P has time-averaged expected
regret at most ε, then p is ε-CE where pt =

∏n
i=1 p

t
i and p = 1

T

∑T
t=1 p

t .

• Proof: We want to prove Ea∼p[Ci(a)] ≤ Ea∼p[Ci(F (ai); a−i)] + ε.
• By the definition of p, we have, for every player i ∈ P and F : X → X ,

E
a∼p

[Ci(a)] =
1

T

T∑
t=1

E
a∼pt

[Ci(a)]

, E
a∼p

[Ci(F (ai); a−i)] =
1

T

T∑
t=1

E
a∼pt

[Ci(F (ai); a−i)].

• The right-hand sides are time-averaged expected costs of i when playing
according to the algorithm with small swap regret and when playing
F (ai) instead of ai . Since every player has regret at most ε, we obtain

1

T

T∑
t=1

Ea∼pt [Ci(a)] ≤
1

T

T∑
t=1

Ea∼pt [Ci(F (ai); a−i)] + ε.

• This verifies the ε-CE condition for p = 1
T

∑T
t=1 pt .



Converging to CE

Theorem 2.57

For every G = (P ,A,C ), ε > 0, and T = T (ε) ∈ N, if after T steps of the
No-swap-regret dynamics, each player i ∈ P has time-averaged expected
regret at most ε, then p is ε-CE where pt =

∏n
i=1 p

t
i and p = 1

T

∑T
t=1 p

t .

• Proof: We want to prove Ea∼p[Ci(a)] ≤ Ea∼p[Ci(F (ai); a−i)] + ε.
• By the definition of p, we have, for every player i ∈ P and F : X → X ,

E
a∼p

[Ci(a)] =
1

T

T∑
t=1

E
a∼pt

[Ci(a)], E
a∼p

[Ci(F (ai); a−i)] =
1

T

T∑
t=1

E
a∼pt

[Ci(F (ai); a−i)].

• The right-hand sides are time-averaged expected costs of i when playing
according to the algorithm with small swap regret and when playing
F (ai) instead of ai . Since every player has regret at most ε, we obtain

1

T

T∑
t=1

Ea∼pt [Ci(a)] ≤
1

T

T∑
t=1

Ea∼pt [Ci(F (ai); a−i)] + ε.

• This verifies the ε-CE condition for p = 1
T

∑T
t=1 pt .



Converging to CE

Theorem 2.57

For every G = (P ,A,C ), ε > 0, and T = T (ε) ∈ N, if after T steps of the
No-swap-regret dynamics, each player i ∈ P has time-averaged expected
regret at most ε, then p is ε-CE where pt =

∏n
i=1 p

t
i and p = 1

T

∑T
t=1 p

t .

• Proof: We want to prove Ea∼p[Ci(a)] ≤ Ea∼p[Ci(F (ai); a−i)] + ε.
• By the definition of p, we have, for every player i ∈ P and F : X → X ,

E
a∼p

[Ci(a)] =
1

T

T∑
t=1

E
a∼pt

[Ci(a)], E
a∼p

[Ci(F (ai); a−i)] =
1

T

T∑
t=1

E
a∼pt

[Ci(F (ai); a−i)].

• The right-hand sides are time-averaged expected costs of i when playing
according to the algorithm with small swap regret and when playing
F (ai) instead of ai .

Since every player has regret at most ε, we obtain

1

T

T∑
t=1

Ea∼pt [Ci(a)] ≤
1

T

T∑
t=1

Ea∼pt [Ci(F (ai); a−i)] + ε.

• This verifies the ε-CE condition for p = 1
T

∑T
t=1 pt .



Converging to CE

Theorem 2.57

For every G = (P ,A,C ), ε > 0, and T = T (ε) ∈ N, if after T steps of the
No-swap-regret dynamics, each player i ∈ P has time-averaged expected
regret at most ε, then p is ε-CE where pt =

∏n
i=1 p

t
i and p = 1

T

∑T
t=1 p

t .

• Proof: We want to prove Ea∼p[Ci(a)] ≤ Ea∼p[Ci(F (ai); a−i)] + ε.
• By the definition of p, we have, for every player i ∈ P and F : X → X ,

E
a∼p

[Ci(a)] =
1

T

T∑
t=1

E
a∼pt

[Ci(a)], E
a∼p

[Ci(F (ai); a−i)] =
1

T

T∑
t=1

E
a∼pt

[Ci(F (ai); a−i)].

• The right-hand sides are time-averaged expected costs of i when playing
according to the algorithm with small swap regret and when playing
F (ai) instead of ai . Since every player has regret at most ε, we obtain

1

T

T∑
t=1

Ea∼pt [Ci(a)] ≤
1

T

T∑
t=1

Ea∼pt [Ci(F (ai); a−i)] + ε.

• This verifies the ε-CE condition for p = 1
T

∑T
t=1 pt .



Converging to CE

Theorem 2.57

For every G = (P ,A,C ), ε > 0, and T = T (ε) ∈ N, if after T steps of the
No-swap-regret dynamics, each player i ∈ P has time-averaged expected
regret at most ε, then p is ε-CE where pt =

∏n
i=1 p

t
i and p = 1

T

∑T
t=1 p

t .

• Proof: We want to prove Ea∼p[Ci(a)] ≤ Ea∼p[Ci(F (ai); a−i)] + ε.
• By the definition of p, we have, for every player i ∈ P and F : X → X ,

E
a∼p

[Ci(a)] =
1

T

T∑
t=1

E
a∼pt

[Ci(a)], E
a∼p

[Ci(F (ai); a−i)] =
1

T

T∑
t=1

E
a∼pt

[Ci(F (ai); a−i)].

• The right-hand sides are time-averaged expected costs of i when playing
according to the algorithm with small swap regret and when playing
F (ai) instead of ai . Since every player has regret at most ε, we obtain

1

T

T∑
t=1

Ea∼pt [Ci(a)] ≤
1

T

T∑
t=1

Ea∼pt [Ci(F (ai); a−i)] + ε.

• This verifies the ε-CE condition for p = 1
T

∑T
t=1 pt .



Converging to CE

Theorem 2.57

For every G = (P ,A,C ), ε > 0, and T = T (ε) ∈ N, if after T steps of the
No-swap-regret dynamics, each player i ∈ P has time-averaged expected
regret at most ε, then p is ε-CE where pt =

∏n
i=1 p

t
i and p = 1

T

∑T
t=1 p

t .

• Proof: We want to prove Ea∼p[Ci(a)] ≤ Ea∼p[Ci(F (ai); a−i)] + ε.
• By the definition of p, we have, for every player i ∈ P and F : X → X ,

E
a∼p

[Ci(a)] =
1

T

T∑
t=1

E
a∼pt

[Ci(a)], E
a∼p

[Ci(F (ai); a−i)] =
1

T

T∑
t=1

E
a∼pt

[Ci(F (ai); a−i)].

• The right-hand sides are time-averaged expected costs of i when playing
according to the algorithm with small swap regret and when playing
F (ai) instead of ai . Since every player has regret at most ε, we obtain

1

T

T∑
t=1

Ea∼pt [Ci(a)] ≤
1

T

T∑
t=1

Ea∼pt [Ci(F (ai); a−i)] + ε.

• This verifies the ε-CE condition for p = 1
T

∑T
t=1 pt .



Converging to CE

Theorem 2.57

For every G = (P ,A,C ), ε > 0, and T = T (ε) ∈ N, if after T steps of the
No-swap-regret dynamics, each player i ∈ P has time-averaged expected
regret at most ε, then p is ε-CE where pt =

∏n
i=1 p

t
i and p = 1

T

∑T
t=1 p

t .

• Proof: We want to prove Ea∼p[Ci(a)] ≤ Ea∼p[Ci(F (ai); a−i)] + ε.
• By the definition of p, we have, for every player i ∈ P and F : X → X ,

E
a∼p

[Ci(a)] =
1

T

T∑
t=1

E
a∼pt

[Ci(a)], E
a∼p

[Ci(F (ai); a−i)] =
1

T

T∑
t=1

E
a∼pt

[Ci(F (ai); a−i)].

• The right-hand sides are time-averaged expected costs of i when playing
according to the algorithm with small swap regret and when playing
F (ai) instead of ai . Since every player has regret at most ε, we obtain

1

T

T∑
t=1

Ea∼pt [Ci(a)] ≤
1

T

T∑
t=1

Ea∼pt [Ci(F (ai); a−i)] + ε.

• This verifies the ε-CE condition for p = 1
T

∑T
t=1 pt .



Games in extensive form



Games in extensive form

• In normal-form games, players act simultaneously resulting in a static
description of a game.
• Today, we describe a different representation of games which provides a
dynamic description where players act sequentially.
• Instead of tables, we describe games using trees.

Zdroj: https://cz.pinterest.com

• For some of these games, we show how to compute NE.



Games in extensive form

• In normal-form games, players act simultaneously resulting in a static
description of a game.

• Today, we describe a different representation of games which provides a
dynamic description where players act sequentially.
• Instead of tables, we describe games using trees.

Zdroj: https://cz.pinterest.com

• For some of these games, we show how to compute NE.



Games in extensive form

• In normal-form games, players act simultaneously resulting in a static
description of a game.
• Today, we describe a different representation of games which provides a
dynamic description where players act sequentially.

• Instead of tables, we describe games using trees.

Zdroj: https://cz.pinterest.com

• For some of these games, we show how to compute NE.



Games in extensive form

• In normal-form games, players act simultaneously resulting in a static
description of a game.
• Today, we describe a different representation of games which provides a
dynamic description where players act sequentially.
• Instead of tables, we describe games using trees.

Zdroj: https://cz.pinterest.com

• For some of these games, we show how to compute NE.



Games in extensive form

• In normal-form games, players act simultaneously resulting in a static
description of a game.
• Today, we describe a different representation of games which provides a
dynamic description where players act sequentially.
• Instead of tables, we describe games using trees.

Zdroj: https://cz.pinterest.com

• For some of these games, we show how to compute NE.



Example: normal-form of chess

Source: https://edition.cnn.com/

• Chess as a normal-form game: Each action of player i ∈ {black,white}
is a list of all possible situations that can happen on the board together
with the move player i would make in that situation. Then we can
simulate the whole game of chess in one round.



Example: normal-form of chess

Source: https://edition.cnn.com/

• Chess as a normal-form game: Each action of player i ∈ {black,white}
is a list of all possible situations that can happen on the board together
with the move player i would make in that situation. Then we can
simulate the whole game of chess in one round.



Example: extensive form of chess

• Root corresponds to the initial position of the chessboard. Each
decision node represents a position on the chessboard and its outgoing
edges correspond to possible moves in such a position.



Example: extensive form of chess

• Root corresponds to the initial position of the chessboard. Each
decision node represents a position on the chessboard and its outgoing
edges correspond to possible moves in such a position.



Basic definitions

• Extensive game consists of a directed tree where nodes represent game
states. The tree encodes the full history of play.
• The game starts at the root of the tree and ends at a leaf, where each
player receives a payoff. A tree edge corresponds to one player moving
from one state to a different state of the game.
• Each node that is not a leaf is called a decision node.
• Moves a player can make in a given state are assigned to the outgoing
edges of the corresponding decision node.
• In perfect-information game all players know the node they are in (that
is, they know the history of the play that led them there).
◦ For example, Chess.

• In imperfect-information games players have only partial knowledge.
◦ For example, Poker.
◦ We partition decision nodes into information sets where all nodes
belong to the same player, and have the same moves.
◦ For player i , let Hi be the set of information sets of i and, for
h ∈ Hi , let Ch be the set of moves at h.



Basic definitions

• Extensive game consists of a directed tree where nodes represent game
states.

The tree encodes the full history of play.
• The game starts at the root of the tree and ends at a leaf, where each
player receives a payoff. A tree edge corresponds to one player moving
from one state to a different state of the game.
• Each node that is not a leaf is called a decision node.
• Moves a player can make in a given state are assigned to the outgoing
edges of the corresponding decision node.
• In perfect-information game all players know the node they are in (that
is, they know the history of the play that led them there).
◦ For example, Chess.

• In imperfect-information games players have only partial knowledge.
◦ For example, Poker.
◦ We partition decision nodes into information sets where all nodes
belong to the same player, and have the same moves.
◦ For player i , let Hi be the set of information sets of i and, for
h ∈ Hi , let Ch be the set of moves at h.



Basic definitions

• Extensive game consists of a directed tree where nodes represent game
states. The tree encodes the full history of play.

• The game starts at the root of the tree and ends at a leaf, where each
player receives a payoff. A tree edge corresponds to one player moving
from one state to a different state of the game.
• Each node that is not a leaf is called a decision node.
• Moves a player can make in a given state are assigned to the outgoing
edges of the corresponding decision node.
• In perfect-information game all players know the node they are in (that
is, they know the history of the play that led them there).
◦ For example, Chess.

• In imperfect-information games players have only partial knowledge.
◦ For example, Poker.
◦ We partition decision nodes into information sets where all nodes
belong to the same player, and have the same moves.
◦ For player i , let Hi be the set of information sets of i and, for
h ∈ Hi , let Ch be the set of moves at h.



Basic definitions

• Extensive game consists of a directed tree where nodes represent game
states. The tree encodes the full history of play.
• The game starts at the root of the tree and ends at a leaf, where each
player receives a payoff.

A tree edge corresponds to one player moving
from one state to a different state of the game.
• Each node that is not a leaf is called a decision node.
• Moves a player can make in a given state are assigned to the outgoing
edges of the corresponding decision node.
• In perfect-information game all players know the node they are in (that
is, they know the history of the play that led them there).
◦ For example, Chess.

• In imperfect-information games players have only partial knowledge.
◦ For example, Poker.
◦ We partition decision nodes into information sets where all nodes
belong to the same player, and have the same moves.
◦ For player i , let Hi be the set of information sets of i and, for
h ∈ Hi , let Ch be the set of moves at h.



Basic definitions

• Extensive game consists of a directed tree where nodes represent game
states. The tree encodes the full history of play.
• The game starts at the root of the tree and ends at a leaf, where each
player receives a payoff. A tree edge corresponds to one player moving
from one state to a different state of the game.

• Each node that is not a leaf is called a decision node.
• Moves a player can make in a given state are assigned to the outgoing
edges of the corresponding decision node.
• In perfect-information game all players know the node they are in (that
is, they know the history of the play that led them there).
◦ For example, Chess.

• In imperfect-information games players have only partial knowledge.
◦ For example, Poker.
◦ We partition decision nodes into information sets where all nodes
belong to the same player, and have the same moves.
◦ For player i , let Hi be the set of information sets of i and, for
h ∈ Hi , let Ch be the set of moves at h.



Basic definitions

• Extensive game consists of a directed tree where nodes represent game
states. The tree encodes the full history of play.
• The game starts at the root of the tree and ends at a leaf, where each
player receives a payoff. A tree edge corresponds to one player moving
from one state to a different state of the game.
• Each node that is not a leaf is called a decision node.

• Moves a player can make in a given state are assigned to the outgoing
edges of the corresponding decision node.
• In perfect-information game all players know the node they are in (that
is, they know the history of the play that led them there).
◦ For example, Chess.

• In imperfect-information games players have only partial knowledge.
◦ For example, Poker.
◦ We partition decision nodes into information sets where all nodes
belong to the same player, and have the same moves.
◦ For player i , let Hi be the set of information sets of i and, for
h ∈ Hi , let Ch be the set of moves at h.



Basic definitions

• Extensive game consists of a directed tree where nodes represent game
states. The tree encodes the full history of play.
• The game starts at the root of the tree and ends at a leaf, where each
player receives a payoff. A tree edge corresponds to one player moving
from one state to a different state of the game.
• Each node that is not a leaf is called a decision node.
• Moves a player can make in a given state are assigned to the outgoing
edges of the corresponding decision node.

• In perfect-information game all players know the node they are in (that
is, they know the history of the play that led them there).
◦ For example, Chess.

• In imperfect-information games players have only partial knowledge.
◦ For example, Poker.
◦ We partition decision nodes into information sets where all nodes
belong to the same player, and have the same moves.
◦ For player i , let Hi be the set of information sets of i and, for
h ∈ Hi , let Ch be the set of moves at h.



Basic definitions

• Extensive game consists of a directed tree where nodes represent game
states. The tree encodes the full history of play.
• The game starts at the root of the tree and ends at a leaf, where each
player receives a payoff. A tree edge corresponds to one player moving
from one state to a different state of the game.
• Each node that is not a leaf is called a decision node.
• Moves a player can make in a given state are assigned to the outgoing
edges of the corresponding decision node.
• In perfect-information game all players know the node they are in

(that
is, they know the history of the play that led them there).
◦ For example, Chess.

• In imperfect-information games players have only partial knowledge.
◦ For example, Poker.
◦ We partition decision nodes into information sets where all nodes
belong to the same player, and have the same moves.
◦ For player i , let Hi be the set of information sets of i and, for
h ∈ Hi , let Ch be the set of moves at h.



Basic definitions

• Extensive game consists of a directed tree where nodes represent game
states. The tree encodes the full history of play.
• The game starts at the root of the tree and ends at a leaf, where each
player receives a payoff. A tree edge corresponds to one player moving
from one state to a different state of the game.
• Each node that is not a leaf is called a decision node.
• Moves a player can make in a given state are assigned to the outgoing
edges of the corresponding decision node.
• In perfect-information game all players know the node they are in (that
is, they know the history of the play that led them there).

◦ For example, Chess.
• In imperfect-information games players have only partial knowledge.
◦ For example, Poker.
◦ We partition decision nodes into information sets where all nodes
belong to the same player, and have the same moves.
◦ For player i , let Hi be the set of information sets of i and, for
h ∈ Hi , let Ch be the set of moves at h.



Basic definitions

• Extensive game consists of a directed tree where nodes represent game
states. The tree encodes the full history of play.
• The game starts at the root of the tree and ends at a leaf, where each
player receives a payoff. A tree edge corresponds to one player moving
from one state to a different state of the game.
• Each node that is not a leaf is called a decision node.
• Moves a player can make in a given state are assigned to the outgoing
edges of the corresponding decision node.
• In perfect-information game all players know the node they are in (that
is, they know the history of the play that led them there).
◦ For example, Chess.

• In imperfect-information games players have only partial knowledge.
◦ For example, Poker.
◦ We partition decision nodes into information sets where all nodes
belong to the same player, and have the same moves.
◦ For player i , let Hi be the set of information sets of i and, for
h ∈ Hi , let Ch be the set of moves at h.



Basic definitions

• Extensive game consists of a directed tree where nodes represent game
states. The tree encodes the full history of play.
• The game starts at the root of the tree and ends at a leaf, where each
player receives a payoff. A tree edge corresponds to one player moving
from one state to a different state of the game.
• Each node that is not a leaf is called a decision node.
• Moves a player can make in a given state are assigned to the outgoing
edges of the corresponding decision node.
• In perfect-information game all players know the node they are in (that
is, they know the history of the play that led them there).
◦ For example, Chess.

• In imperfect-information games players have only partial knowledge.

◦ For example, Poker.
◦ We partition decision nodes into information sets where all nodes
belong to the same player, and have the same moves.
◦ For player i , let Hi be the set of information sets of i and, for
h ∈ Hi , let Ch be the set of moves at h.



Basic definitions

• Extensive game consists of a directed tree where nodes represent game
states. The tree encodes the full history of play.
• The game starts at the root of the tree and ends at a leaf, where each
player receives a payoff. A tree edge corresponds to one player moving
from one state to a different state of the game.
• Each node that is not a leaf is called a decision node.
• Moves a player can make in a given state are assigned to the outgoing
edges of the corresponding decision node.
• In perfect-information game all players know the node they are in (that
is, they know the history of the play that led them there).
◦ For example, Chess.

• In imperfect-information games players have only partial knowledge.
◦ For example, Poker.

◦ We partition decision nodes into information sets where all nodes
belong to the same player, and have the same moves.
◦ For player i , let Hi be the set of information sets of i and, for
h ∈ Hi , let Ch be the set of moves at h.



Basic definitions

• Extensive game consists of a directed tree where nodes represent game
states. The tree encodes the full history of play.
• The game starts at the root of the tree and ends at a leaf, where each
player receives a payoff. A tree edge corresponds to one player moving
from one state to a different state of the game.
• Each node that is not a leaf is called a decision node.
• Moves a player can make in a given state are assigned to the outgoing
edges of the corresponding decision node.
• In perfect-information game all players know the node they are in (that
is, they know the history of the play that led them there).
◦ For example, Chess.

• In imperfect-information games players have only partial knowledge.
◦ For example, Poker.
◦ We partition decision nodes into information sets where all nodes
belong to the same player, and have the same moves.

◦ For player i , let Hi be the set of information sets of i and, for
h ∈ Hi , let Ch be the set of moves at h.



Basic definitions

• Extensive game consists of a directed tree where nodes represent game
states. The tree encodes the full history of play.
• The game starts at the root of the tree and ends at a leaf, where each
player receives a payoff. A tree edge corresponds to one player moving
from one state to a different state of the game.
• Each node that is not a leaf is called a decision node.
• Moves a player can make in a given state are assigned to the outgoing
edges of the corresponding decision node.
• In perfect-information game all players know the node they are in (that
is, they know the history of the play that led them there).
◦ For example, Chess.

• In imperfect-information games players have only partial knowledge.
◦ For example, Poker.
◦ We partition decision nodes into information sets where all nodes
belong to the same player, and have the same moves.
◦ For player i , let Hi be the set of information sets of i

and, for
h ∈ Hi , let Ch be the set of moves at h.



Basic definitions

• Extensive game consists of a directed tree where nodes represent game
states. The tree encodes the full history of play.
• The game starts at the root of the tree and ends at a leaf, where each
player receives a payoff. A tree edge corresponds to one player moving
from one state to a different state of the game.
• Each node that is not a leaf is called a decision node.
• Moves a player can make in a given state are assigned to the outgoing
edges of the corresponding decision node.
• In perfect-information game all players know the node they are in (that
is, they know the history of the play that led them there).
◦ For example, Chess.

• In imperfect-information games players have only partial knowledge.
◦ For example, Poker.
◦ We partition decision nodes into information sets where all nodes
belong to the same player, and have the same moves.
◦ For player i , let Hi be the set of information sets of i and, for
h ∈ Hi , let Ch be the set of moves at h.



Example: imperfect-information game

• An example of an imperfect-information game in extensive form
(part (a)) and its normal-form (part (b)).

1

1

2

L R

` r

S T S T

(3, 3)

(6, 1)(5, 6)(0, 3)(2, 2)

(a) (b)

(`) (r)
(L, S) (2,2) (5,6)
(L, T ) (0,3) (6,1)
(R,S) (3,3) (3,3)
(R, T ) (3,3) (3,3)



Example: imperfect-information game

• An example of an imperfect-information game in extensive form
(part (a)) and its normal-form (part (b)).

1

1

2

L R

` r

S T S T

(3, 3)

(6, 1)(5, 6)(0, 3)(2, 2)

(a) (b)

(`) (r)
(L, S) (2,2) (5,6)
(L, T ) (0,3) (6,1)
(R,S) (3,3) (3,3)
(R, T ) (3,3) (3,3)



Example: Prisoner’s dilemma

• Prisoner’s dilemma in extensive form (part (a)) and its normal-form
(part (b)).

1

2

S T

S T S T

(−2,−2)(0,−3)(−3, 0)(−1,−1)

(a) (b)

T S
T (-2,-2) (0,-3)
S (-3,0) (-1,-1)



Example: Prisoner’s dilemma

• Prisoner’s dilemma in extensive form (part (a)) and its normal-form
(part (b)).

1

2

S T

S T S T

(−2,−2)(0,−3)(−3, 0)(−1,−1)

(a) (b)

T S
T (-2,-2) (0,-3)
S (-3,0) (-1,-1)



Strategies in extensive games

• A pure strategy for player i is a complete specification of which
deterministic action to take at every information set belonging to i .
◦ Formally, a pure strategy of player i is a vector (ch)h∈Hi

from the
Cartesian product

∏
h∈Hi

Ch.
◦ Using pure strategies, we can transform an extensive game G into
a normal-form game G ′ simply by tabulating all pure strategies of
the players and recording the resulting expected payoffs.

• Mixed strategies of G are the mixed strategies of G ′.
• In the same way, we also define the set of Nash equilibria of G .
• A behavioral strategy of player i is a probability distribution on Ch for
each h ∈ Hi .
◦ This is a strategy in which each player’s choice at each information
set is made independently of his choices at other information sets.
◦ So a behavioral strategy is a vector of probability distributions
while a mixed strategy is a probability distribution over vectors.
◦ Unlike in mixed strategy, here a player might play different moves
in different encounters of h.



Strategies in extensive games

• A pure strategy for player i is a complete specification of which
deterministic action to take at every information set belonging to i .

◦ Formally, a pure strategy of player i is a vector (ch)h∈Hi
from the

Cartesian product
∏

h∈Hi
Ch.

◦ Using pure strategies, we can transform an extensive game G into
a normal-form game G ′ simply by tabulating all pure strategies of
the players and recording the resulting expected payoffs.

• Mixed strategies of G are the mixed strategies of G ′.
• In the same way, we also define the set of Nash equilibria of G .
• A behavioral strategy of player i is a probability distribution on Ch for
each h ∈ Hi .
◦ This is a strategy in which each player’s choice at each information
set is made independently of his choices at other information sets.
◦ So a behavioral strategy is a vector of probability distributions
while a mixed strategy is a probability distribution over vectors.
◦ Unlike in mixed strategy, here a player might play different moves
in different encounters of h.



Strategies in extensive games

• A pure strategy for player i is a complete specification of which
deterministic action to take at every information set belonging to i .
◦ Formally, a pure strategy of player i is a vector (ch)h∈Hi

from the
Cartesian product

∏
h∈Hi

Ch.

◦ Using pure strategies, we can transform an extensive game G into
a normal-form game G ′ simply by tabulating all pure strategies of
the players and recording the resulting expected payoffs.

• Mixed strategies of G are the mixed strategies of G ′.
• In the same way, we also define the set of Nash equilibria of G .
• A behavioral strategy of player i is a probability distribution on Ch for
each h ∈ Hi .
◦ This is a strategy in which each player’s choice at each information
set is made independently of his choices at other information sets.
◦ So a behavioral strategy is a vector of probability distributions
while a mixed strategy is a probability distribution over vectors.
◦ Unlike in mixed strategy, here a player might play different moves
in different encounters of h.



Strategies in extensive games

• A pure strategy for player i is a complete specification of which
deterministic action to take at every information set belonging to i .
◦ Formally, a pure strategy of player i is a vector (ch)h∈Hi

from the
Cartesian product

∏
h∈Hi

Ch.
◦ Using pure strategies, we can transform an extensive game G into
a normal-form game G ′ simply by tabulating all pure strategies of
the players and recording the resulting expected payoffs.

• Mixed strategies of G are the mixed strategies of G ′.
• In the same way, we also define the set of Nash equilibria of G .
• A behavioral strategy of player i is a probability distribution on Ch for
each h ∈ Hi .
◦ This is a strategy in which each player’s choice at each information
set is made independently of his choices at other information sets.
◦ So a behavioral strategy is a vector of probability distributions
while a mixed strategy is a probability distribution over vectors.
◦ Unlike in mixed strategy, here a player might play different moves
in different encounters of h.



Strategies in extensive games

• A pure strategy for player i is a complete specification of which
deterministic action to take at every information set belonging to i .
◦ Formally, a pure strategy of player i is a vector (ch)h∈Hi

from the
Cartesian product

∏
h∈Hi

Ch.
◦ Using pure strategies, we can transform an extensive game G into
a normal-form game G ′ simply by tabulating all pure strategies of
the players and recording the resulting expected payoffs.

• Mixed strategies of G are the mixed strategies of G ′.

• In the same way, we also define the set of Nash equilibria of G .
• A behavioral strategy of player i is a probability distribution on Ch for
each h ∈ Hi .
◦ This is a strategy in which each player’s choice at each information
set is made independently of his choices at other information sets.
◦ So a behavioral strategy is a vector of probability distributions
while a mixed strategy is a probability distribution over vectors.
◦ Unlike in mixed strategy, here a player might play different moves
in different encounters of h.



Strategies in extensive games

• A pure strategy for player i is a complete specification of which
deterministic action to take at every information set belonging to i .
◦ Formally, a pure strategy of player i is a vector (ch)h∈Hi

from the
Cartesian product

∏
h∈Hi

Ch.
◦ Using pure strategies, we can transform an extensive game G into
a normal-form game G ′ simply by tabulating all pure strategies of
the players and recording the resulting expected payoffs.

• Mixed strategies of G are the mixed strategies of G ′.
• In the same way, we also define the set of Nash equilibria of G .

• A behavioral strategy of player i is a probability distribution on Ch for
each h ∈ Hi .
◦ This is a strategy in which each player’s choice at each information
set is made independently of his choices at other information sets.
◦ So a behavioral strategy is a vector of probability distributions
while a mixed strategy is a probability distribution over vectors.
◦ Unlike in mixed strategy, here a player might play different moves
in different encounters of h.



Strategies in extensive games

• A pure strategy for player i is a complete specification of which
deterministic action to take at every information set belonging to i .
◦ Formally, a pure strategy of player i is a vector (ch)h∈Hi

from the
Cartesian product

∏
h∈Hi

Ch.
◦ Using pure strategies, we can transform an extensive game G into
a normal-form game G ′ simply by tabulating all pure strategies of
the players and recording the resulting expected payoffs.

• Mixed strategies of G are the mixed strategies of G ′.
• In the same way, we also define the set of Nash equilibria of G .
• A behavioral strategy of player i is a probability distribution on Ch for
each h ∈ Hi .

◦ This is a strategy in which each player’s choice at each information
set is made independently of his choices at other information sets.
◦ So a behavioral strategy is a vector of probability distributions
while a mixed strategy is a probability distribution over vectors.
◦ Unlike in mixed strategy, here a player might play different moves
in different encounters of h.



Strategies in extensive games

• A pure strategy for player i is a complete specification of which
deterministic action to take at every information set belonging to i .
◦ Formally, a pure strategy of player i is a vector (ch)h∈Hi

from the
Cartesian product

∏
h∈Hi

Ch.
◦ Using pure strategies, we can transform an extensive game G into
a normal-form game G ′ simply by tabulating all pure strategies of
the players and recording the resulting expected payoffs.

• Mixed strategies of G are the mixed strategies of G ′.
• In the same way, we also define the set of Nash equilibria of G .
• A behavioral strategy of player i is a probability distribution on Ch for
each h ∈ Hi .
◦ This is a strategy in which each player’s choice at each information
set is made independently of his choices at other information sets.

◦ So a behavioral strategy is a vector of probability distributions
while a mixed strategy is a probability distribution over vectors.
◦ Unlike in mixed strategy, here a player might play different moves
in different encounters of h.



Strategies in extensive games

• A pure strategy for player i is a complete specification of which
deterministic action to take at every information set belonging to i .
◦ Formally, a pure strategy of player i is a vector (ch)h∈Hi

from the
Cartesian product

∏
h∈Hi

Ch.
◦ Using pure strategies, we can transform an extensive game G into
a normal-form game G ′ simply by tabulating all pure strategies of
the players and recording the resulting expected payoffs.

• Mixed strategies of G are the mixed strategies of G ′.
• In the same way, we also define the set of Nash equilibria of G .
• A behavioral strategy of player i is a probability distribution on Ch for
each h ∈ Hi .
◦ This is a strategy in which each player’s choice at each information
set is made independently of his choices at other information sets.
◦ So a behavioral strategy is a vector of probability distributions
while a mixed strategy is a probability distribution over vectors.

◦ Unlike in mixed strategy, here a player might play different moves
in different encounters of h.



Strategies in extensive games

• A pure strategy for player i is a complete specification of which
deterministic action to take at every information set belonging to i .
◦ Formally, a pure strategy of player i is a vector (ch)h∈Hi

from the
Cartesian product

∏
h∈Hi

Ch.
◦ Using pure strategies, we can transform an extensive game G into
a normal-form game G ′ simply by tabulating all pure strategies of
the players and recording the resulting expected payoffs.

• Mixed strategies of G are the mixed strategies of G ′.
• In the same way, we also define the set of Nash equilibria of G .
• A behavioral strategy of player i is a probability distribution on Ch for
each h ∈ Hi .
◦ This is a strategy in which each player’s choice at each information
set is made independently of his choices at other information sets.
◦ So a behavioral strategy is a vector of probability distributions
while a mixed strategy is a probability distribution over vectors.
◦ Unlike in mixed strategy, here a player might play different moves
in different encounters of h.



Example: behavioral strategy

• An example of a perfect-information game in extensive form (part (a))
and its normal-form (part (b)).

1

2

A B

C D

G H
(5, 5)

(1, 10)(2, 10)

(8, 3)(3, 8)
1

2

E F

(a) (b)

(C,E) (C,F ) (D,E) (D,F )
(A,G) (3,8) (3,8) (8,3) (8,3)
(A,H) (3,8) (3,8) (8,3) (8,3)
(B,G) (5,5) (2,10) (5,5) (2,10)
(B,H) (5,5) (1,0) (5,5) (1,0)

• A strategy of player 1 that selects A with probability 1
2
and G with

probability 1
3
is a behavioral strategy.

• The mixed strategy (3
5
(A,G ), 2

5
(B ,H)) is not a behavioral strategy for

1 as the choices made by him at the two nodes are not independent.



Example: behavioral strategy

• An example of a perfect-information game in extensive form (part (a))
and its normal-form (part (b)).

1

2

A B

C D

G H
(5, 5)

(1, 10)(2, 10)

(8, 3)(3, 8)
1

2

E F

(a) (b)

(C,E) (C,F ) (D,E) (D,F )
(A,G) (3,8) (3,8) (8,3) (8,3)
(A,H) (3,8) (3,8) (8,3) (8,3)
(B,G) (5,5) (2,10) (5,5) (2,10)
(B,H) (5,5) (1,0) (5,5) (1,0)

• A strategy of player 1 that selects A with probability 1
2
and G with

probability 1
3
is a behavioral strategy.

• The mixed strategy (3
5
(A,G ), 2

5
(B ,H)) is not a behavioral strategy for

1 as the choices made by him at the two nodes are not independent.



Example: behavioral strategy

• An example of a perfect-information game in extensive form (part (a))
and its normal-form (part (b)).

1

2

A B

C D

G H
(5, 5)

(1, 10)(2, 10)

(8, 3)(3, 8)
1

2

E F

(a) (b)

(C,E) (C,F ) (D,E) (D,F )
(A,G) (3,8) (3,8) (8,3) (8,3)
(A,H) (3,8) (3,8) (8,3) (8,3)
(B,G) (5,5) (2,10) (5,5) (2,10)
(B,H) (5,5) (1,0) (5,5) (1,0)

• A strategy of player 1 that selects A with probability 1
2
and G with

probability 1
3
is a behavioral strategy.

• The mixed strategy (3
5
(A,G ), 2

5
(B ,H)) is not a behavioral strategy for

1 as the choices made by him at the two nodes are not independent.



Example: behavioral strategy

• An example of a perfect-information game in extensive form (part (a))
and its normal-form (part (b)).

1

2

A B

C D

G H
(5, 5)

(1, 10)(2, 10)

(8, 3)(3, 8)
1

2

E F

(a) (b)

(C,E) (C,F ) (D,E) (D,F )
(A,G) (3,8) (3,8) (8,3) (8,3)
(A,H) (3,8) (3,8) (8,3) (8,3)
(B,G) (5,5) (2,10) (5,5) (2,10)
(B,H) (5,5) (1,0) (5,5) (1,0)

• A strategy of player 1 that selects A with probability 1
2
and G with

probability 1
3
is a behavioral strategy.

• The mixed strategy (3
5
(A,G ), 2

5
(B ,H)) is not a behavioral strategy for

1 as the choices made by him at the two nodes are not independent.



Example: Russian roulette

• We have two players with a six-shot revolver containing a single bullet.
Each player has two moves: shoot or give up. If player gives up, he
loses the game immediately. If he shoots, then he either dies or
survives, in which case the other player is on turn.

Source: https://www.memedroid.com/

• Consider that player 1 has payoffs (10, 2, 1) for (Win, Loss, Death) and
that player 2 has payoffs (10, 0, 0).



Example: Russian roulette

• We have two players with a six-shot revolver containing a single bullet.
Each player has two moves: shoot or give up. If player gives up, he
loses the game immediately. If he shoots, then he either dies or
survives, in which case the other player is on turn.

Source: https://www.memedroid.com/

• Consider that player 1 has payoffs (10, 2, 1) for (Win, Loss, Death) and
that player 2 has payoffs (10, 0, 0).



Example: Russian roulette

• We have two players with a six-shot revolver containing a single bullet.
Each player has two moves: shoot or give up. If player gives up, he
loses the game immediately. If he shoots, then he either dies or
survives, in which case the other player is on turn.

Source: https://www.memedroid.com/

• Consider that player 1 has payoffs (10, 2, 1) for (Win, Loss, Death) and
that player 2 has payoffs (10, 0, 0).



Example: Russian roulette

• The Russian roulette in the extensive form using the random player who
plays according to a known behavior strategy β0.

(2, 10)

(1, 10)

(10, 0)

0

0

1/5

1/4

1/3

(10, 0)

(1, 10)

(10, 0)

(1, 10)

(10, 0)

1

1

1

2

2

2

0

0

0

1/6

1/2

(2, 10)

(10, 0)

(2, 10)

(10, 0)

G

G

G

G

G

G

S

S

S

S

S

S



Example: Russian roulette

• The Russian roulette in the extensive form using the random player who
plays according to a known behavior strategy β0.

(2, 10)

(1, 10)

(10, 0)

0

0

1/5

1/4

1/3

(10, 0)

(1, 10)

(10, 0)

(1, 10)

(10, 0)

1

1

1

2

2

2

0

0

0

1/6

1/2

(2, 10)

(10, 0)

(2, 10)

(10, 0)

G

G

G

G

G

G

S

S

S

S

S

S



Source: https://twitter.com/curiosite12

Thank you for your attention.



Source: https://twitter.com/curiosite12

Thank you for your attention.



Source: https://twitter.com/curiosite12

Thank you for your attention.


