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Applications of

regret minimization



Our notation

e \We have an agent A in an adversary environment.
e There are N available actions for A in the set X = {1,... N}.

e Ateachstept=1,...,T:
o Our agent A selects a probability distribution p* = (pi, ..., py)
over X, where p! is the probability that A selects / in step t.
o Then, the adversary chooses a loss vector /' = (¢%,..., ¢},), where
(% € [-1,1] is the loss of action i in step t.
o The agent A then experiences loss (5 = S" . pt¢t. This is the

expected loss of A in step t.

o After T steps, the cumulative loss of action jis L] = Z;l 4

e The cumulative loss of Ais L} = > . /%,

e Given a comparison class Ax of agents A; that select a single action |
in all steps, we let L. = minjcx{L4 } be the minimum cumulative loss

min

of an agent from Ax.
e Our goal is to minimize the external regret Ri = L} — L.

min-
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Source: No regret algorithms in games (Georgios Piliouras)




The Polynomial weights algorithm (PW algorithm)

Algorithm 0.4: POLYNOMIAL WEIGHTS ALGORITHM(X, T,n)

Input : A set of actions X ={1,...,N}, T € N, and n € (0,1/2].
Output : A probability distribution p* for every t € {1,..., T}.
wi < 1 for every i € X,

pt < (1/N,...,1/N),

fort=2,.... T

(wf w1 —nlih),

do ¢ Wt > . w,

pi < wi/W* for every i € X.

Output {p*: t € {1,..., T}}.

e For any sequence of loss vectors, we have Riyw < 2V T In V.
e S0 the average regret % - R\ goes to 0 with T — o.



Applications of regret minimization

e Today, we will see how to apply regret minimization in the theory of
normal-form games.

o Let G = (P, A, C) be a normal-form game of n players with a cost
function C = (Cy, ..., C,), where C;: A — [—1,1]. Cost = —utility.
e This will be done via the so-called No-regret dynamics:
o "Players play against each other by selecting actions according to
an algorithm with small external regret.”
o Each player i € P chooses a mixed strategy pi = (p;(a;))aca.
using some algorithm with small external regret such that actions

correspond to pure strategies.
o Then, i receives a loss vector ¢} = (¢i(a;))aca., Where

li(ai) = Eat pe [Ci(ar;al;)]

for the product distribution p°; = [[.; p;.

o That is, ¢i(a;) is the expected cost of the pure strategy a; given
the mixed strategies chosen by the other players.



The No-regret dynamics

e "Players play against each other by selecting actions according to an
algorithm with small external regret.”

Algorithm 0.11: NO-REGRET DYNAMICS(G, T,¢)

Input : A normal-form game G = (P, A, C) of n players, T € N, and ¢ > 0.
Output : A prob. distribution p! on A; for each i € P and t € {1,..., T}.
for every stept =1,..., T

(Each player i € P independently chooses a mixed strategy p?
using an algorithm with average regret at most ¢, with actions
corresponding to pure strategies.

Each player i € P receives a loss vector ¢f = (£}(a;))a.ca., where
li(ai) < Ege pr [Ci(ai;at;)] for the product distribution

\'Dt—i — HJ#" Pf.

Output {p*: t € {1,..., T}}.




Application: Modern proof of the Minimax Theorem

e A new proof of the Minimax theorem.

e A zero-sum game G = ({1,2}, A, C) with
Ar ={a1,...,am}, Ao ={by,..., by} is
represented with an mx n matrix M where
M,',j = —Cl(a,-, bj) = Cz(a,', bj) c [—1, ].]

e The expected cost C,(s) for player 2

equals x' My, where x and y are the
mixed strategy vectors.

e [he Minimax theorem then states

max min x' My = min maxx' My.
XES) yES: yES> x€5;

Source: https://www.privatdozent.co/

e We can prove it without LP!



Modern proof of the Minimax Theorem |

First, the inequality max, min, x ' My < min, max, x' My follows easily,
since it is only worse to go first.

Second, we prove the inequality max, min, x' My > min, max, x ' My.

We choose a parameter € € (0, 1] and run the No-regret dynamics for a
sufficient number T of steps so that both players have average
expected external regret at most «.

With the PW algorithm, we can set T = 41In(max{m, n})/e°.
Let pt,....p" and ¢',...,q" be strategies played by players 1 and 2.

We let X = + 2;1 ptand y = 2 2;1 g' be the time-averaged
strategies of players 1 and 2.

The payoff vector revealed to each no-regret algorithm after step t is
the expected payoff of each strategy, given the mixed strategy played by
the other player.

Thus, players 1 and 2 get the payoff vectors Mgt and —(p?)' M.
The time-averaged expected payoff of 1 is then v = % Z;l(pt)TMqt.



Modern proof of the Minimax Theorem Il

e Fori=1...,m lete=1(0,...,0,1,0...,0) be the mixed strategy
vector for the pure strategy a;. Since the external regret of player 1 is
at most £, we have

T T
1 1
e’ My == e Mg"< =) (p')'Mg"+e=v+e
t=1 t=1

e Since every strategy x € S; is a convex combination of the vectors e,
the linearity of expectation gives x' My < v + . Analogously,
(X)'My > v — ¢ for every y € S,.

e Putting everything together, we get

max min x' My > min(x)' My > v — ¢
xXES] yeSy yeS)

> maxx ' My — 2 > min maxx' My — 2¢.
XESy yESy, x€5

e For T — o0, we get ¢ — 0 and we obtain the desired inequality. []



Application: Coarse correlated equilibria

e Recall: a prob. distribution p on A is a correlated equilibrium (CE) if

ZCa,_ ZC(aa)pa, a_;)

a_je€A_; a_,€A_;

for every player i € P and all pure strategies a;, a. € A;.

e In other words,
E.wp[Ci(a) | ai] < E.up[Cial ai) | ail.

e \We define an even more tractable concept
and use no-regret dynamics to converge
to it.




Coarse correlated equilibrium

e For a normal-form game G = (P, A, C) of n players, a probability
distribution p on A is a coarse correlated equilibrium (CCE) in G if

> Gla)p(a) < 3 Cildliai)p(a)

for every player i € P and every a' € A;.
e CCE can be expressed as

Eaup[Ci(a)] < Eaup[Ci(al; a)]

for every i € P and each a! € A;.

e The difference between CCE and CE is that CCE only requires that
following your suggested action a; when a is drawn from p is only a
best response in expectation before you see a;. This makes sense if you
have to commit to following your suggested action or not upfront, and
do not have the opportunity to deviate after seeing it.



Example: Coarse correlated equilibrium

e Giving probability 1/6 to each red outcome gives coarse correlated
equilibrium in the Rock-Paper-Scissors game.

Rock | Paper | Scissors
Rock | (0,0) | (-1,1) | (1,-1)
Paper | (1,-1) | (0,0) | (-1,1)

Scissors | (-1,1) | (1,-1) | (0,0)

e Then, the expected payoff of each player is 0 and deviating to any pure
strategy gives the expected payoff 0.

e It is not a correlated equilibrium though.



Hierarchy of Nash equilibria

Pure Nash equilibria,

\\ not always exist

) _ Correlated equilibria,
CE easy to compute
CCE Coarse correlated equilibria,

even easier to compute

e |n general normal-form game, no-regret dynamics converges to a coarse
correlated equilibrium.

e For ¢ > 0, a probability distribution p on A is an s-coarse correlated
equilibrium (e-CCE) if E,,[Ci(a)] < E,-p[Ci(a}; a_;)] + .



Converging to CCE

Theorem 2.54

For every G = (P,A,C),e>0,and T = T(e) € N, if after T steps of the
No-regret dynamics, each player / € P has time-averaged expected regret at
most £, then p is e-CCE where p* = [['_, pf and p = % 2;1 pt.

e Proof: We want to prove E,_,[Ci(a)] < E,.,[C(a;;a_;)] +e.
e By the definition of p, we have, for every player i € P and a’ € A;,
T T
1

EIG@] =3 E (@] and E[G(a )=+ E [Glaia )l

e The right-hand sides are time-averaged expected costs of / when playing
according to the algorithm with small external regret and when playing
a’ every iteration. Since every player has regret at most ¢, we obtain

T T

1 1 ,

? Z EaNPt[C,-(a)] S ? Z Ea,\,pt[C,-(a,-; 3_,')] + €.
t=1 t=1

e This verifies the e-CCE condition for p = % Z;l D []




Other notions of regret

e Converging to CCE is nice, but how about converging to CE? We can
do that with a different notion of regret!

e \We consider an “internal setting” when we compare our agent to its
modifications.

e A modification rule is a function F: X — X.

e We modify a sequence (p*)_; with F by replacing it with a sequence

(f*)i=1, where = (ff,... . f§) and £ =37 py_i P}
o “The modified agent plays F (i) whenever A plays i."
e The cumulative loss of A modified by Fis L} = > S=, ftet.

e Given a set of modification rules F, we can compare our agent to his
modifications by rules from F, obtaining different notions of regret.



Internal and swap regret

e For aset 7 ={F;: i € X} of rules where F; always outputs action /,
we obtain exactly the external regret:

Ripe = max {Ly — Lyp} = max{z ((wa) z;) }

rieX

e For 7" = {F;;: (i,j) € X x X,i # j} where F;; is defined by
F:i(i) =j and F;;(i") = i’ for each i’ # i, we get the internal regret:

Rizn=max {Ly —Ljp} = max{ Zp, (i = £5) }

FeFin

e For the set /°" of all modification rules, we get the swap regret:

R o :Frgjel__z(W{LT—L F} = max{ Zpl (i = £5) }

e Since F&, Fin C F* we immediately have RAT’FX, RATF,,, < RATFW



The No-swap-regret dynamics

e Using swap regret instead of external regret, we will get:

Algorithm 0.15: NO-SWAP-REGRET DYNAMICS(G, T,¢)

Input : A normal-form game G = (P, A, C) of n players, T € N, and ¢ > 0.
Output : A prob. distribution pf on A; for each i € P and t € {1,..., T}.
for every stept =1,..., T
(Each player i € P independently chooses a mixed strategy p?
using an algorithm with average swap regret at most €, with
actions corresponding to pure strategies.

Each player i € P receives a loss vector ¢f = (£}(a;))a.ca., where
li(ai) < Ege p [Ci(ai;at;)] for the product distribution
=i = iy
Output {p*: t € {1,..., T}}.

e No-swap-regret dynamics then converges to a correlated equilibrium.
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Thank you for your attention.



