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Applications of

regret minimization



Our notation

• We have an agent A in an adversary environment.
• There are N available actions for A in the set X = {1, . . . ,N}.

• At each step t = 1, . . . ,T :
◦ Our agent A selects a probability distribution pt = (pt1, . . . , p

t
N)

over X , where pti is the probability that A selects i in step t.
◦ Then, the adversary chooses a loss vector ℓt = (ℓt1, . . . , ℓ

t
N), where

ℓti ∈ [−1, 1] is the loss of action i in step t.
◦ The agent A then experiences loss ℓtA =

∑N
i=1 p

t
i ℓ

t
i . This is the

expected loss of A in step t.

• After T steps, the cumulative loss of action i is LTi =
∑T

t=1 ℓ
t
i .

• The cumulative loss of A is LTA =
∑T

t=1 ℓ
t
A.

• Given a comparison class AX of agents Ai that select a single action i
in all steps, we let LTmin = mini∈X{LTAi

} be the minimum cumulative loss
of an agent from AX .
• Our goal is to minimize the external regret RT

A = LTA − LTmin.
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The Polynomial weights algorithm (PW algorithm)

Algorithm 0.1: Polynomial weights algorithm(X ,T , η)

Input : A set of actions X = {1, . . . ,N}, T ∈ N, and η ∈ (0, 1/2].
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
w 1
i ← 1 for every i ∈ X ,

p1 ← (1/N , . . . , 1/N),
for t = 2, . . . ,T

do

w t
i ← w t−1

i (1− ηℓt−1
i ),

W t ←
∑

i∈X w t
i ,

pti ← w t
i /W

t for every i ∈ X .
Output {pt : t ∈ {1, . . . ,T}}.

• For any sequence of loss vectors, we have RT
PW ≤ 2

√
T lnN .

• So the average regret 1
T
· RT

PW goes to 0 with T →∞.



The Polynomial weights algorithm (PW algorithm)

Algorithm 0.2: Polynomial weights algorithm(X ,T , η)

Input : A set of actions X = {1, . . . ,N}, T ∈ N, and η ∈ (0, 1/2].
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
w 1
i ← 1 for every i ∈ X ,

p1 ← (1/N , . . . , 1/N),
for t = 2, . . . ,T

do

w t
i ← w t−1

i (1− ηℓt−1
i ),

W t ←
∑

i∈X w t
i ,

pti ← w t
i /W

t for every i ∈ X .
Output {pt : t ∈ {1, . . . ,T}}.

• For any sequence of loss vectors, we have RT
PW ≤ 2

√
T lnN .

• So the average regret 1
T
· RT

PW goes to 0 with T →∞.



The Polynomial weights algorithm (PW algorithm)

Algorithm 0.3: Polynomial weights algorithm(X ,T , η)

Input : A set of actions X = {1, . . . ,N}, T ∈ N, and η ∈ (0, 1/2].
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
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The Polynomial weights algorithm (PW algorithm)

Algorithm 0.4: Polynomial weights algorithm(X ,T , η)

Input : A set of actions X = {1, . . . ,N}, T ∈ N, and η ∈ (0, 1/2].
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
w 1
i ← 1 for every i ∈ X ,

p1 ← (1/N , . . . , 1/N),
for t = 2, . . . ,T

do

w t
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i∈X w t
i ,

pti ← w t
i /W

t for every i ∈ X .
Output {pt : t ∈ {1, . . . ,T}}.

• For any sequence of loss vectors, we have RT
PW ≤ 2
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T lnN .

• So the average regret 1
T
· RT

PW goes to 0 with T →∞.



Applications of regret minimization

• Today, we will see how to apply regret minimization in the theory of
normal-form games.

• Let G = (P ,A,C ) be a normal-form game of n players with a cost
function C = (C1, . . . ,Cn), where Ci : A→ [−1, 1]. Cost = −utility.
• This will be done via the so-called No-regret dynamics:

◦ “Players play against each other by selecting actions according to
an algorithm with small external regret.”
◦ Each player i ∈ P chooses a mixed strategy pti = (pti (ai))ai∈Ai

using some algorithm with small external regret such that actions
correspond to pure strategies.
◦ Then, i receives a loss vector ℓti = (ℓti (ai))ai∈Ai

, where

ℓti (ai) = Eat−i∼pt−i
[Ci(ai ; a

t
−i)]

for the product distribution pt−i =
∏

j ̸=i p
t
j .

◦ That is, ℓti (ai) is the expected cost of the pure strategy ai given
the mixed strategies chosen by the other players.
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for the product distribution pt−i =
∏

j ̸=i p
t
j .

◦ That is, ℓti (ai) is the expected cost of the pure strategy ai given
the mixed strategies chosen by the other players.
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The No-regret dynamics

• “Players play against each other by selecting actions according to an
algorithm with small external regret.”

Algorithm 0.5: No-regret dynamics(G ,T , ε)

Input : A normal-form game G = (P,A,C ) of n players, T ∈ N, and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and t ∈ {1, . . . ,T}.
for every step t = 1, . . . ,T

do



Each player i ∈ P independently chooses a mixed strategy pti
using an algorithm with average regret at most ε, with actions
corresponding to pure strategies.
Each player i ∈ P receives a loss vector ℓti = (ℓti (ai ))ai∈Ai

, where
ℓti (ai )← Eat−i∼pt−i

[Ci (ai ; a
t
−i )] for the product distribution

pt−i =
∏

j ̸=i p
t
j .

Output {pt : t ∈ {1, . . . ,T}}.



The No-regret dynamics

• “Players play against each other by selecting actions according to an
algorithm with small external regret.”
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The No-regret dynamics

• “Players play against each other by selecting actions according to an
algorithm with small external regret.”

Algorithm 0.7: No-regret dynamics(G ,T , ε)
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The No-regret dynamics

• “Players play against each other by selecting actions according to an
algorithm with small external regret.”

Algorithm 0.8: No-regret dynamics(G ,T , ε)
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t
−i )] for the product distribution
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t
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Output {pt : t ∈ {1, . . . ,T}}.



The No-regret dynamics

• “Players play against each other by selecting actions according to an
algorithm with small external regret.”

Algorithm 0.9: No-regret dynamics(G ,T , ε)

Input : A normal-form game G = (P,A,C ) of n players, T ∈ N, and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and t ∈ {1, . . . ,T}.
for every step t = 1, . . . ,T

do
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Each player i ∈ P independently chooses a mixed strategy pti
using an algorithm with average regret at most ε, with actions
corresponding to pure strategies.

Each player i ∈ P receives a loss vector ℓti = (ℓti (ai ))ai∈Ai
, where

ℓti (ai )← Eat−i∼pt−i
[Ci (ai ; a

t
−i )] for the product distribution

pt−i =
∏

j ̸=i p
t
j .

Output {pt : t ∈ {1, . . . ,T}}.



The No-regret dynamics

• “Players play against each other by selecting actions according to an
algorithm with small external regret.”

Algorithm 0.10: No-regret dynamics(G ,T , ε)
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Output {pt : t ∈ {1, . . . ,T}}.



The No-regret dynamics

• “Players play against each other by selecting actions according to an
algorithm with small external regret.”

Algorithm 0.11: No-regret dynamics(G ,T , ε)

Input : A normal-form game G = (P,A,C ) of n players, T ∈ N, and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and t ∈ {1, . . . ,T}.
for every step t = 1, . . . ,T

do



Each player i ∈ P independently chooses a mixed strategy pti
using an algorithm with average regret at most ε, with actions
corresponding to pure strategies.
Each player i ∈ P receives a loss vector ℓti = (ℓti (ai ))ai∈Ai

, where
ℓti (ai )← Eat−i∼pt−i

[Ci (ai ; a
t
−i )] for the product distribution

pt−i =
∏

j ̸=i p
t
j .

Output {pt : t ∈ {1, . . . ,T}}.



Application: Modern proof of the Minimax Theorem

• A new proof of the Minimax theorem.

• A zero-sum game G = ({1, 2},A,C ) with
A1 = {a1, . . . , am}, A2 = {b1, . . . , bn} is
represented with anm×n matrixM where
Mi ,j = −C1(ai , bj) = C2(ai , bj) ∈ [−1, 1].
• The expected cost C2(s) for player 2
equals x⊤My , where x and y are the
mixed strategy vectors.

• The Minimax theorem then states

max
x∈S1

min
y∈S2

x⊤My = min
y∈S2

max
x∈S1

x⊤My .

Source: https://www.privatdozent.co/

• We can prove it without LP!
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Modern proof of the Minimax Theorem I

• First, the inequality maxx miny x
⊤My ≤ miny maxx x

⊤My follows easily,
since it is only worse to go first.

• Second, we prove the inequality maxx miny x
⊤My ≥ miny maxx x

⊤My .

• We choose a parameter ε ∈ (0, 1] and run the No-regret dynamics for a
sufficient number T of steps so that both players have average
expected external regret at most ε.

• With the PW algorithm, we can set T = 4 ln (max{m, n})/ε2.
• Let p1, . . . , pT and q1, . . . , qT be strategies played by players 1 and 2.

• We let x = 1
T

∑T
t=1 p

t and y = 1
T

∑T
t=1 q

t be the time-averaged
strategies of players 1 and 2.

• The payoff vector revealed to each no-regret algorithm after step t is
the expected payoff of each strategy, given the mixed strategy played by
the other player.

• Thus, players 1 and 2 get the payoff vectors Mqt and −(pt)⊤M .

• The time-averaged expected payoff of 1 is then v = 1
T

∑T
t=1(p

t)⊤Mqt .
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Modern proof of the Minimax Theorem II

• For i = 1, . . . ,m, let ei = (0, . . . , 0, 1, 0 . . . , 0) be the mixed strategy
vector for the pure strategy ai . Since the external regret of player 1 is
at most ε, we have

e⊤i My =
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T

T∑
t=1

(pt)⊤Mqt + ε = v + ε.

• Since every strategy x ∈ S1 is a convex combination of the vectors ei ,
the linearity of expectation gives x⊤My ≤ v + ε. Analogously,
(x)⊤My ≥ v − ε for every y ∈ S2.

• Putting everything together, we get

max
x∈S1
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y∈S2
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y∈S2
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x⊤My − 2ε.

• For T →∞, we get ε→ 0 and we obtain the desired inequality.
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Application: Coarse correlated equilibria

• Recall: a prob. distribution p on A is a correlated equilibrium (CE) if∑
a−i∈A−i

Ci(ai ; a−i)p(ai ; a−i) ≤
∑

a−i∈A−i

Ci(a
′
i ; a−i)p(ai ; a−i)

for every player i ∈ P and all pure strategies ai , a
′
i ∈ Ai .

• In other words,

Ea∼p[Ci(a) | ai ] ≤ Ea∼p[Ci(a
′
i ; a−i) | ai ].

• We define an even more tractable concept
and use no-regret dynamics to converge
to it.
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Coarse correlated equilibrium

• For a normal-form game G = (P ,A,C ) of n players, a probability
distribution p on A is a coarse correlated equilibrium (CCE) in G if∑

a∈A

Ci(a)p(a) ≤
∑
a∈A

Ci(a
′
i ; a−i)p(a)

for every player i ∈ P and every a′i ∈ Ai .

• CCE can be expressed as

Ea∼p[Ci(a)] ≤ Ea∼p[Ci(a
′
i ; a−i)]

for every i ∈ P and each a′i ∈ Ai .

• The difference between CCE and CE is that CCE only requires that
following your suggested action ai when a is drawn from p is only a
best response in expectation before you see ai . This makes sense if you
have to commit to following your suggested action or not upfront, and
do not have the opportunity to deviate after seeing it.
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Example: Coarse correlated equilibrium

• Giving probability 1/6 to each red outcome gives coarse correlated
equilibrium in the Rock-Paper-Scissors game.

Rock Paper Scissors

Rock (0,0) (-1,1) (1,-1)

Paper (1,-1) (0,0) (-1,1)

Scissors (-1,1) (1,-1) (0,0)

• Then, the expected payoff of each player is 0 and deviating to any pure
strategy gives the expected payoff 0.

• It is not a correlated equilibrium though.
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Hierarchy of Nash equilibria

Pure Nash equilibria,

PNE
not always exist

In general normal-form game, no-regret dynamics converges to a coarse
correlated equilibrium.

For ε > 0, a probability distribution p on A is an ε-coarse correlated
equilibrium (ε-CCE) if Ea∼p[Ci(a)] ≤ Ea∼p[Ci(a

′
i ; a−i)] + ε.
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Converging to CCE

Theorem 2.54

For every G = (P ,A,C ), ε > 0, and T = T (ε) ∈ N, if after T steps of the
No-regret dynamics, each player i ∈ P has time-averaged expected regret at
most ε, then p is ε-CCE where pt =

∏n
i=1 p

t
i and p = 1

T

∑T
t=1 p

t .
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′
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Converging to CCE
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Other notions of regret

• Converging to CCE is nice, but how about converging to CE? We can
do that with a different notion of regret!

• We consider an “internal setting” when we compare our agent to its
modifications.

• A modification rule is a function F : X → X .

• We modify a sequence (pt)Tt=1 with F by replacing it with a sequence
(f t)Tt=1, where f t = (f t1 , . . . , f

t
N) and f ti =

∑
j : F (j)=i p

t
j .

◦ “The modified agent plays F (i) whenever A plays i .”

• The cumulative loss of A modified by F is LTA,F =
∑T

t=1

∑N
i=1 f

t
i ℓ

t
i .

• Given a set of modification rules F , we can compare our agent to his
modifications by rules from F , obtaining different notions of regret.
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Internal and swap regret

• For a set F ex = {Fi : i ∈ X} of rules where Fi always outputs action i ,
we obtain exactly the external regret:

RT
A,Fex = max

F∈Fex

{
LTA − LTA,F

}
= max

j∈X

{
T∑
t=1

((∑
i∈X

pti ℓ
t
i

)
− ℓtj

)}
.

• For F in = {Fi ,j : (i , j) ∈ X × X , i ̸= j} where Fi ,j is defined by
Fi ,j(i) = j and Fi ,j(i

′) = i ′ for each i ′ ̸= i , we get the internal regret:

RT
A,F in = max

F∈F in

{
LTA − LTA,F

}
= max

i ,j∈X

{
T∑
t=1

pti (ℓ
t
i − ℓtj )

}
.

• For the set F sw of all modification rules, we get the swap regret:

RT
A,F sw = max

F∈F sw

{
LTA − LTA,F

}
=

N∑
i=1

max
j∈X

{
T∑
t=1

pti (ℓ
t
i − ℓtj )

}
.

• Since F ex ,F in ⊆ F sw , we immediately have RT
A,Fex ,RT

A,F in ≤ RT
A,F sw .
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The No-swap-regret dynamics

• Using swap regret instead of external regret, we will get:

Algorithm 0.12: No-swap-regret dynamics(G ,T , ε)

Input : A normal-form game G = (P,A,C ) of n players, T ∈ N, and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and t ∈ {1, . . . ,T}.
for every step t = 1, . . . ,T

do



Each player i ∈ P independently chooses a mixed strategy pti
using an algorithm with average swap regret at most ε, with
actions corresponding to pure strategies.
Each player i ∈ P receives a loss vector ℓti = (ℓti (ai ))ai∈Ai

, where
ℓti (ai )← Eat−i∼pt−i

[Ci (ai ; a
t
−i )] for the product distribution

pt−i =
∏

j ̸=i p
t
j .

Output {pt : t ∈ {1, . . . ,T}}.

• No-swap-regret dynamics then converges to a correlated equilibrium.



The No-swap-regret dynamics

• Using swap regret instead of external regret, we will get:

Algorithm 0.13: No-swap-regret dynamics(G ,T , ε)

Input : A normal-form game G = (P,A,C ) of n players, T ∈ N, and ε > 0.
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• No-swap-regret dynamics then converges to a correlated equilibrium.



The No-swap-regret dynamics

• Using swap regret instead of external regret, we will get:

Algorithm 0.14: No-swap-regret dynamics(G ,T , ε)

Input : A normal-form game G = (P,A,C ) of n players, T ∈ N, and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and t ∈ {1, . . . ,T}.
for every step t = 1, . . . ,T

do



Each player i ∈ P independently chooses a mixed strategy pti
using an algorithm with average swap regret at most ε, with
actions corresponding to pure strategies.
Each player i ∈ P receives a loss vector ℓti = (ℓti (ai ))ai∈Ai

, where
ℓti (ai )← Eat−i∼pt−i

[Ci (ai ; a
t
−i )] for the product distribution

pt−i =
∏

j ̸=i p
t
j .

Output {pt : t ∈ {1, . . . ,T}}.

• No-swap-regret dynamics then converges to a correlated equilibrium.



The No-swap-regret dynamics

• Using swap regret instead of external regret, we will get:

Algorithm 0.15: No-swap-regret dynamics(G ,T , ε)

Input : A normal-form game G = (P,A,C ) of n players, T ∈ N, and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and t ∈ {1, . . . ,T}.
for every step t = 1, . . . ,T

do



Each player i ∈ P independently chooses a mixed strategy pti
using an algorithm with average swap regret at most ε, with
actions corresponding to pure strategies.
Each player i ∈ P receives a loss vector ℓti = (ℓti (ai ))ai∈Ai

, where
ℓti (ai )← Eat−i∼pt−i

[Ci (ai ; a
t
−i )] for the product distribution

pt−i =
∏

j ̸=i p
t
j .

Output {pt : t ∈ {1, . . . ,T}}.

• No-swap-regret dynamics then converges to a correlated equilibrium.
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