
Algorithmic game theory

Martin Balko

7th lecture

November 15th 2024



Applications of

regret minimization



Our notation

• We have an agent A in an adversary environment.
• There are N available actions for A in the set X = {1, . . . ,N}.

• At each step t = 1, . . . ,T :
◦ Our agent A selects a probability distribution pt = (pt1, . . . , p

t
N)

over X , where pti is the probability that A selects i in step t.
◦ Then, the adversary chooses a loss vector ℓt = (ℓt1, . . . , ℓ

t
N), where

ℓti ∈ [−1, 1] is the loss of action i in step t.
◦ The agent A then experiences loss ℓtA =

∑N
i=1 p

t
i ℓ

t
i . This is the

expected loss of A in step t.

• After T steps, the cumulative loss of action i is LTi =
∑T

t=1 ℓ
t
i .

• The cumulative loss of A is LTA =
∑T

t=1 ℓ
t
A.

• Given a comparison class AX of agents Ai that select a single action i
in all steps, we let LTmin = mini∈X{LTAi

} be the minimum cumulative loss
of an agent from AX .
• Our goal is to minimize the external regret RT

A = LTA − LTmin.



Our notation

• We have an agent A in an adversary environment.

• There are N available actions for A in the set X = {1, . . . ,N}.

• At each step t = 1, . . . ,T :
◦ Our agent A selects a probability distribution pt = (pt1, . . . , p

t
N)

over X , where pti is the probability that A selects i in step t.
◦ Then, the adversary chooses a loss vector ℓt = (ℓt1, . . . , ℓ

t
N), where

ℓti ∈ [−1, 1] is the loss of action i in step t.
◦ The agent A then experiences loss ℓtA =

∑N
i=1 p

t
i ℓ

t
i . This is the

expected loss of A in step t.

• After T steps, the cumulative loss of action i is LTi =
∑T

t=1 ℓ
t
i .

• The cumulative loss of A is LTA =
∑T

t=1 ℓ
t
A.

• Given a comparison class AX of agents Ai that select a single action i
in all steps, we let LTmin = mini∈X{LTAi

} be the minimum cumulative loss
of an agent from AX .
• Our goal is to minimize the external regret RT

A = LTA − LTmin.



Our notation

• We have an agent A in an adversary environment.
• There are N available actions for A in the set X = {1, . . . ,N}.

• At each step t = 1, . . . ,T :
◦ Our agent A selects a probability distribution pt = (pt1, . . . , p

t
N)

over X , where pti is the probability that A selects i in step t.
◦ Then, the adversary chooses a loss vector ℓt = (ℓt1, . . . , ℓ

t
N), where

ℓti ∈ [−1, 1] is the loss of action i in step t.
◦ The agent A then experiences loss ℓtA =

∑N
i=1 p

t
i ℓ

t
i . This is the

expected loss of A in step t.

• After T steps, the cumulative loss of action i is LTi =
∑T

t=1 ℓ
t
i .

• The cumulative loss of A is LTA =
∑T

t=1 ℓ
t
A.

• Given a comparison class AX of agents Ai that select a single action i
in all steps, we let LTmin = mini∈X{LTAi

} be the minimum cumulative loss
of an agent from AX .
• Our goal is to minimize the external regret RT

A = LTA − LTmin.



Our notation

• We have an agent A in an adversary environment.
• There are N available actions for A in the set X = {1, . . . ,N}.

• At each step t = 1, . . . ,T :

◦ Our agent A selects a probability distribution pt = (pt1, . . . , p
t
N)

over X , where pti is the probability that A selects i in step t.
◦ Then, the adversary chooses a loss vector ℓt = (ℓt1, . . . , ℓ

t
N), where

ℓti ∈ [−1, 1] is the loss of action i in step t.
◦ The agent A then experiences loss ℓtA =

∑N
i=1 p

t
i ℓ

t
i . This is the

expected loss of A in step t.

• After T steps, the cumulative loss of action i is LTi =
∑T

t=1 ℓ
t
i .

• The cumulative loss of A is LTA =
∑T

t=1 ℓ
t
A.

• Given a comparison class AX of agents Ai that select a single action i
in all steps, we let LTmin = mini∈X{LTAi

} be the minimum cumulative loss
of an agent from AX .
• Our goal is to minimize the external regret RT

A = LTA − LTmin.



Our notation

• We have an agent A in an adversary environment.
• There are N available actions for A in the set X = {1, . . . ,N}.

• At each step t = 1, . . . ,T :
◦ Our agent A selects a probability distribution pt = (pt1, . . . , p

t
N)

over X ,

where pti is the probability that A selects i in step t.
◦ Then, the adversary chooses a loss vector ℓt = (ℓt1, . . . , ℓ

t
N), where

ℓti ∈ [−1, 1] is the loss of action i in step t.
◦ The agent A then experiences loss ℓtA =

∑N
i=1 p

t
i ℓ

t
i . This is the

expected loss of A in step t.

• After T steps, the cumulative loss of action i is LTi =
∑T

t=1 ℓ
t
i .

• The cumulative loss of A is LTA =
∑T

t=1 ℓ
t
A.

• Given a comparison class AX of agents Ai that select a single action i
in all steps, we let LTmin = mini∈X{LTAi

} be the minimum cumulative loss
of an agent from AX .
• Our goal is to minimize the external regret RT

A = LTA − LTmin.



Our notation

• We have an agent A in an adversary environment.
• There are N available actions for A in the set X = {1, . . . ,N}.

• At each step t = 1, . . . ,T :
◦ Our agent A selects a probability distribution pt = (pt1, . . . , p

t
N)

over X , where pti is the probability that A selects i in step t.

◦ Then, the adversary chooses a loss vector ℓt = (ℓt1, . . . , ℓ
t
N), where

ℓti ∈ [−1, 1] is the loss of action i in step t.
◦ The agent A then experiences loss ℓtA =

∑N
i=1 p

t
i ℓ

t
i . This is the

expected loss of A in step t.

• After T steps, the cumulative loss of action i is LTi =
∑T

t=1 ℓ
t
i .

• The cumulative loss of A is LTA =
∑T

t=1 ℓ
t
A.

• Given a comparison class AX of agents Ai that select a single action i
in all steps, we let LTmin = mini∈X{LTAi

} be the minimum cumulative loss
of an agent from AX .
• Our goal is to minimize the external regret RT

A = LTA − LTmin.



Our notation

• We have an agent A in an adversary environment.
• There are N available actions for A in the set X = {1, . . . ,N}.

• At each step t = 1, . . . ,T :
◦ Our agent A selects a probability distribution pt = (pt1, . . . , p

t
N)

over X , where pti is the probability that A selects i in step t.
◦ Then, the adversary chooses a loss vector ℓt = (ℓt1, . . . , ℓ

t
N),

where
ℓti ∈ [−1, 1] is the loss of action i in step t.
◦ The agent A then experiences loss ℓtA =

∑N
i=1 p

t
i ℓ

t
i . This is the

expected loss of A in step t.

• After T steps, the cumulative loss of action i is LTi =
∑T

t=1 ℓ
t
i .

• The cumulative loss of A is LTA =
∑T

t=1 ℓ
t
A.

• Given a comparison class AX of agents Ai that select a single action i
in all steps, we let LTmin = mini∈X{LTAi

} be the minimum cumulative loss
of an agent from AX .
• Our goal is to minimize the external regret RT

A = LTA − LTmin.



Our notation

• We have an agent A in an adversary environment.
• There are N available actions for A in the set X = {1, . . . ,N}.

• At each step t = 1, . . . ,T :
◦ Our agent A selects a probability distribution pt = (pt1, . . . , p

t
N)

over X , where pti is the probability that A selects i in step t.
◦ Then, the adversary chooses a loss vector ℓt = (ℓt1, . . . , ℓ

t
N), where

ℓti ∈ [−1, 1] is the loss of action i in step t.

◦ The agent A then experiences loss ℓtA =
∑N

i=1 p
t
i ℓ

t
i . This is the

expected loss of A in step t.

• After T steps, the cumulative loss of action i is LTi =
∑T

t=1 ℓ
t
i .

• The cumulative loss of A is LTA =
∑T

t=1 ℓ
t
A.

• Given a comparison class AX of agents Ai that select a single action i
in all steps, we let LTmin = mini∈X{LTAi

} be the minimum cumulative loss
of an agent from AX .
• Our goal is to minimize the external regret RT

A = LTA − LTmin.



Our notation

• We have an agent A in an adversary environment.
• There are N available actions for A in the set X = {1, . . . ,N}.

• At each step t = 1, . . . ,T :
◦ Our agent A selects a probability distribution pt = (pt1, . . . , p

t
N)

over X , where pti is the probability that A selects i in step t.
◦ Then, the adversary chooses a loss vector ℓt = (ℓt1, . . . , ℓ

t
N), where

ℓti ∈ [−1, 1] is the loss of action i in step t.
◦ The agent A then experiences loss ℓtA =

∑N
i=1 p

t
i ℓ

t
i .

This is the
expected loss of A in step t.

• After T steps, the cumulative loss of action i is LTi =
∑T

t=1 ℓ
t
i .

• The cumulative loss of A is LTA =
∑T

t=1 ℓ
t
A.

• Given a comparison class AX of agents Ai that select a single action i
in all steps, we let LTmin = mini∈X{LTAi

} be the minimum cumulative loss
of an agent from AX .
• Our goal is to minimize the external regret RT

A = LTA − LTmin.



Our notation

• We have an agent A in an adversary environment.
• There are N available actions for A in the set X = {1, . . . ,N}.

• At each step t = 1, . . . ,T :
◦ Our agent A selects a probability distribution pt = (pt1, . . . , p

t
N)

over X , where pti is the probability that A selects i in step t.
◦ Then, the adversary chooses a loss vector ℓt = (ℓt1, . . . , ℓ

t
N), where

ℓti ∈ [−1, 1] is the loss of action i in step t.
◦ The agent A then experiences loss ℓtA =

∑N
i=1 p

t
i ℓ

t
i . This is the

expected loss of A in step t.

• After T steps, the cumulative loss of action i is LTi =
∑T

t=1 ℓ
t
i .

• The cumulative loss of A is LTA =
∑T

t=1 ℓ
t
A.

• Given a comparison class AX of agents Ai that select a single action i
in all steps, we let LTmin = mini∈X{LTAi

} be the minimum cumulative loss
of an agent from AX .
• Our goal is to minimize the external regret RT

A = LTA − LTmin.



Our notation

• We have an agent A in an adversary environment.
• There are N available actions for A in the set X = {1, . . . ,N}.

• At each step t = 1, . . . ,T :
◦ Our agent A selects a probability distribution pt = (pt1, . . . , p

t
N)

over X , where pti is the probability that A selects i in step t.
◦ Then, the adversary chooses a loss vector ℓt = (ℓt1, . . . , ℓ

t
N), where

ℓti ∈ [−1, 1] is the loss of action i in step t.
◦ The agent A then experiences loss ℓtA =

∑N
i=1 p

t
i ℓ

t
i . This is the

expected loss of A in step t.

• After T steps, the cumulative loss of action i is LTi =
∑T

t=1 ℓ
t
i .

• The cumulative loss of A is LTA =
∑T

t=1 ℓ
t
A.

• Given a comparison class AX of agents Ai that select a single action i
in all steps, we let LTmin = mini∈X{LTAi

} be the minimum cumulative loss
of an agent from AX .
• Our goal is to minimize the external regret RT

A = LTA − LTmin.



Our notation

• We have an agent A in an adversary environment.
• There are N available actions for A in the set X = {1, . . . ,N}.

• At each step t = 1, . . . ,T :
◦ Our agent A selects a probability distribution pt = (pt1, . . . , p

t
N)

over X , where pti is the probability that A selects i in step t.
◦ Then, the adversary chooses a loss vector ℓt = (ℓt1, . . . , ℓ

t
N), where

ℓti ∈ [−1, 1] is the loss of action i in step t.
◦ The agent A then experiences loss ℓtA =

∑N
i=1 p

t
i ℓ

t
i . This is the

expected loss of A in step t.

• After T steps, the cumulative loss of action i is LTi =
∑T

t=1 ℓ
t
i .

• The cumulative loss of A is LTA =
∑T

t=1 ℓ
t
A.

• Given a comparison class AX of agents Ai that select a single action i
in all steps, we let LTmin = mini∈X{LTAi

} be the minimum cumulative loss
of an agent from AX .
• Our goal is to minimize the external regret RT

A = LTA − LTmin.



Our notation

• We have an agent A in an adversary environment.
• There are N available actions for A in the set X = {1, . . . ,N}.

• At each step t = 1, . . . ,T :
◦ Our agent A selects a probability distribution pt = (pt1, . . . , p

t
N)

over X , where pti is the probability that A selects i in step t.
◦ Then, the adversary chooses a loss vector ℓt = (ℓt1, . . . , ℓ

t
N), where

ℓti ∈ [−1, 1] is the loss of action i in step t.
◦ The agent A then experiences loss ℓtA =

∑N
i=1 p

t
i ℓ

t
i . This is the

expected loss of A in step t.

• After T steps, the cumulative loss of action i is LTi =
∑T

t=1 ℓ
t
i .

• The cumulative loss of A is LTA =
∑T

t=1 ℓ
t
A.

• Given a comparison class AX of agents Ai that select a single action i
in all steps, we let LTmin = mini∈X{LTAi

} be the minimum cumulative loss
of an agent from AX .

• Our goal is to minimize the external regret RT
A = LTA − LTmin.



Our notation

• We have an agent A in an adversary environment.
• There are N available actions for A in the set X = {1, . . . ,N}.

• At each step t = 1, . . . ,T :
◦ Our agent A selects a probability distribution pt = (pt1, . . . , p

t
N)

over X , where pti is the probability that A selects i in step t.
◦ Then, the adversary chooses a loss vector ℓt = (ℓt1, . . . , ℓ

t
N), where

ℓti ∈ [−1, 1] is the loss of action i in step t.
◦ The agent A then experiences loss ℓtA =

∑N
i=1 p

t
i ℓ

t
i . This is the

expected loss of A in step t.

• After T steps, the cumulative loss of action i is LTi =
∑T

t=1 ℓ
t
i .

• The cumulative loss of A is LTA =
∑T

t=1 ℓ
t
A.

• Given a comparison class AX of agents Ai that select a single action i
in all steps, we let LTmin = mini∈X{LTAi

} be the minimum cumulative loss
of an agent from AX .
• Our goal is to minimize the external regret RT

A = LTA − LTmin.



Example

Source: No regret algorithms in games (Georgios Piliouras)



Example

Source: No regret algorithms in games (Georgios Piliouras)



The Polynomial weights algorithm (PW algorithm)

Algorithm 0.1: Polynomial weights algorithm(X ,T , η)

Input : A set of actions X = {1, . . . ,N}, T ∈ N, and η ∈ (0, 1/2].
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
w 1
i ← 1 for every i ∈ X ,

p1 ← (1/N , . . . , 1/N),
for t = 2, . . . ,T

do

w t
i ← w t−1

i (1− ηℓt−1
i ),

W t ←
∑

i∈X w t
i ,

pti ← w t
i /W

t for every i ∈ X .
Output {pt : t ∈ {1, . . . ,T}}.

• For any sequence of loss vectors, we have RT
PW ≤ 2

√
T lnN .

• So the average regret 1
T
· RT

PW goes to 0 with T →∞.



The Polynomial weights algorithm (PW algorithm)

Algorithm 0.2: Polynomial weights algorithm(X ,T , η)

Input : A set of actions X = {1, . . . ,N}, T ∈ N, and η ∈ (0, 1/2].
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
w 1
i ← 1 for every i ∈ X ,

p1 ← (1/N , . . . , 1/N),
for t = 2, . . . ,T

do

w t
i ← w t−1

i (1− ηℓt−1
i ),

W t ←
∑

i∈X w t
i ,

pti ← w t
i /W

t for every i ∈ X .
Output {pt : t ∈ {1, . . . ,T}}.

• For any sequence of loss vectors, we have RT
PW ≤ 2

√
T lnN .

• So the average regret 1
T
· RT

PW goes to 0 with T →∞.



The Polynomial weights algorithm (PW algorithm)

Algorithm 0.3: Polynomial weights algorithm(X ,T , η)

Input : A set of actions X = {1, . . . ,N}, T ∈ N, and η ∈ (0, 1/2].
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
w 1
i ← 1 for every i ∈ X ,

p1 ← (1/N , . . . , 1/N),
for t = 2, . . . ,T

do

w t
i ← w t−1

i (1− ηℓt−1
i ),

W t ←
∑

i∈X w t
i ,

pti ← w t
i /W

t for every i ∈ X .
Output {pt : t ∈ {1, . . . ,T}}.

• For any sequence of loss vectors, we have RT
PW ≤ 2

√
T lnN .

• So the average regret 1
T
· RT

PW goes to 0 with T →∞.



The Polynomial weights algorithm (PW algorithm)

Algorithm 0.4: Polynomial weights algorithm(X ,T , η)

Input : A set of actions X = {1, . . . ,N}, T ∈ N, and η ∈ (0, 1/2].
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
w 1
i ← 1 for every i ∈ X ,

p1 ← (1/N , . . . , 1/N),
for t = 2, . . . ,T

do

w t
i ← w t−1

i (1− ηℓt−1
i ),

W t ←
∑

i∈X w t
i ,

pti ← w t
i /W

t for every i ∈ X .
Output {pt : t ∈ {1, . . . ,T}}.

• For any sequence of loss vectors, we have RT
PW ≤ 2

√
T lnN .

• So the average regret 1
T
· RT

PW goes to 0 with T →∞.



Applications of regret minimization

• Today, we will see how to apply regret minimization in the theory of
normal-form games.

• Let G = (P ,A,C ) be a normal-form game of n players with a cost
function C = (C1, . . . ,Cn), where Ci : A→ [−1, 1]. Cost = −utility.
• This will be done via the so-called No-regret dynamics:

◦ “Players play against each other by selecting actions according to
an algorithm with small external regret.”
◦ Each player i ∈ P chooses a mixed strategy pti = (pti (ai))ai∈Ai

using some algorithm with small external regret such that actions
correspond to pure strategies.
◦ Then, i receives a loss vector ℓti = (ℓti (ai))ai∈Ai

, where

ℓti (ai) = Eat−i∼pt−i
[Ci(ai ; a

t
−i)]

for the product distribution pt−i =
∏

j ̸=i p
t
j .

◦ That is, ℓti (ai) is the expected cost of the pure strategy ai given
the mixed strategies chosen by the other players.



Applications of regret minimization

• Today, we will see how to apply regret minimization in the theory of
normal-form games.

• Let G = (P ,A,C ) be a normal-form game of n players with a cost
function C = (C1, . . . ,Cn), where Ci : A→ [−1, 1]. Cost = −utility.
• This will be done via the so-called No-regret dynamics:

◦ “Players play against each other by selecting actions according to
an algorithm with small external regret.”
◦ Each player i ∈ P chooses a mixed strategy pti = (pti (ai))ai∈Ai

using some algorithm with small external regret such that actions
correspond to pure strategies.
◦ Then, i receives a loss vector ℓti = (ℓti (ai))ai∈Ai

, where

ℓti (ai) = Eat−i∼pt−i
[Ci(ai ; a

t
−i)]

for the product distribution pt−i =
∏

j ̸=i p
t
j .

◦ That is, ℓti (ai) is the expected cost of the pure strategy ai given
the mixed strategies chosen by the other players.



Applications of regret minimization

• Today, we will see how to apply regret minimization in the theory of
normal-form games.

• Let G = (P ,A,C ) be a normal-form game of n players with a cost
function C = (C1, . . . ,Cn), where Ci : A→ [−1, 1].

Cost = −utility.
• This will be done via the so-called No-regret dynamics:

◦ “Players play against each other by selecting actions according to
an algorithm with small external regret.”
◦ Each player i ∈ P chooses a mixed strategy pti = (pti (ai))ai∈Ai

using some algorithm with small external regret such that actions
correspond to pure strategies.
◦ Then, i receives a loss vector ℓti = (ℓti (ai))ai∈Ai

, where

ℓti (ai) = Eat−i∼pt−i
[Ci(ai ; a

t
−i)]

for the product distribution pt−i =
∏

j ̸=i p
t
j .

◦ That is, ℓti (ai) is the expected cost of the pure strategy ai given
the mixed strategies chosen by the other players.



Applications of regret minimization

• Today, we will see how to apply regret minimization in the theory of
normal-form games.

• Let G = (P ,A,C ) be a normal-form game of n players with a cost
function C = (C1, . . . ,Cn), where Ci : A→ [−1, 1]. Cost = −utility.

• This will be done via the so-called No-regret dynamics:

◦ “Players play against each other by selecting actions according to
an algorithm with small external regret.”
◦ Each player i ∈ P chooses a mixed strategy pti = (pti (ai))ai∈Ai

using some algorithm with small external regret such that actions
correspond to pure strategies.
◦ Then, i receives a loss vector ℓti = (ℓti (ai))ai∈Ai

, where

ℓti (ai) = Eat−i∼pt−i
[Ci(ai ; a

t
−i)]

for the product distribution pt−i =
∏

j ̸=i p
t
j .

◦ That is, ℓti (ai) is the expected cost of the pure strategy ai given
the mixed strategies chosen by the other players.



Applications of regret minimization

• Today, we will see how to apply regret minimization in the theory of
normal-form games.

• Let G = (P ,A,C ) be a normal-form game of n players with a cost
function C = (C1, . . . ,Cn), where Ci : A→ [−1, 1]. Cost = −utility.
• This will be done via the so-called No-regret dynamics:

◦ “Players play against each other by selecting actions according to
an algorithm with small external regret.”
◦ Each player i ∈ P chooses a mixed strategy pti = (pti (ai))ai∈Ai

using some algorithm with small external regret such that actions
correspond to pure strategies.
◦ Then, i receives a loss vector ℓti = (ℓti (ai))ai∈Ai

, where

ℓti (ai) = Eat−i∼pt−i
[Ci(ai ; a

t
−i)]

for the product distribution pt−i =
∏

j ̸=i p
t
j .

◦ That is, ℓti (ai) is the expected cost of the pure strategy ai given
the mixed strategies chosen by the other players.



Applications of regret minimization

• Today, we will see how to apply regret minimization in the theory of
normal-form games.

• Let G = (P ,A,C ) be a normal-form game of n players with a cost
function C = (C1, . . . ,Cn), where Ci : A→ [−1, 1]. Cost = −utility.
• This will be done via the so-called No-regret dynamics:

◦ “Players play against each other by selecting actions according to
an algorithm with small external regret.”

◦ Each player i ∈ P chooses a mixed strategy pti = (pti (ai))ai∈Ai

using some algorithm with small external regret such that actions
correspond to pure strategies.
◦ Then, i receives a loss vector ℓti = (ℓti (ai))ai∈Ai

, where

ℓti (ai) = Eat−i∼pt−i
[Ci(ai ; a

t
−i)]

for the product distribution pt−i =
∏

j ̸=i p
t
j .

◦ That is, ℓti (ai) is the expected cost of the pure strategy ai given
the mixed strategies chosen by the other players.



Applications of regret minimization

• Today, we will see how to apply regret minimization in the theory of
normal-form games.

• Let G = (P ,A,C ) be a normal-form game of n players with a cost
function C = (C1, . . . ,Cn), where Ci : A→ [−1, 1]. Cost = −utility.
• This will be done via the so-called No-regret dynamics:

◦ “Players play against each other by selecting actions according to
an algorithm with small external regret.”
◦ Each player i ∈ P chooses a mixed strategy pti = (pti (ai))ai∈Ai

using some algorithm with small external regret such that actions
correspond to pure strategies.

◦ Then, i receives a loss vector ℓti = (ℓti (ai))ai∈Ai
, where

ℓti (ai) = Eat−i∼pt−i
[Ci(ai ; a

t
−i)]

for the product distribution pt−i =
∏

j ̸=i p
t
j .

◦ That is, ℓti (ai) is the expected cost of the pure strategy ai given
the mixed strategies chosen by the other players.



Applications of regret minimization

• Today, we will see how to apply regret minimization in the theory of
normal-form games.

• Let G = (P ,A,C ) be a normal-form game of n players with a cost
function C = (C1, . . . ,Cn), where Ci : A→ [−1, 1]. Cost = −utility.
• This will be done via the so-called No-regret dynamics:

◦ “Players play against each other by selecting actions according to
an algorithm with small external regret.”
◦ Each player i ∈ P chooses a mixed strategy pti = (pti (ai))ai∈Ai

using some algorithm with small external regret such that actions
correspond to pure strategies.
◦ Then, i receives a loss vector ℓti = (ℓti (ai))ai∈Ai

, where

ℓti (ai) = Eat−i∼pt−i
[Ci(ai ; a

t
−i)]

for the product distribution pt−i =
∏

j ̸=i p
t
j .

◦ That is, ℓti (ai) is the expected cost of the pure strategy ai given
the mixed strategies chosen by the other players.



Applications of regret minimization

• Today, we will see how to apply regret minimization in the theory of
normal-form games.

• Let G = (P ,A,C ) be a normal-form game of n players with a cost
function C = (C1, . . . ,Cn), where Ci : A→ [−1, 1]. Cost = −utility.
• This will be done via the so-called No-regret dynamics:

◦ “Players play against each other by selecting actions according to
an algorithm with small external regret.”
◦ Each player i ∈ P chooses a mixed strategy pti = (pti (ai))ai∈Ai

using some algorithm with small external regret such that actions
correspond to pure strategies.
◦ Then, i receives a loss vector ℓti = (ℓti (ai))ai∈Ai

, where

ℓti (ai) = Eat−i∼pt−i
[Ci(ai ; a

t
−i)]

for the product distribution pt−i =
∏

j ̸=i p
t
j .

◦ That is, ℓti (ai) is the expected cost of the pure strategy ai given
the mixed strategies chosen by the other players.



The No-regret dynamics

• “Players play against each other by selecting actions according to an
algorithm with small external regret.”

Algorithm 0.5: No-regret dynamics(G ,T , ε)

Input : A normal-form game G = (P,A,C ) of n players, T ∈ N, and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and t ∈ {1, . . . ,T}.
for every step t = 1, . . . ,T

do



Each player i ∈ P independently chooses a mixed strategy pti
using an algorithm with average regret at most ε, with actions
corresponding to pure strategies.
Each player i ∈ P receives a loss vector ℓti = (ℓti (ai ))ai∈Ai

, where
ℓti (ai )← Eat−i∼pt−i

[Ci (ai ; a
t
−i )] for the product distribution

pt−i =
∏

j ̸=i p
t
j .

Output {pt : t ∈ {1, . . . ,T}}.



The No-regret dynamics

• “Players play against each other by selecting actions according to an
algorithm with small external regret.”

Algorithm 0.6: No-regret dynamics(G ,T , ε)

Input : A normal-form game G = (P,A,C ) of n players, T ∈ N, and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and t ∈ {1, . . . ,T}.
for every step t = 1, . . . ,T

do



Each player i ∈ P independently chooses a mixed strategy pti
using an algorithm with average regret at most ε, with actions
corresponding to pure strategies.
Each player i ∈ P receives a loss vector ℓti = (ℓti (ai ))ai∈Ai

, where
ℓti (ai )← Eat−i∼pt−i

[Ci (ai ; a
t
−i )] for the product distribution

pt−i =
∏

j ̸=i p
t
j .

Output {pt : t ∈ {1, . . . ,T}}.



The No-regret dynamics

• “Players play against each other by selecting actions according to an
algorithm with small external regret.”

Algorithm 0.7: No-regret dynamics(G ,T , ε)

Input : A normal-form game G = (P,A,C ) of n players, T ∈ N, and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and t ∈ {1, . . . ,T}.

for every step t = 1, . . . ,T

do



Each player i ∈ P independently chooses a mixed strategy pti
using an algorithm with average regret at most ε, with actions
corresponding to pure strategies.
Each player i ∈ P receives a loss vector ℓti = (ℓti (ai ))ai∈Ai

, where
ℓti (ai )← Eat−i∼pt−i

[Ci (ai ; a
t
−i )] for the product distribution

pt−i =
∏

j ̸=i p
t
j .

Output {pt : t ∈ {1, . . . ,T}}.



The No-regret dynamics

• “Players play against each other by selecting actions according to an
algorithm with small external regret.”

Algorithm 0.8: No-regret dynamics(G ,T , ε)

Input : A normal-form game G = (P,A,C ) of n players, T ∈ N, and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and t ∈ {1, . . . ,T}.
for every step t = 1, . . . ,T

do



Each player i ∈ P independently chooses a mixed strategy pti
using an algorithm with average regret at most ε, with actions
corresponding to pure strategies.
Each player i ∈ P receives a loss vector ℓti = (ℓti (ai ))ai∈Ai

, where
ℓti (ai )← Eat−i∼pt−i

[Ci (ai ; a
t
−i )] for the product distribution

pt−i =
∏

j ̸=i p
t
j .

Output {pt : t ∈ {1, . . . ,T}}.



The No-regret dynamics

• “Players play against each other by selecting actions according to an
algorithm with small external regret.”

Algorithm 0.9: No-regret dynamics(G ,T , ε)

Input : A normal-form game G = (P,A,C ) of n players, T ∈ N, and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and t ∈ {1, . . . ,T}.
for every step t = 1, . . . ,T

do



Each player i ∈ P independently chooses a mixed strategy pti
using an algorithm with average regret at most ε, with actions
corresponding to pure strategies.

Each player i ∈ P receives a loss vector ℓti = (ℓti (ai ))ai∈Ai
, where

ℓti (ai )← Eat−i∼pt−i
[Ci (ai ; a

t
−i )] for the product distribution

pt−i =
∏

j ̸=i p
t
j .

Output {pt : t ∈ {1, . . . ,T}}.



The No-regret dynamics

• “Players play against each other by selecting actions according to an
algorithm with small external regret.”

Algorithm 0.10: No-regret dynamics(G ,T , ε)

Input : A normal-form game G = (P,A,C ) of n players, T ∈ N, and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and t ∈ {1, . . . ,T}.
for every step t = 1, . . . ,T

do



Each player i ∈ P independently chooses a mixed strategy pti
using an algorithm with average regret at most ε, with actions
corresponding to pure strategies.
Each player i ∈ P receives a loss vector ℓti = (ℓti (ai ))ai∈Ai

, where
ℓti (ai )← Eat−i∼pt−i

[Ci (ai ; a
t
−i )] for the product distribution

pt−i =
∏

j ̸=i p
t
j .

Output {pt : t ∈ {1, . . . ,T}}.



The No-regret dynamics

• “Players play against each other by selecting actions according to an
algorithm with small external regret.”

Algorithm 0.11: No-regret dynamics(G ,T , ε)

Input : A normal-form game G = (P,A,C ) of n players, T ∈ N, and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and t ∈ {1, . . . ,T}.
for every step t = 1, . . . ,T

do



Each player i ∈ P independently chooses a mixed strategy pti
using an algorithm with average regret at most ε, with actions
corresponding to pure strategies.
Each player i ∈ P receives a loss vector ℓti = (ℓti (ai ))ai∈Ai

, where
ℓti (ai )← Eat−i∼pt−i

[Ci (ai ; a
t
−i )] for the product distribution

pt−i =
∏

j ̸=i p
t
j .

Output {pt : t ∈ {1, . . . ,T}}.



Application: Modern proof of the Minimax Theorem

• A new proof of the Minimax theorem.

• A zero-sum game G = ({1, 2},A,C ) with
A1 = {a1, . . . , am}, A2 = {b1, . . . , bn} is
represented with anm×n matrixM where
Mi ,j = −C1(ai , bj) = C2(ai , bj) ∈ [−1, 1].
• The expected cost C2(s) for player 2
equals x⊤My , where x and y are the
mixed strategy vectors.

• The Minimax theorem then states

max
x∈S1

min
y∈S2

x⊤My = min
y∈S2

max
x∈S1

x⊤My .

Source: https://www.privatdozent.co/

• We can prove it without LP!



Application: Modern proof of the Minimax Theorem

• A new proof of the Minimax theorem.

• A zero-sum game G = ({1, 2},A,C ) with
A1 = {a1, . . . , am}, A2 = {b1, . . . , bn} is
represented with anm×n matrixM where
Mi ,j = −C1(ai , bj) = C2(ai , bj) ∈ [−1, 1].
• The expected cost C2(s) for player 2
equals x⊤My , where x and y are the
mixed strategy vectors.

• The Minimax theorem then states

max
x∈S1

min
y∈S2

x⊤My = min
y∈S2

max
x∈S1

x⊤My .

Source: https://www.privatdozent.co/

• We can prove it without LP!



Application: Modern proof of the Minimax Theorem

• A new proof of the Minimax theorem.

• A zero-sum game G = ({1, 2},A,C ) with
A1 = {a1, . . . , am}, A2 = {b1, . . . , bn} is
represented with anm×n matrixM where
Mi ,j = −C1(ai , bj) = C2(ai , bj) ∈ [−1, 1].

• The expected cost C2(s) for player 2
equals x⊤My , where x and y are the
mixed strategy vectors.

• The Minimax theorem then states

max
x∈S1

min
y∈S2

x⊤My = min
y∈S2

max
x∈S1

x⊤My .

Source: https://www.privatdozent.co/

• We can prove it without LP!



Application: Modern proof of the Minimax Theorem

• A new proof of the Minimax theorem.

• A zero-sum game G = ({1, 2},A,C ) with
A1 = {a1, . . . , am}, A2 = {b1, . . . , bn} is
represented with anm×n matrixM where
Mi ,j = −C1(ai , bj) = C2(ai , bj) ∈ [−1, 1].
• The expected cost C2(s) for player 2
equals x⊤My , where x and y are the
mixed strategy vectors.

• The Minimax theorem then states

max
x∈S1

min
y∈S2

x⊤My = min
y∈S2

max
x∈S1

x⊤My .

Source: https://www.privatdozent.co/

• We can prove it without LP!



Application: Modern proof of the Minimax Theorem

• A new proof of the Minimax theorem.

• A zero-sum game G = ({1, 2},A,C ) with
A1 = {a1, . . . , am}, A2 = {b1, . . . , bn} is
represented with anm×n matrixM where
Mi ,j = −C1(ai , bj) = C2(ai , bj) ∈ [−1, 1].
• The expected cost C2(s) for player 2
equals x⊤My , where x and y are the
mixed strategy vectors.

• The Minimax theorem then states

max
x∈S1

min
y∈S2

x⊤My = min
y∈S2

max
x∈S1

x⊤My .

Source: https://www.privatdozent.co/

• We can prove it without LP!



Application: Modern proof of the Minimax Theorem

• A new proof of the Minimax theorem.

• A zero-sum game G = ({1, 2},A,C ) with
A1 = {a1, . . . , am}, A2 = {b1, . . . , bn} is
represented with anm×n matrixM where
Mi ,j = −C1(ai , bj) = C2(ai , bj) ∈ [−1, 1].
• The expected cost C2(s) for player 2
equals x⊤My , where x and y are the
mixed strategy vectors.

• The Minimax theorem then states

max
x∈S1

min
y∈S2

x⊤My = min
y∈S2

max
x∈S1

x⊤My .

Source: https://www.privatdozent.co/

• We can prove it without LP!



Modern proof of the Minimax Theorem I

• First, the inequality maxx miny x
⊤My ≤ miny maxx x

⊤My follows easily,
since it is only worse to go first.

• Second, we prove the inequality maxx miny x
⊤My ≥ miny maxx x

⊤My .

• We choose a parameter ε ∈ (0, 1] and run the No-regret dynamics for a
sufficient number T of steps so that both players have average
expected external regret at most ε.

• With the PW algorithm, we can set T = 4 ln (max{m, n})/ε2.
• Let p1, . . . , pT and q1, . . . , qT be strategies played by players 1 and 2.

• We let x = 1
T

∑T
t=1 p

t and y = 1
T

∑T
t=1 q

t be the time-averaged
strategies of players 1 and 2.

• The payoff vector revealed to each no-regret algorithm after step t is
the expected payoff of each strategy, given the mixed strategy played by
the other player.

• Thus, players 1 and 2 get the payoff vectors Mqt and −(pt)⊤M .

• The time-averaged expected payoff of 1 is then v = 1
T

∑T
t=1(p

t)⊤Mqt .



Modern proof of the Minimax Theorem I

• First, the inequality maxx miny x
⊤My ≤ miny maxx x

⊤My follows easily,

since it is only worse to go first.

• Second, we prove the inequality maxx miny x
⊤My ≥ miny maxx x

⊤My .

• We choose a parameter ε ∈ (0, 1] and run the No-regret dynamics for a
sufficient number T of steps so that both players have average
expected external regret at most ε.

• With the PW algorithm, we can set T = 4 ln (max{m, n})/ε2.
• Let p1, . . . , pT and q1, . . . , qT be strategies played by players 1 and 2.

• We let x = 1
T

∑T
t=1 p

t and y = 1
T

∑T
t=1 q

t be the time-averaged
strategies of players 1 and 2.

• The payoff vector revealed to each no-regret algorithm after step t is
the expected payoff of each strategy, given the mixed strategy played by
the other player.

• Thus, players 1 and 2 get the payoff vectors Mqt and −(pt)⊤M .

• The time-averaged expected payoff of 1 is then v = 1
T

∑T
t=1(p

t)⊤Mqt .



Modern proof of the Minimax Theorem I

• First, the inequality maxx miny x
⊤My ≤ miny maxx x

⊤My follows easily,
since it is only worse to go first.

• Second, we prove the inequality maxx miny x
⊤My ≥ miny maxx x

⊤My .

• We choose a parameter ε ∈ (0, 1] and run the No-regret dynamics for a
sufficient number T of steps so that both players have average
expected external regret at most ε.

• With the PW algorithm, we can set T = 4 ln (max{m, n})/ε2.
• Let p1, . . . , pT and q1, . . . , qT be strategies played by players 1 and 2.

• We let x = 1
T

∑T
t=1 p

t and y = 1
T

∑T
t=1 q

t be the time-averaged
strategies of players 1 and 2.

• The payoff vector revealed to each no-regret algorithm after step t is
the expected payoff of each strategy, given the mixed strategy played by
the other player.

• Thus, players 1 and 2 get the payoff vectors Mqt and −(pt)⊤M .

• The time-averaged expected payoff of 1 is then v = 1
T

∑T
t=1(p

t)⊤Mqt .



Modern proof of the Minimax Theorem I

• First, the inequality maxx miny x
⊤My ≤ miny maxx x

⊤My follows easily,
since it is only worse to go first.

• Second, we prove the inequality maxx miny x
⊤My ≥ miny maxx x

⊤My .

• We choose a parameter ε ∈ (0, 1] and run the No-regret dynamics for a
sufficient number T of steps so that both players have average
expected external regret at most ε.

• With the PW algorithm, we can set T = 4 ln (max{m, n})/ε2.
• Let p1, . . . , pT and q1, . . . , qT be strategies played by players 1 and 2.

• We let x = 1
T

∑T
t=1 p

t and y = 1
T

∑T
t=1 q

t be the time-averaged
strategies of players 1 and 2.

• The payoff vector revealed to each no-regret algorithm after step t is
the expected payoff of each strategy, given the mixed strategy played by
the other player.

• Thus, players 1 and 2 get the payoff vectors Mqt and −(pt)⊤M .

• The time-averaged expected payoff of 1 is then v = 1
T

∑T
t=1(p

t)⊤Mqt .



Modern proof of the Minimax Theorem I

• First, the inequality maxx miny x
⊤My ≤ miny maxx x

⊤My follows easily,
since it is only worse to go first.

• Second, we prove the inequality maxx miny x
⊤My ≥ miny maxx x

⊤My .

• We choose a parameter ε ∈ (0, 1] and run the No-regret dynamics for a
sufficient number T of steps so that both players have average
expected external regret at most ε.

• With the PW algorithm, we can set T = 4 ln (max{m, n})/ε2.
• Let p1, . . . , pT and q1, . . . , qT be strategies played by players 1 and 2.

• We let x = 1
T

∑T
t=1 p

t and y = 1
T

∑T
t=1 q

t be the time-averaged
strategies of players 1 and 2.

• The payoff vector revealed to each no-regret algorithm after step t is
the expected payoff of each strategy, given the mixed strategy played by
the other player.

• Thus, players 1 and 2 get the payoff vectors Mqt and −(pt)⊤M .

• The time-averaged expected payoff of 1 is then v = 1
T

∑T
t=1(p

t)⊤Mqt .



Modern proof of the Minimax Theorem I

• First, the inequality maxx miny x
⊤My ≤ miny maxx x

⊤My follows easily,
since it is only worse to go first.

• Second, we prove the inequality maxx miny x
⊤My ≥ miny maxx x

⊤My .

• We choose a parameter ε ∈ (0, 1] and run the No-regret dynamics for a
sufficient number T of steps so that both players have average
expected external regret at most ε.

• With the PW algorithm, we can set T = 4 ln (max{m, n})/ε2.

• Let p1, . . . , pT and q1, . . . , qT be strategies played by players 1 and 2.

• We let x = 1
T

∑T
t=1 p

t and y = 1
T

∑T
t=1 q

t be the time-averaged
strategies of players 1 and 2.

• The payoff vector revealed to each no-regret algorithm after step t is
the expected payoff of each strategy, given the mixed strategy played by
the other player.

• Thus, players 1 and 2 get the payoff vectors Mqt and −(pt)⊤M .

• The time-averaged expected payoff of 1 is then v = 1
T

∑T
t=1(p

t)⊤Mqt .



Modern proof of the Minimax Theorem I

• First, the inequality maxx miny x
⊤My ≤ miny maxx x

⊤My follows easily,
since it is only worse to go first.

• Second, we prove the inequality maxx miny x
⊤My ≥ miny maxx x

⊤My .

• We choose a parameter ε ∈ (0, 1] and run the No-regret dynamics for a
sufficient number T of steps so that both players have average
expected external regret at most ε.

• With the PW algorithm, we can set T = 4 ln (max{m, n})/ε2.
• Let p1, . . . , pT and q1, . . . , qT be strategies played by players 1 and 2.

• We let x = 1
T

∑T
t=1 p

t and y = 1
T

∑T
t=1 q

t be the time-averaged
strategies of players 1 and 2.

• The payoff vector revealed to each no-regret algorithm after step t is
the expected payoff of each strategy, given the mixed strategy played by
the other player.

• Thus, players 1 and 2 get the payoff vectors Mqt and −(pt)⊤M .

• The time-averaged expected payoff of 1 is then v = 1
T

∑T
t=1(p

t)⊤Mqt .



Modern proof of the Minimax Theorem I

• First, the inequality maxx miny x
⊤My ≤ miny maxx x

⊤My follows easily,
since it is only worse to go first.

• Second, we prove the inequality maxx miny x
⊤My ≥ miny maxx x

⊤My .

• We choose a parameter ε ∈ (0, 1] and run the No-regret dynamics for a
sufficient number T of steps so that both players have average
expected external regret at most ε.

• With the PW algorithm, we can set T = 4 ln (max{m, n})/ε2.
• Let p1, . . . , pT and q1, . . . , qT be strategies played by players 1 and 2.

• We let x = 1
T

∑T
t=1 p

t and y = 1
T

∑T
t=1 q

t be the time-averaged
strategies of players 1 and 2.

• The payoff vector revealed to each no-regret algorithm after step t is
the expected payoff of each strategy, given the mixed strategy played by
the other player.

• Thus, players 1 and 2 get the payoff vectors Mqt and −(pt)⊤M .

• The time-averaged expected payoff of 1 is then v = 1
T

∑T
t=1(p

t)⊤Mqt .



Modern proof of the Minimax Theorem I

• First, the inequality maxx miny x
⊤My ≤ miny maxx x

⊤My follows easily,
since it is only worse to go first.

• Second, we prove the inequality maxx miny x
⊤My ≥ miny maxx x

⊤My .

• We choose a parameter ε ∈ (0, 1] and run the No-regret dynamics for a
sufficient number T of steps so that both players have average
expected external regret at most ε.

• With the PW algorithm, we can set T = 4 ln (max{m, n})/ε2.
• Let p1, . . . , pT and q1, . . . , qT be strategies played by players 1 and 2.

• We let x = 1
T

∑T
t=1 p

t and y = 1
T

∑T
t=1 q

t be the time-averaged
strategies of players 1 and 2.

• The payoff vector revealed to each no-regret algorithm after step t is
the expected payoff of each strategy, given the mixed strategy played by
the other player.

• Thus, players 1 and 2 get the payoff vectors Mqt and −(pt)⊤M .

• The time-averaged expected payoff of 1 is then v = 1
T

∑T
t=1(p

t)⊤Mqt .



Modern proof of the Minimax Theorem I

• First, the inequality maxx miny x
⊤My ≤ miny maxx x

⊤My follows easily,
since it is only worse to go first.

• Second, we prove the inequality maxx miny x
⊤My ≥ miny maxx x

⊤My .

• We choose a parameter ε ∈ (0, 1] and run the No-regret dynamics for a
sufficient number T of steps so that both players have average
expected external regret at most ε.

• With the PW algorithm, we can set T = 4 ln (max{m, n})/ε2.
• Let p1, . . . , pT and q1, . . . , qT be strategies played by players 1 and 2.

• We let x = 1
T

∑T
t=1 p

t and y = 1
T

∑T
t=1 q

t be the time-averaged
strategies of players 1 and 2.

• The payoff vector revealed to each no-regret algorithm after step t is
the expected payoff of each strategy, given the mixed strategy played by
the other player.

• Thus, players 1 and 2 get the payoff vectors Mqt and −(pt)⊤M .

• The time-averaged expected payoff of 1 is then v = 1
T

∑T
t=1(p

t)⊤Mqt .



Modern proof of the Minimax Theorem I

• First, the inequality maxx miny x
⊤My ≤ miny maxx x

⊤My follows easily,
since it is only worse to go first.

• Second, we prove the inequality maxx miny x
⊤My ≥ miny maxx x

⊤My .

• We choose a parameter ε ∈ (0, 1] and run the No-regret dynamics for a
sufficient number T of steps so that both players have average
expected external regret at most ε.

• With the PW algorithm, we can set T = 4 ln (max{m, n})/ε2.
• Let p1, . . . , pT and q1, . . . , qT be strategies played by players 1 and 2.

• We let x = 1
T

∑T
t=1 p

t and y = 1
T

∑T
t=1 q

t be the time-averaged
strategies of players 1 and 2.

• The payoff vector revealed to each no-regret algorithm after step t is
the expected payoff of each strategy, given the mixed strategy played by
the other player.

• Thus, players 1 and 2 get the payoff vectors Mqt and −(pt)⊤M .

• The time-averaged expected payoff of 1 is then v = 1
T

∑T
t=1(p

t)⊤Mqt .



Modern proof of the Minimax Theorem II

• For i = 1, . . . ,m, let ei = (0, . . . , 0, 1, 0 . . . , 0) be the mixed strategy
vector for the pure strategy ai . Since the external regret of player 1 is
at most ε, we have

e⊤i My =
1

T

T∑
t=1

e⊤i Mqt ≤ 1

T

T∑
t=1

(pt)⊤Mqt + ε = v + ε.

• Since every strategy x ∈ S1 is a convex combination of the vectors ei ,
the linearity of expectation gives x⊤My ≤ v + ε. Analogously,
(x)⊤My ≥ v − ε for every y ∈ S2.

• Putting everything together, we get

max
x∈S1

min
y∈S2

x⊤My ≥ min
y∈S2

(x)⊤My ≥ v − ε

≥ max
x∈S1

x⊤My − 2ε ≥ min
y∈S2

max
x∈S1

x⊤My − 2ε.

• For T →∞, we get ε→ 0 and we obtain the desired inequality.



Modern proof of the Minimax Theorem II

• For i = 1, . . . ,m, let ei = (0, . . . , 0, 1, 0 . . . , 0) be the mixed strategy
vector for the pure strategy ai .

Since the external regret of player 1 is
at most ε, we have

e⊤i My =
1

T

T∑
t=1

e⊤i Mqt ≤ 1

T

T∑
t=1

(pt)⊤Mqt + ε = v + ε.

• Since every strategy x ∈ S1 is a convex combination of the vectors ei ,
the linearity of expectation gives x⊤My ≤ v + ε. Analogously,
(x)⊤My ≥ v − ε for every y ∈ S2.

• Putting everything together, we get

max
x∈S1

min
y∈S2

x⊤My ≥ min
y∈S2

(x)⊤My ≥ v − ε

≥ max
x∈S1

x⊤My − 2ε ≥ min
y∈S2

max
x∈S1

x⊤My − 2ε.

• For T →∞, we get ε→ 0 and we obtain the desired inequality.



Modern proof of the Minimax Theorem II

• For i = 1, . . . ,m, let ei = (0, . . . , 0, 1, 0 . . . , 0) be the mixed strategy
vector for the pure strategy ai . Since the external regret of player 1 is
at most ε, we have

e⊤i My

=
1

T

T∑
t=1

e⊤i Mqt ≤ 1

T

T∑
t=1

(pt)⊤Mqt + ε = v + ε.

• Since every strategy x ∈ S1 is a convex combination of the vectors ei ,
the linearity of expectation gives x⊤My ≤ v + ε. Analogously,
(x)⊤My ≥ v − ε for every y ∈ S2.

• Putting everything together, we get

max
x∈S1

min
y∈S2

x⊤My ≥ min
y∈S2

(x)⊤My ≥ v − ε

≥ max
x∈S1

x⊤My − 2ε ≥ min
y∈S2

max
x∈S1

x⊤My − 2ε.

• For T →∞, we get ε→ 0 and we obtain the desired inequality.



Modern proof of the Minimax Theorem II

• For i = 1, . . . ,m, let ei = (0, . . . , 0, 1, 0 . . . , 0) be the mixed strategy
vector for the pure strategy ai . Since the external regret of player 1 is
at most ε, we have

e⊤i My =
1

T

T∑
t=1

e⊤i Mqt

≤ 1

T

T∑
t=1

(pt)⊤Mqt + ε = v + ε.

• Since every strategy x ∈ S1 is a convex combination of the vectors ei ,
the linearity of expectation gives x⊤My ≤ v + ε. Analogously,
(x)⊤My ≥ v − ε for every y ∈ S2.

• Putting everything together, we get

max
x∈S1

min
y∈S2

x⊤My ≥ min
y∈S2

(x)⊤My ≥ v − ε

≥ max
x∈S1

x⊤My − 2ε ≥ min
y∈S2

max
x∈S1

x⊤My − 2ε.

• For T →∞, we get ε→ 0 and we obtain the desired inequality.



Modern proof of the Minimax Theorem II

• For i = 1, . . . ,m, let ei = (0, . . . , 0, 1, 0 . . . , 0) be the mixed strategy
vector for the pure strategy ai . Since the external regret of player 1 is
at most ε, we have

e⊤i My =
1

T

T∑
t=1

e⊤i Mqt ≤ 1

T

T∑
t=1

(pt)⊤Mqt + ε

= v + ε.

• Since every strategy x ∈ S1 is a convex combination of the vectors ei ,
the linearity of expectation gives x⊤My ≤ v + ε. Analogously,
(x)⊤My ≥ v − ε for every y ∈ S2.

• Putting everything together, we get

max
x∈S1

min
y∈S2

x⊤My ≥ min
y∈S2

(x)⊤My ≥ v − ε

≥ max
x∈S1

x⊤My − 2ε ≥ min
y∈S2

max
x∈S1

x⊤My − 2ε.

• For T →∞, we get ε→ 0 and we obtain the desired inequality.



Modern proof of the Minimax Theorem II

• For i = 1, . . . ,m, let ei = (0, . . . , 0, 1, 0 . . . , 0) be the mixed strategy
vector for the pure strategy ai . Since the external regret of player 1 is
at most ε, we have

e⊤i My =
1

T

T∑
t=1

e⊤i Mqt ≤ 1

T

T∑
t=1

(pt)⊤Mqt + ε = v + ε.

• Since every strategy x ∈ S1 is a convex combination of the vectors ei ,
the linearity of expectation gives x⊤My ≤ v + ε. Analogously,
(x)⊤My ≥ v − ε for every y ∈ S2.

• Putting everything together, we get

max
x∈S1

min
y∈S2

x⊤My ≥ min
y∈S2

(x)⊤My ≥ v − ε

≥ max
x∈S1

x⊤My − 2ε ≥ min
y∈S2

max
x∈S1

x⊤My − 2ε.

• For T →∞, we get ε→ 0 and we obtain the desired inequality.



Modern proof of the Minimax Theorem II

• For i = 1, . . . ,m, let ei = (0, . . . , 0, 1, 0 . . . , 0) be the mixed strategy
vector for the pure strategy ai . Since the external regret of player 1 is
at most ε, we have

e⊤i My =
1

T

T∑
t=1

e⊤i Mqt ≤ 1

T

T∑
t=1

(pt)⊤Mqt + ε = v + ε.

• Since every strategy x ∈ S1 is a convex combination of the vectors ei ,
the linearity of expectation gives x⊤My ≤ v + ε.

Analogously,
(x)⊤My ≥ v − ε for every y ∈ S2.

• Putting everything together, we get

max
x∈S1

min
y∈S2

x⊤My ≥ min
y∈S2

(x)⊤My ≥ v − ε

≥ max
x∈S1

x⊤My − 2ε ≥ min
y∈S2

max
x∈S1

x⊤My − 2ε.

• For T →∞, we get ε→ 0 and we obtain the desired inequality.



Modern proof of the Minimax Theorem II

• For i = 1, . . . ,m, let ei = (0, . . . , 0, 1, 0 . . . , 0) be the mixed strategy
vector for the pure strategy ai . Since the external regret of player 1 is
at most ε, we have

e⊤i My =
1

T

T∑
t=1

e⊤i Mqt ≤ 1

T

T∑
t=1

(pt)⊤Mqt + ε = v + ε.

• Since every strategy x ∈ S1 is a convex combination of the vectors ei ,
the linearity of expectation gives x⊤My ≤ v + ε. Analogously,
(x)⊤My ≥ v − ε for every y ∈ S2.

• Putting everything together, we get

max
x∈S1

min
y∈S2

x⊤My ≥ min
y∈S2

(x)⊤My ≥ v − ε

≥ max
x∈S1

x⊤My − 2ε ≥ min
y∈S2

max
x∈S1

x⊤My − 2ε.

• For T →∞, we get ε→ 0 and we obtain the desired inequality.



Modern proof of the Minimax Theorem II

• For i = 1, . . . ,m, let ei = (0, . . . , 0, 1, 0 . . . , 0) be the mixed strategy
vector for the pure strategy ai . Since the external regret of player 1 is
at most ε, we have

e⊤i My =
1

T

T∑
t=1

e⊤i Mqt ≤ 1

T

T∑
t=1

(pt)⊤Mqt + ε = v + ε.

• Since every strategy x ∈ S1 is a convex combination of the vectors ei ,
the linearity of expectation gives x⊤My ≤ v + ε. Analogously,
(x)⊤My ≥ v − ε for every y ∈ S2.

• Putting everything together, we get

max
x∈S1

min
y∈S2

x⊤My ≥ min
y∈S2

(x)⊤My ≥ v − ε

≥ max
x∈S1

x⊤My − 2ε ≥ min
y∈S2

max
x∈S1

x⊤My − 2ε.

• For T →∞, we get ε→ 0 and we obtain the desired inequality.



Modern proof of the Minimax Theorem II

• For i = 1, . . . ,m, let ei = (0, . . . , 0, 1, 0 . . . , 0) be the mixed strategy
vector for the pure strategy ai . Since the external regret of player 1 is
at most ε, we have

e⊤i My =
1

T

T∑
t=1

e⊤i Mqt ≤ 1

T

T∑
t=1

(pt)⊤Mqt + ε = v + ε.

• Since every strategy x ∈ S1 is a convex combination of the vectors ei ,
the linearity of expectation gives x⊤My ≤ v + ε. Analogously,
(x)⊤My ≥ v − ε for every y ∈ S2.

• Putting everything together, we get

max
x∈S1

min
y∈S2

x⊤My ≥ min
y∈S2

(x)⊤My ≥ v − ε

≥ max
x∈S1

x⊤My − 2ε ≥ min
y∈S2

max
x∈S1

x⊤My − 2ε.

• For T →∞, we get ε→ 0 and we obtain the desired inequality.



Modern proof of the Minimax Theorem II

• For i = 1, . . . ,m, let ei = (0, . . . , 0, 1, 0 . . . , 0) be the mixed strategy
vector for the pure strategy ai . Since the external regret of player 1 is
at most ε, we have

e⊤i My =
1

T

T∑
t=1

e⊤i Mqt ≤ 1

T

T∑
t=1

(pt)⊤Mqt + ε = v + ε.

• Since every strategy x ∈ S1 is a convex combination of the vectors ei ,
the linearity of expectation gives x⊤My ≤ v + ε. Analogously,
(x)⊤My ≥ v − ε for every y ∈ S2.

• Putting everything together, we get

max
x∈S1

min
y∈S2

x⊤My ≥ min
y∈S2

(x)⊤My ≥ v − ε

≥ max
x∈S1

x⊤My − 2ε ≥ min
y∈S2

max
x∈S1

x⊤My − 2ε.

• For T →∞, we get ε→ 0 and we obtain the desired inequality.



Modern proof of the Minimax Theorem II

• For i = 1, . . . ,m, let ei = (0, . . . , 0, 1, 0 . . . , 0) be the mixed strategy
vector for the pure strategy ai . Since the external regret of player 1 is
at most ε, we have

e⊤i My =
1

T

T∑
t=1

e⊤i Mqt ≤ 1

T

T∑
t=1

(pt)⊤Mqt + ε = v + ε.

• Since every strategy x ∈ S1 is a convex combination of the vectors ei ,
the linearity of expectation gives x⊤My ≤ v + ε. Analogously,
(x)⊤My ≥ v − ε for every y ∈ S2.

• Putting everything together, we get

max
x∈S1

min
y∈S2

x⊤My ≥ min
y∈S2

(x)⊤My ≥ v − ε

≥ max
x∈S1

x⊤My − 2ε ≥ min
y∈S2

max
x∈S1

x⊤My − 2ε.

• For T →∞, we get ε→ 0 and we obtain the desired inequality.



Application: Coarse correlated equilibria

• Recall: a prob. distribution p on A is a correlated equilibrium (CE) if∑
a−i∈A−i

Ci(ai ; a−i)p(ai ; a−i) ≤
∑

a−i∈A−i

Ci(a
′
i ; a−i)p(ai ; a−i)

for every player i ∈ P and all pure strategies ai , a
′
i ∈ Ai .

• In other words,

Ea∼p[Ci(a) | ai ] ≤ Ea∼p[Ci(a
′
i ; a−i) | ai ].

• We define an even more tractable concept
and use no-regret dynamics to converge
to it.



Application: Coarse correlated equilibria

• Recall: a prob. distribution p on A is a correlated equilibrium (CE) if∑
a−i∈A−i

Ci(ai ; a−i)p(ai ; a−i) ≤
∑

a−i∈A−i

Ci(a
′
i ; a−i)p(ai ; a−i)

for every player i ∈ P and all pure strategies ai , a
′
i ∈ Ai .

• In other words,

Ea∼p[Ci(a) | ai ] ≤ Ea∼p[Ci(a
′
i ; a−i) | ai ].

• We define an even more tractable concept
and use no-regret dynamics to converge
to it.



Application: Coarse correlated equilibria

• Recall: a prob. distribution p on A is a correlated equilibrium (CE) if∑
a−i∈A−i

Ci(ai ; a−i)p(ai ; a−i) ≤
∑

a−i∈A−i

Ci(a
′
i ; a−i)p(ai ; a−i)

for every player i ∈ P and all pure strategies ai , a
′
i ∈ Ai .

• In other words,

Ea∼p[Ci(a) | ai ] ≤ Ea∼p[Ci(a
′
i ; a−i) | ai ].

• We define an even more tractable concept
and use no-regret dynamics to converge
to it.



Application: Coarse correlated equilibria

• Recall: a prob. distribution p on A is a correlated equilibrium (CE) if∑
a−i∈A−i

Ci(ai ; a−i)p(ai ; a−i) ≤
∑

a−i∈A−i

Ci(a
′
i ; a−i)p(ai ; a−i)

for every player i ∈ P and all pure strategies ai , a
′
i ∈ Ai .

• In other words,

Ea∼p[Ci(a) | ai ] ≤ Ea∼p[Ci(a
′
i ; a−i) | ai ].

• We define an even more tractable concept
and use no-regret dynamics to converge
to it.



Coarse correlated equilibrium

• For a normal-form game G = (P ,A,C ) of n players, a probability
distribution p on A is a coarse correlated equilibrium (CCE) in G if∑

a∈A

Ci(a)p(a) ≤
∑
a∈A

Ci(a
′
i ; a−i)p(a)

for every player i ∈ P and every a′i ∈ Ai .

• CCE can be expressed as

Ea∼p[Ci(a)] ≤ Ea∼p[Ci(a
′
i ; a−i)]

for every i ∈ P and each a′i ∈ Ai .

• The difference between CCE and CE is that CCE only requires that
following your suggested action ai when a is drawn from p is only a
best response in expectation before you see ai . This makes sense if you
have to commit to following your suggested action or not upfront, and
do not have the opportunity to deviate after seeing it.



Coarse correlated equilibrium

• For a normal-form game G = (P ,A,C ) of n players, a probability
distribution p on A is a coarse correlated equilibrium (CCE) in G if

∑
a∈A

Ci(a)p(a) ≤
∑
a∈A

Ci(a
′
i ; a−i)p(a)

for every player i ∈ P and every a′i ∈ Ai .

• CCE can be expressed as

Ea∼p[Ci(a)] ≤ Ea∼p[Ci(a
′
i ; a−i)]

for every i ∈ P and each a′i ∈ Ai .

• The difference between CCE and CE is that CCE only requires that
following your suggested action ai when a is drawn from p is only a
best response in expectation before you see ai . This makes sense if you
have to commit to following your suggested action or not upfront, and
do not have the opportunity to deviate after seeing it.



Coarse correlated equilibrium

• For a normal-form game G = (P ,A,C ) of n players, a probability
distribution p on A is a coarse correlated equilibrium (CCE) in G if∑

a∈A

Ci(a)p(a) ≤
∑
a∈A

Ci(a
′
i ; a−i)p(a)

for every player i ∈ P and every a′i ∈ Ai .

• CCE can be expressed as

Ea∼p[Ci(a)] ≤ Ea∼p[Ci(a
′
i ; a−i)]

for every i ∈ P and each a′i ∈ Ai .

• The difference between CCE and CE is that CCE only requires that
following your suggested action ai when a is drawn from p is only a
best response in expectation before you see ai . This makes sense if you
have to commit to following your suggested action or not upfront, and
do not have the opportunity to deviate after seeing it.



Coarse correlated equilibrium

• For a normal-form game G = (P ,A,C ) of n players, a probability
distribution p on A is a coarse correlated equilibrium (CCE) in G if∑

a∈A

Ci(a)p(a) ≤
∑
a∈A

Ci(a
′
i ; a−i)p(a)

for every player i ∈ P and every a′i ∈ Ai .

• CCE can be expressed as

Ea∼p[Ci(a)] ≤ Ea∼p[Ci(a
′
i ; a−i)]

for every i ∈ P and each a′i ∈ Ai .

• The difference between CCE and CE is that CCE only requires that
following your suggested action ai when a is drawn from p is only a
best response in expectation before you see ai . This makes sense if you
have to commit to following your suggested action or not upfront, and
do not have the opportunity to deviate after seeing it.



Coarse correlated equilibrium

• For a normal-form game G = (P ,A,C ) of n players, a probability
distribution p on A is a coarse correlated equilibrium (CCE) in G if∑

a∈A

Ci(a)p(a) ≤
∑
a∈A

Ci(a
′
i ; a−i)p(a)

for every player i ∈ P and every a′i ∈ Ai .

• CCE can be expressed as

Ea∼p[Ci(a)] ≤ Ea∼p[Ci(a
′
i ; a−i)]

for every i ∈ P and each a′i ∈ Ai .

• The difference between CCE and CE is that CCE only requires that
following your suggested action ai when a is drawn from p is only a
best response in expectation before you see ai .

This makes sense if you
have to commit to following your suggested action or not upfront, and
do not have the opportunity to deviate after seeing it.



Coarse correlated equilibrium

• For a normal-form game G = (P ,A,C ) of n players, a probability
distribution p on A is a coarse correlated equilibrium (CCE) in G if∑

a∈A

Ci(a)p(a) ≤
∑
a∈A

Ci(a
′
i ; a−i)p(a)

for every player i ∈ P and every a′i ∈ Ai .

• CCE can be expressed as

Ea∼p[Ci(a)] ≤ Ea∼p[Ci(a
′
i ; a−i)]

for every i ∈ P and each a′i ∈ Ai .

• The difference between CCE and CE is that CCE only requires that
following your suggested action ai when a is drawn from p is only a
best response in expectation before you see ai . This makes sense if you
have to commit to following your suggested action or not upfront, and
do not have the opportunity to deviate after seeing it.



Example: Coarse correlated equilibrium

• Giving probability 1/6 to each red outcome gives coarse correlated
equilibrium in the Rock-Paper-Scissors game.

Rock Paper Scissors

Rock (0,0) (-1,1) (1,-1)

Paper (1,-1) (0,0) (-1,1)

Scissors (-1,1) (1,-1) (0,0)

• Then, the expected payoff of each player is 0 and deviating to any pure
strategy gives the expected payoff 0.

• It is not a correlated equilibrium though.



Example: Coarse correlated equilibrium

• Giving probability 1/6 to each red outcome gives coarse correlated
equilibrium in the Rock-Paper-Scissors game.

Rock Paper Scissors

Rock (0,0) (-1,1) (1,-1)

Paper (1,-1) (0,0) (-1,1)

Scissors (-1,1) (1,-1) (0,0)

• Then, the expected payoff of each player is 0 and deviating to any pure
strategy gives the expected payoff 0.

• It is not a correlated equilibrium though.



Example: Coarse correlated equilibrium

• Giving probability 1/6 to each red outcome gives coarse correlated
equilibrium in the Rock-Paper-Scissors game.

Rock Paper Scissors

Rock (0,0) (-1,1) (1,-1)

Paper (1,-1) (0,0) (-1,1)

Scissors (-1,1) (1,-1) (0,0)

• Then, the expected payoff of each player is 0 and deviating to any pure
strategy gives the expected payoff 0.

• It is not a correlated equilibrium though.



Example: Coarse correlated equilibrium

• Giving probability 1/6 to each red outcome gives coarse correlated
equilibrium in the Rock-Paper-Scissors game.

Rock Paper Scissors

Rock (0,0) (-1,1) (1,-1)

Paper (1,-1) (0,0) (-1,1)

Scissors (-1,1) (1,-1) (0,0)

• Then, the expected payoff of each player is 0 and deviating to any pure
strategy gives the expected payoff 0.

• It is not a correlated equilibrium though.



Hierarchy of Nash equilibria

Pure Nash equilibria,

PNE
not always exist

In general normal-form game, no-regret dynamics converges to a coarse
correlated equilibrium.

For ε > 0, a probability distribution p on A is an ε-coarse correlated
equilibrium (ε-CCE) if Ea∼p[Ci(a)] ≤ Ea∼p[Ci(a

′
i ; a−i)] + ε.



Hierarchy of Nash equilibria

Pure Nash equilibria,

PNE
not always exist

In general normal-form game, no-regret dynamics converges to a coarse
correlated equilibrium.

For ε > 0, a probability distribution p on A is an ε-coarse correlated
equilibrium (ε-CCE) if Ea∼p[Ci(a)] ≤ Ea∼p[Ci(a

′
i ; a−i)] + ε.



Hierarchy of Nash equilibria

Mixed Nash equilibria,

Pure Nash equilibria,

MNE

PNE
not always exist

always exist, hard to compute

In general normal-form game, no-regret dynamics converges to a coarse
correlated equilibrium.

For ε > 0, a probability distribution p on A is an ε-coarse correlated
equilibrium (ε-CCE) if Ea∼p[Ci(a)] ≤ Ea∼p[Ci(a

′
i ; a−i)] + ε.



Hierarchy of Nash equilibria

Correlated equilibria,

Mixed Nash equilibria,

Pure Nash equilibria,

CE

MNE

PNE
not always exist

always exist, hard to compute

easy to compute

In general normal-form game, no-regret dynamics converges to a coarse
correlated equilibrium.

For ε > 0, a probability distribution p on A is an ε-coarse correlated
equilibrium (ε-CCE) if Ea∼p[Ci(a)] ≤ Ea∼p[Ci(a

′
i ; a−i)] + ε.



Hierarchy of Nash equilibria

Coarse correlated equilibria,

Correlated equilibria,

Mixed Nash equilibria,

Pure Nash equilibria,

CCE

CE

MNE

PNE
not always exist

always exist, hard to compute

easy to compute

even easier to compute

• In general normal-form game, no-regret dynamics converges to a coarse
correlated equilibrium.

• For ε > 0, a probability distribution p on A is an ε-coarse correlated
equilibrium (ε-CCE) if Ea∼p[Ci(a)] ≤ Ea∼p[Ci(a

′
i ; a−i)] + ε.



Hierarchy of Nash equilibria

Coarse correlated equilibria,

Correlated equilibria,

Mixed Nash equilibria,

Pure Nash equilibria,

CCE

CE

MNE

PNE
not always exist

always exist, hard to compute

easy to compute

even easier to compute

• In general normal-form game, no-regret dynamics converges to a coarse
correlated equilibrium.

• For ε > 0, a probability distribution p on A is an ε-coarse correlated
equilibrium (ε-CCE) if Ea∼p[Ci(a)] ≤ Ea∼p[Ci(a

′
i ; a−i)] + ε.



Hierarchy of Nash equilibria

Coarse correlated equilibria,

Correlated equilibria,

Mixed Nash equilibria,

Pure Nash equilibria,

CCE

CE

MNE

PNE
not always exist

always exist, hard to compute

easy to compute

even easier to compute

• In general normal-form game, no-regret dynamics converges to a coarse
correlated equilibrium.

• For ε > 0, a probability distribution p on A is an ε-coarse correlated
equilibrium (ε-CCE) if Ea∼p[Ci(a)] ≤ Ea∼p[Ci(a

′
i ; a−i)] + ε.



Converging to CCE

Theorem 2.54

For every G = (P ,A,C ), ε > 0, and T = T (ε) ∈ N, if after T steps of the
No-regret dynamics, each player i ∈ P has time-averaged expected regret at
most ε, then p is ε-CCE where pt =

∏n
i=1 p

t
i and p = 1

T

∑T
t=1 p

t .

• Proof: We want to prove Ea∼p[Ci(a)] ≤ Ea∼p[Ci(a
′
i ; a−i)] + ε.

• By the definition of p, we have, for every player i ∈ P and a′i ∈ Ai ,

E
a∼p

[Ci(a)] =
1

T

T∑
t=1

E
a∼pt

[Ci(a)] and E
a∼p

[Ci(a
′
i ; a−i)] =

1

T

T∑
t=1

E
a∼pt

[Ci(a
′
i ; a−i)].

• The right-hand sides are time-averaged expected costs of i when playing
according to the algorithm with small external regret and when playing
a′i every iteration. Since every player has regret at most ε, we obtain

1

T

T∑
t=1

Ea∼pt [Ci(a)] ≤
1

T

T∑
t=1

Ea∼pt [Ci(a
′
i ; a−i)] + ε.

• This verifies the ε-CCE condition for p = 1
T

∑T
t=1 pt .



Converging to CCE

Theorem 2.54

For every G = (P ,A,C ), ε > 0, and T = T (ε) ∈ N, if after T steps of the
No-regret dynamics, each player i ∈ P has time-averaged expected regret at
most ε, then p is ε-CCE where pt =

∏n
i=1 p

t
i and p = 1

T

∑T
t=1 p

t .

• Proof: We want to prove Ea∼p[Ci(a)] ≤ Ea∼p[Ci(a
′
i ; a−i)] + ε.

• By the definition of p, we have, for every player i ∈ P and a′i ∈ Ai ,

E
a∼p

[Ci(a)] =
1

T

T∑
t=1

E
a∼pt

[Ci(a)] and E
a∼p

[Ci(a
′
i ; a−i)] =

1

T

T∑
t=1

E
a∼pt

[Ci(a
′
i ; a−i)].

• The right-hand sides are time-averaged expected costs of i when playing
according to the algorithm with small external regret and when playing
a′i every iteration. Since every player has regret at most ε, we obtain

1

T

T∑
t=1

Ea∼pt [Ci(a)] ≤
1

T

T∑
t=1

Ea∼pt [Ci(a
′
i ; a−i)] + ε.

• This verifies the ε-CCE condition for p = 1
T

∑T
t=1 pt .



Converging to CCE

Theorem 2.54

For every G = (P ,A,C ), ε > 0, and T = T (ε) ∈ N, if after T steps of the
No-regret dynamics, each player i ∈ P has time-averaged expected regret at
most ε, then p is ε-CCE where pt =

∏n
i=1 p

t
i and p = 1

T

∑T
t=1 p

t .

• Proof:

We want to prove Ea∼p[Ci(a)] ≤ Ea∼p[Ci(a
′
i ; a−i)] + ε.

• By the definition of p, we have, for every player i ∈ P and a′i ∈ Ai ,

E
a∼p

[Ci(a)] =
1

T

T∑
t=1

E
a∼pt

[Ci(a)] and E
a∼p

[Ci(a
′
i ; a−i)] =

1

T

T∑
t=1

E
a∼pt

[Ci(a
′
i ; a−i)].

• The right-hand sides are time-averaged expected costs of i when playing
according to the algorithm with small external regret and when playing
a′i every iteration. Since every player has regret at most ε, we obtain

1

T

T∑
t=1

Ea∼pt [Ci(a)] ≤
1

T

T∑
t=1

Ea∼pt [Ci(a
′
i ; a−i)] + ε.

• This verifies the ε-CCE condition for p = 1
T

∑T
t=1 pt .



Converging to CCE

Theorem 2.54

For every G = (P ,A,C ), ε > 0, and T = T (ε) ∈ N, if after T steps of the
No-regret dynamics, each player i ∈ P has time-averaged expected regret at
most ε, then p is ε-CCE where pt =

∏n
i=1 p

t
i and p = 1

T

∑T
t=1 p

t .

• Proof: We want to prove Ea∼p[Ci(a)] ≤ Ea∼p[Ci(a
′
i ; a−i)] + ε.

• By the definition of p, we have, for every player i ∈ P and a′i ∈ Ai ,

E
a∼p

[Ci(a)] =
1

T

T∑
t=1

E
a∼pt

[Ci(a)] and E
a∼p

[Ci(a
′
i ; a−i)] =

1

T

T∑
t=1

E
a∼pt

[Ci(a
′
i ; a−i)].

• The right-hand sides are time-averaged expected costs of i when playing
according to the algorithm with small external regret and when playing
a′i every iteration. Since every player has regret at most ε, we obtain

1

T

T∑
t=1

Ea∼pt [Ci(a)] ≤
1

T

T∑
t=1

Ea∼pt [Ci(a
′
i ; a−i)] + ε.

• This verifies the ε-CCE condition for p = 1
T

∑T
t=1 pt .



Converging to CCE

Theorem 2.54

For every G = (P ,A,C ), ε > 0, and T = T (ε) ∈ N, if after T steps of the
No-regret dynamics, each player i ∈ P has time-averaged expected regret at
most ε, then p is ε-CCE where pt =

∏n
i=1 p

t
i and p = 1

T

∑T
t=1 p

t .

• Proof: We want to prove Ea∼p[Ci(a)] ≤ Ea∼p[Ci(a
′
i ; a−i)] + ε.

• By the definition of p, we have, for every player i ∈ P and a′i ∈ Ai ,

E
a∼p

[Ci(a)] =
1

T

T∑
t=1

E
a∼pt

[Ci(a)]

and E
a∼p

[Ci(a
′
i ; a−i)] =

1

T

T∑
t=1

E
a∼pt

[Ci(a
′
i ; a−i)].

• The right-hand sides are time-averaged expected costs of i when playing
according to the algorithm with small external regret and when playing
a′i every iteration. Since every player has regret at most ε, we obtain

1

T

T∑
t=1

Ea∼pt [Ci(a)] ≤
1

T

T∑
t=1

Ea∼pt [Ci(a
′
i ; a−i)] + ε.

• This verifies the ε-CCE condition for p = 1
T

∑T
t=1 pt .



Converging to CCE

Theorem 2.54

For every G = (P ,A,C ), ε > 0, and T = T (ε) ∈ N, if after T steps of the
No-regret dynamics, each player i ∈ P has time-averaged expected regret at
most ε, then p is ε-CCE where pt =

∏n
i=1 p

t
i and p = 1

T

∑T
t=1 p

t .

• Proof: We want to prove Ea∼p[Ci(a)] ≤ Ea∼p[Ci(a
′
i ; a−i)] + ε.

• By the definition of p, we have, for every player i ∈ P and a′i ∈ Ai ,

E
a∼p

[Ci(a)] =
1

T

T∑
t=1

E
a∼pt

[Ci(a)] and E
a∼p

[Ci(a
′
i ; a−i)] =

1

T

T∑
t=1

E
a∼pt

[Ci(a
′
i ; a−i)].

• The right-hand sides are time-averaged expected costs of i when playing
according to the algorithm with small external regret and when playing
a′i every iteration. Since every player has regret at most ε, we obtain

1

T

T∑
t=1

Ea∼pt [Ci(a)] ≤
1

T

T∑
t=1

Ea∼pt [Ci(a
′
i ; a−i)] + ε.

• This verifies the ε-CCE condition for p = 1
T

∑T
t=1 pt .



Converging to CCE

Theorem 2.54

For every G = (P ,A,C ), ε > 0, and T = T (ε) ∈ N, if after T steps of the
No-regret dynamics, each player i ∈ P has time-averaged expected regret at
most ε, then p is ε-CCE where pt =

∏n
i=1 p

t
i and p = 1

T

∑T
t=1 p

t .

• Proof: We want to prove Ea∼p[Ci(a)] ≤ Ea∼p[Ci(a
′
i ; a−i)] + ε.

• By the definition of p, we have, for every player i ∈ P and a′i ∈ Ai ,

E
a∼p

[Ci(a)] =
1

T

T∑
t=1

E
a∼pt

[Ci(a)] and E
a∼p

[Ci(a
′
i ; a−i)] =

1

T

T∑
t=1

E
a∼pt

[Ci(a
′
i ; a−i)].

• The right-hand sides are time-averaged expected costs of i when playing
according to the algorithm with small external regret and when playing
a′i every iteration.

Since every player has regret at most ε, we obtain

1

T

T∑
t=1

Ea∼pt [Ci(a)] ≤
1

T

T∑
t=1

Ea∼pt [Ci(a
′
i ; a−i)] + ε.

• This verifies the ε-CCE condition for p = 1
T

∑T
t=1 pt .



Converging to CCE

Theorem 2.54

For every G = (P ,A,C ), ε > 0, and T = T (ε) ∈ N, if after T steps of the
No-regret dynamics, each player i ∈ P has time-averaged expected regret at
most ε, then p is ε-CCE where pt =

∏n
i=1 p

t
i and p = 1

T

∑T
t=1 p

t .

• Proof: We want to prove Ea∼p[Ci(a)] ≤ Ea∼p[Ci(a
′
i ; a−i)] + ε.

• By the definition of p, we have, for every player i ∈ P and a′i ∈ Ai ,

E
a∼p

[Ci(a)] =
1

T

T∑
t=1

E
a∼pt

[Ci(a)] and E
a∼p

[Ci(a
′
i ; a−i)] =

1

T

T∑
t=1

E
a∼pt

[Ci(a
′
i ; a−i)].

• The right-hand sides are time-averaged expected costs of i when playing
according to the algorithm with small external regret and when playing
a′i every iteration. Since every player has regret at most ε, we obtain

1

T

T∑
t=1

Ea∼pt [Ci(a)] ≤
1

T

T∑
t=1

Ea∼pt [Ci(a
′
i ; a−i)] + ε.

• This verifies the ε-CCE condition for p = 1
T

∑T
t=1 pt .



Converging to CCE

Theorem 2.54

For every G = (P ,A,C ), ε > 0, and T = T (ε) ∈ N, if after T steps of the
No-regret dynamics, each player i ∈ P has time-averaged expected regret at
most ε, then p is ε-CCE where pt =

∏n
i=1 p

t
i and p = 1

T

∑T
t=1 p

t .

• Proof: We want to prove Ea∼p[Ci(a)] ≤ Ea∼p[Ci(a
′
i ; a−i)] + ε.

• By the definition of p, we have, for every player i ∈ P and a′i ∈ Ai ,

E
a∼p

[Ci(a)] =
1

T

T∑
t=1

E
a∼pt

[Ci(a)] and E
a∼p

[Ci(a
′
i ; a−i)] =

1

T

T∑
t=1

E
a∼pt

[Ci(a
′
i ; a−i)].

• The right-hand sides are time-averaged expected costs of i when playing
according to the algorithm with small external regret and when playing
a′i every iteration. Since every player has regret at most ε, we obtain

1

T

T∑
t=1

Ea∼pt [Ci(a)] ≤
1

T

T∑
t=1

Ea∼pt [Ci(a
′
i ; a−i)] + ε.

• This verifies the ε-CCE condition for p = 1
T

∑T
t=1 pt .



Converging to CCE

Theorem 2.54

For every G = (P ,A,C ), ε > 0, and T = T (ε) ∈ N, if after T steps of the
No-regret dynamics, each player i ∈ P has time-averaged expected regret at
most ε, then p is ε-CCE where pt =

∏n
i=1 p

t
i and p = 1

T

∑T
t=1 p

t .

• Proof: We want to prove Ea∼p[Ci(a)] ≤ Ea∼p[Ci(a
′
i ; a−i)] + ε.

• By the definition of p, we have, for every player i ∈ P and a′i ∈ Ai ,

E
a∼p

[Ci(a)] =
1

T

T∑
t=1

E
a∼pt

[Ci(a)] and E
a∼p

[Ci(a
′
i ; a−i)] =

1

T

T∑
t=1

E
a∼pt

[Ci(a
′
i ; a−i)].

• The right-hand sides are time-averaged expected costs of i when playing
according to the algorithm with small external regret and when playing
a′i every iteration. Since every player has regret at most ε, we obtain

1

T

T∑
t=1

Ea∼pt [Ci(a)] ≤
1

T

T∑
t=1

Ea∼pt [Ci(a
′
i ; a−i)] + ε.

• This verifies the ε-CCE condition for p = 1
T

∑T
t=1 pt .



Converging to CCE

Theorem 2.54

For every G = (P ,A,C ), ε > 0, and T = T (ε) ∈ N, if after T steps of the
No-regret dynamics, each player i ∈ P has time-averaged expected regret at
most ε, then p is ε-CCE where pt =

∏n
i=1 p

t
i and p = 1

T

∑T
t=1 p

t .

• Proof: We want to prove Ea∼p[Ci(a)] ≤ Ea∼p[Ci(a
′
i ; a−i)] + ε.

• By the definition of p, we have, for every player i ∈ P and a′i ∈ Ai ,

E
a∼p

[Ci(a)] =
1

T

T∑
t=1

E
a∼pt

[Ci(a)] and E
a∼p

[Ci(a
′
i ; a−i)] =

1

T

T∑
t=1

E
a∼pt

[Ci(a
′
i ; a−i)].

• The right-hand sides are time-averaged expected costs of i when playing
according to the algorithm with small external regret and when playing
a′i every iteration. Since every player has regret at most ε, we obtain

1

T

T∑
t=1

Ea∼pt [Ci(a)] ≤
1

T

T∑
t=1

Ea∼pt [Ci(a
′
i ; a−i)] + ε.

• This verifies the ε-CCE condition for p = 1
T

∑T
t=1 pt .



Other notions of regret

• Converging to CCE is nice, but how about converging to CE? We can
do that with a different notion of regret!

• We consider an “internal setting” when we compare our agent to its
modifications.

• A modification rule is a function F : X → X .

• We modify a sequence (pt)Tt=1 with F by replacing it with a sequence
(f t)Tt=1, where f t = (f t1 , . . . , f

t
N) and f ti =

∑
j : F (j)=i p

t
j .

◦ “The modified agent plays F (i) whenever A plays i .”

• The cumulative loss of A modified by F is LTA,F =
∑T

t=1

∑N
i=1 f

t
i ℓ

t
i .

• Given a set of modification rules F , we can compare our agent to his
modifications by rules from F , obtaining different notions of regret.



Other notions of regret

• Converging to CCE is nice, but how about converging to CE?

We can
do that with a different notion of regret!

• We consider an “internal setting” when we compare our agent to its
modifications.

• A modification rule is a function F : X → X .

• We modify a sequence (pt)Tt=1 with F by replacing it with a sequence
(f t)Tt=1, where f t = (f t1 , . . . , f

t
N) and f ti =

∑
j : F (j)=i p

t
j .

◦ “The modified agent plays F (i) whenever A plays i .”

• The cumulative loss of A modified by F is LTA,F =
∑T

t=1

∑N
i=1 f

t
i ℓ

t
i .

• Given a set of modification rules F , we can compare our agent to his
modifications by rules from F , obtaining different notions of regret.



Other notions of regret

• Converging to CCE is nice, but how about converging to CE? We can
do that with a different notion of regret!

• We consider an “internal setting” when we compare our agent to its
modifications.

• A modification rule is a function F : X → X .

• We modify a sequence (pt)Tt=1 with F by replacing it with a sequence
(f t)Tt=1, where f t = (f t1 , . . . , f

t
N) and f ti =

∑
j : F (j)=i p

t
j .

◦ “The modified agent plays F (i) whenever A plays i .”

• The cumulative loss of A modified by F is LTA,F =
∑T

t=1

∑N
i=1 f

t
i ℓ

t
i .

• Given a set of modification rules F , we can compare our agent to his
modifications by rules from F , obtaining different notions of regret.



Other notions of regret

• Converging to CCE is nice, but how about converging to CE? We can
do that with a different notion of regret!

• We consider an “internal setting” when we compare our agent to its
modifications.

• A modification rule is a function F : X → X .

• We modify a sequence (pt)Tt=1 with F by replacing it with a sequence
(f t)Tt=1, where f t = (f t1 , . . . , f

t
N) and f ti =

∑
j : F (j)=i p

t
j .

◦ “The modified agent plays F (i) whenever A plays i .”

• The cumulative loss of A modified by F is LTA,F =
∑T

t=1

∑N
i=1 f

t
i ℓ

t
i .

• Given a set of modification rules F , we can compare our agent to his
modifications by rules from F , obtaining different notions of regret.



Other notions of regret

• Converging to CCE is nice, but how about converging to CE? We can
do that with a different notion of regret!

• We consider an “internal setting” when we compare our agent to its
modifications.

• A modification rule is a function F : X → X .

• We modify a sequence (pt)Tt=1 with F by replacing it with a sequence
(f t)Tt=1, where f t = (f t1 , . . . , f

t
N) and f ti =

∑
j : F (j)=i p

t
j .

◦ “The modified agent plays F (i) whenever A plays i .”

• The cumulative loss of A modified by F is LTA,F =
∑T

t=1

∑N
i=1 f

t
i ℓ

t
i .

• Given a set of modification rules F , we can compare our agent to his
modifications by rules from F , obtaining different notions of regret.



Other notions of regret

• Converging to CCE is nice, but how about converging to CE? We can
do that with a different notion of regret!

• We consider an “internal setting” when we compare our agent to its
modifications.

• A modification rule is a function F : X → X .

• We modify a sequence (pt)Tt=1 with F by replacing it with a sequence
(f t)Tt=1, where f t = (f t1 , . . . , f

t
N) and f ti =

∑
j : F (j)=i p

t
j .

◦ “The modified agent plays F (i) whenever A plays i .”

• The cumulative loss of A modified by F is LTA,F =
∑T

t=1

∑N
i=1 f

t
i ℓ

t
i .

• Given a set of modification rules F , we can compare our agent to his
modifications by rules from F , obtaining different notions of regret.



Other notions of regret

• Converging to CCE is nice, but how about converging to CE? We can
do that with a different notion of regret!

• We consider an “internal setting” when we compare our agent to its
modifications.

• A modification rule is a function F : X → X .

• We modify a sequence (pt)Tt=1 with F by replacing it with a sequence
(f t)Tt=1, where f t = (f t1 , . . . , f

t
N) and f ti =

∑
j : F (j)=i p

t
j .

◦ “The modified agent plays F (i) whenever A plays i .”

• The cumulative loss of A modified by F is LTA,F =
∑T

t=1

∑N
i=1 f

t
i ℓ

t
i .

• Given a set of modification rules F , we can compare our agent to his
modifications by rules from F , obtaining different notions of regret.



Other notions of regret

• Converging to CCE is nice, but how about converging to CE? We can
do that with a different notion of regret!

• We consider an “internal setting” when we compare our agent to its
modifications.

• A modification rule is a function F : X → X .

• We modify a sequence (pt)Tt=1 with F by replacing it with a sequence
(f t)Tt=1, where f t = (f t1 , . . . , f

t
N) and f ti =

∑
j : F (j)=i p

t
j .

◦ “The modified agent plays F (i) whenever A plays i .”

• The cumulative loss of A modified by F is LTA,F =
∑T

t=1

∑N
i=1 f

t
i ℓ

t
i .

• Given a set of modification rules F , we can compare our agent to his
modifications by rules from F , obtaining different notions of regret.



Other notions of regret

• Converging to CCE is nice, but how about converging to CE? We can
do that with a different notion of regret!

• We consider an “internal setting” when we compare our agent to its
modifications.

• A modification rule is a function F : X → X .

• We modify a sequence (pt)Tt=1 with F by replacing it with a sequence
(f t)Tt=1, where f t = (f t1 , . . . , f

t
N) and f ti =

∑
j : F (j)=i p

t
j .

◦ “The modified agent plays F (i) whenever A plays i .”

• The cumulative loss of A modified by F is LTA,F =
∑T

t=1

∑N
i=1 f

t
i ℓ

t
i .

• Given a set of modification rules F , we can compare our agent to his
modifications by rules from F , obtaining different notions of regret.



Internal and swap regret

• For a set F ex = {Fi : i ∈ X} of rules where Fi always outputs action i ,
we obtain exactly the external regret:

RT
A,Fex = max

F∈Fex

{
LTA − LTA,F

}
= max

j∈X

{
T∑
t=1

((∑
i∈X

pti ℓ
t
i

)
− ℓtj

)}
.

• For F in = {Fi ,j : (i , j) ∈ X × X , i ̸= j} where Fi ,j is defined by
Fi ,j(i) = j and Fi ,j(i

′) = i ′ for each i ′ ̸= i , we get the internal regret:

RT
A,F in = max

F∈F in

{
LTA − LTA,F

}
= max

i ,j∈X

{
T∑
t=1

pti (ℓ
t
i − ℓtj )

}
.

• For the set F sw of all modification rules, we get the swap regret:

RT
A,F sw = max

F∈F sw

{
LTA − LTA,F

}
=

N∑
i=1

max
j∈X

{
T∑
t=1

pti (ℓ
t
i − ℓtj )

}
.

• Since F ex ,F in ⊆ F sw , we immediately have RT
A,Fex ,RT

A,F in ≤ RT
A,F sw .



Internal and swap regret

• For a set F ex = {Fi : i ∈ X} of rules where Fi always outputs action i ,
we obtain exactly the external regret:

RT
A,Fex = max

F∈Fex

{
LTA − LTA,F

}
= max

j∈X

{
T∑
t=1

((∑
i∈X

pti ℓ
t
i

)
− ℓtj

)}
.

• For F in = {Fi ,j : (i , j) ∈ X × X , i ̸= j} where Fi ,j is defined by
Fi ,j(i) = j and Fi ,j(i

′) = i ′ for each i ′ ̸= i , we get the internal regret:

RT
A,F in = max

F∈F in

{
LTA − LTA,F

}
= max

i ,j∈X

{
T∑
t=1

pti (ℓ
t
i − ℓtj )

}
.

• For the set F sw of all modification rules, we get the swap regret:

RT
A,F sw = max

F∈F sw

{
LTA − LTA,F

}
=

N∑
i=1

max
j∈X

{
T∑
t=1

pti (ℓ
t
i − ℓtj )

}
.

• Since F ex ,F in ⊆ F sw , we immediately have RT
A,Fex ,RT

A,F in ≤ RT
A,F sw .



Internal and swap regret

• For a set F ex = {Fi : i ∈ X} of rules where Fi always outputs action i ,
we obtain exactly the external regret:

RT
A,Fex = max

F∈Fex

{
LTA − LTA,F

}

= max
j∈X

{
T∑
t=1

((∑
i∈X

pti ℓ
t
i

)
− ℓtj

)}
.

• For F in = {Fi ,j : (i , j) ∈ X × X , i ̸= j} where Fi ,j is defined by
Fi ,j(i) = j and Fi ,j(i

′) = i ′ for each i ′ ̸= i , we get the internal regret:

RT
A,F in = max

F∈F in

{
LTA − LTA,F

}
= max

i ,j∈X

{
T∑
t=1

pti (ℓ
t
i − ℓtj )

}
.

• For the set F sw of all modification rules, we get the swap regret:

RT
A,F sw = max

F∈F sw

{
LTA − LTA,F

}
=

N∑
i=1

max
j∈X

{
T∑
t=1

pti (ℓ
t
i − ℓtj )

}
.

• Since F ex ,F in ⊆ F sw , we immediately have RT
A,Fex ,RT

A,F in ≤ RT
A,F sw .



Internal and swap regret

• For a set F ex = {Fi : i ∈ X} of rules where Fi always outputs action i ,
we obtain exactly the external regret:

RT
A,Fex = max

F∈Fex

{
LTA − LTA,F

}
= max

j∈X

{
T∑
t=1

((∑
i∈X

pti ℓ
t
i

)
− ℓtj

)}
.

• For F in = {Fi ,j : (i , j) ∈ X × X , i ̸= j} where Fi ,j is defined by
Fi ,j(i) = j and Fi ,j(i

′) = i ′ for each i ′ ̸= i , we get the internal regret:

RT
A,F in = max

F∈F in

{
LTA − LTA,F

}
= max

i ,j∈X

{
T∑
t=1

pti (ℓ
t
i − ℓtj )

}
.

• For the set F sw of all modification rules, we get the swap regret:

RT
A,F sw = max

F∈F sw

{
LTA − LTA,F

}
=

N∑
i=1

max
j∈X

{
T∑
t=1

pti (ℓ
t
i − ℓtj )

}
.

• Since F ex ,F in ⊆ F sw , we immediately have RT
A,Fex ,RT

A,F in ≤ RT
A,F sw .



Internal and swap regret

• For a set F ex = {Fi : i ∈ X} of rules where Fi always outputs action i ,
we obtain exactly the external regret:

RT
A,Fex = max

F∈Fex

{
LTA − LTA,F

}
= max

j∈X

{
T∑
t=1

((∑
i∈X

pti ℓ
t
i

)
− ℓtj

)}
.

• For F in = {Fi ,j : (i , j) ∈ X × X , i ̸= j} where Fi ,j is defined by
Fi ,j(i) = j and Fi ,j(i

′) = i ′ for each i ′ ̸= i , we get the internal regret:

RT
A,F in = max

F∈F in

{
LTA − LTA,F

}
= max

i ,j∈X

{
T∑
t=1

pti (ℓ
t
i − ℓtj )

}
.

• For the set F sw of all modification rules, we get the swap regret:

RT
A,F sw = max

F∈F sw

{
LTA − LTA,F

}
=

N∑
i=1

max
j∈X

{
T∑
t=1

pti (ℓ
t
i − ℓtj )

}
.

• Since F ex ,F in ⊆ F sw , we immediately have RT
A,Fex ,RT

A,F in ≤ RT
A,F sw .



Internal and swap regret

• For a set F ex = {Fi : i ∈ X} of rules where Fi always outputs action i ,
we obtain exactly the external regret:

RT
A,Fex = max

F∈Fex

{
LTA − LTA,F

}
= max

j∈X

{
T∑
t=1

((∑
i∈X

pti ℓ
t
i

)
− ℓtj

)}
.

• For F in = {Fi ,j : (i , j) ∈ X × X , i ̸= j} where Fi ,j is defined by
Fi ,j(i) = j and Fi ,j(i

′) = i ′ for each i ′ ̸= i , we get the internal regret:

RT
A,F in = max

F∈F in

{
LTA − LTA,F

}

= max
i ,j∈X

{
T∑
t=1

pti (ℓ
t
i − ℓtj )

}
.

• For the set F sw of all modification rules, we get the swap regret:

RT
A,F sw = max

F∈F sw

{
LTA − LTA,F

}
=

N∑
i=1

max
j∈X

{
T∑
t=1

pti (ℓ
t
i − ℓtj )

}
.

• Since F ex ,F in ⊆ F sw , we immediately have RT
A,Fex ,RT

A,F in ≤ RT
A,F sw .



Internal and swap regret

• For a set F ex = {Fi : i ∈ X} of rules where Fi always outputs action i ,
we obtain exactly the external regret:

RT
A,Fex = max

F∈Fex

{
LTA − LTA,F

}
= max

j∈X

{
T∑
t=1

((∑
i∈X

pti ℓ
t
i

)
− ℓtj

)}
.

• For F in = {Fi ,j : (i , j) ∈ X × X , i ̸= j} where Fi ,j is defined by
Fi ,j(i) = j and Fi ,j(i

′) = i ′ for each i ′ ̸= i , we get the internal regret:

RT
A,F in = max

F∈F in

{
LTA − LTA,F

}
= max

i ,j∈X

{
T∑
t=1

pti (ℓ
t
i − ℓtj )

}
.

• For the set F sw of all modification rules, we get the swap regret:

RT
A,F sw = max

F∈F sw

{
LTA − LTA,F

}
=

N∑
i=1

max
j∈X

{
T∑
t=1

pti (ℓ
t
i − ℓtj )

}
.

• Since F ex ,F in ⊆ F sw , we immediately have RT
A,Fex ,RT

A,F in ≤ RT
A,F sw .



Internal and swap regret

• For a set F ex = {Fi : i ∈ X} of rules where Fi always outputs action i ,
we obtain exactly the external regret:

RT
A,Fex = max

F∈Fex

{
LTA − LTA,F

}
= max

j∈X

{
T∑
t=1

((∑
i∈X

pti ℓ
t
i

)
− ℓtj

)}
.

• For F in = {Fi ,j : (i , j) ∈ X × X , i ̸= j} where Fi ,j is defined by
Fi ,j(i) = j and Fi ,j(i

′) = i ′ for each i ′ ̸= i , we get the internal regret:

RT
A,F in = max

F∈F in

{
LTA − LTA,F

}
= max

i ,j∈X

{
T∑
t=1

pti (ℓ
t
i − ℓtj )

}
.

• For the set F sw of all modification rules, we get the swap regret:

RT
A,F sw = max

F∈F sw

{
LTA − LTA,F

}
=

N∑
i=1

max
j∈X

{
T∑
t=1

pti (ℓ
t
i − ℓtj )

}
.

• Since F ex ,F in ⊆ F sw , we immediately have RT
A,Fex ,RT

A,F in ≤ RT
A,F sw .



Internal and swap regret

• For a set F ex = {Fi : i ∈ X} of rules where Fi always outputs action i ,
we obtain exactly the external regret:

RT
A,Fex = max

F∈Fex

{
LTA − LTA,F

}
= max

j∈X

{
T∑
t=1

((∑
i∈X

pti ℓ
t
i

)
− ℓtj

)}
.

• For F in = {Fi ,j : (i , j) ∈ X × X , i ̸= j} where Fi ,j is defined by
Fi ,j(i) = j and Fi ,j(i

′) = i ′ for each i ′ ̸= i , we get the internal regret:

RT
A,F in = max

F∈F in

{
LTA − LTA,F

}
= max

i ,j∈X

{
T∑
t=1

pti (ℓ
t
i − ℓtj )

}
.

• For the set F sw of all modification rules, we get the swap regret:

RT
A,F sw = max

F∈F sw

{
LTA − LTA,F

}

=
N∑
i=1

max
j∈X

{
T∑
t=1

pti (ℓ
t
i − ℓtj )

}
.

• Since F ex ,F in ⊆ F sw , we immediately have RT
A,Fex ,RT

A,F in ≤ RT
A,F sw .



Internal and swap regret

• For a set F ex = {Fi : i ∈ X} of rules where Fi always outputs action i ,
we obtain exactly the external regret:

RT
A,Fex = max

F∈Fex

{
LTA − LTA,F

}
= max

j∈X

{
T∑
t=1

((∑
i∈X

pti ℓ
t
i

)
− ℓtj

)}
.

• For F in = {Fi ,j : (i , j) ∈ X × X , i ̸= j} where Fi ,j is defined by
Fi ,j(i) = j and Fi ,j(i

′) = i ′ for each i ′ ̸= i , we get the internal regret:

RT
A,F in = max

F∈F in

{
LTA − LTA,F

}
= max

i ,j∈X

{
T∑
t=1

pti (ℓ
t
i − ℓtj )

}
.

• For the set F sw of all modification rules, we get the swap regret:

RT
A,F sw = max

F∈F sw

{
LTA − LTA,F

}
=

N∑
i=1

max
j∈X

{
T∑
t=1

pti (ℓ
t
i − ℓtj )

}
.

• Since F ex ,F in ⊆ F sw , we immediately have RT
A,Fex ,RT

A,F in ≤ RT
A,F sw .



Internal and swap regret

• For a set F ex = {Fi : i ∈ X} of rules where Fi always outputs action i ,
we obtain exactly the external regret:

RT
A,Fex = max

F∈Fex

{
LTA − LTA,F

}
= max

j∈X

{
T∑
t=1

((∑
i∈X

pti ℓ
t
i

)
− ℓtj

)}
.

• For F in = {Fi ,j : (i , j) ∈ X × X , i ̸= j} where Fi ,j is defined by
Fi ,j(i) = j and Fi ,j(i

′) = i ′ for each i ′ ̸= i , we get the internal regret:

RT
A,F in = max

F∈F in

{
LTA − LTA,F

}
= max

i ,j∈X

{
T∑
t=1

pti (ℓ
t
i − ℓtj )

}
.

• For the set F sw of all modification rules, we get the swap regret:

RT
A,F sw = max

F∈F sw

{
LTA − LTA,F

}
=

N∑
i=1

max
j∈X

{
T∑
t=1

pti (ℓ
t
i − ℓtj )

}
.

• Since F ex ,F in ⊆ F sw , we immediately have RT
A,Fex ,RT

A,F in ≤ RT
A,F sw .



The No-swap-regret dynamics

• Using swap regret instead of external regret, we will get:

Algorithm 0.12: No-swap-regret dynamics(G ,T , ε)

Input : A normal-form game G = (P,A,C ) of n players, T ∈ N, and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and t ∈ {1, . . . ,T}.
for every step t = 1, . . . ,T

do



Each player i ∈ P independently chooses a mixed strategy pti
using an algorithm with average swap regret at most ε, with
actions corresponding to pure strategies.
Each player i ∈ P receives a loss vector ℓti = (ℓti (ai ))ai∈Ai

, where
ℓti (ai )← Eat−i∼pt−i

[Ci (ai ; a
t
−i )] for the product distribution

pt−i =
∏

j ̸=i p
t
j .

Output {pt : t ∈ {1, . . . ,T}}.

• No-swap-regret dynamics then converges to a correlated equilibrium.



The No-swap-regret dynamics

• Using swap regret instead of external regret, we will get:

Algorithm 0.13: No-swap-regret dynamics(G ,T , ε)

Input : A normal-form game G = (P,A,C ) of n players, T ∈ N, and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and t ∈ {1, . . . ,T}.
for every step t = 1, . . . ,T

do



Each player i ∈ P independently chooses a mixed strategy pti
using an algorithm with average swap regret at most ε, with
actions corresponding to pure strategies.
Each player i ∈ P receives a loss vector ℓti = (ℓti (ai ))ai∈Ai

, where
ℓti (ai )← Eat−i∼pt−i

[Ci (ai ; a
t
−i )] for the product distribution

pt−i =
∏

j ̸=i p
t
j .

Output {pt : t ∈ {1, . . . ,T}}.

• No-swap-regret dynamics then converges to a correlated equilibrium.



The No-swap-regret dynamics

• Using swap regret instead of external regret, we will get:

Algorithm 0.14: No-swap-regret dynamics(G ,T , ε)

Input : A normal-form game G = (P,A,C ) of n players, T ∈ N, and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and t ∈ {1, . . . ,T}.
for every step t = 1, . . . ,T

do



Each player i ∈ P independently chooses a mixed strategy pti
using an algorithm with average swap regret at most ε, with
actions corresponding to pure strategies.
Each player i ∈ P receives a loss vector ℓti = (ℓti (ai ))ai∈Ai

, where
ℓti (ai )← Eat−i∼pt−i

[Ci (ai ; a
t
−i )] for the product distribution

pt−i =
∏

j ̸=i p
t
j .

Output {pt : t ∈ {1, . . . ,T}}.

• No-swap-regret dynamics then converges to a correlated equilibrium.



The No-swap-regret dynamics

• Using swap regret instead of external regret, we will get:

Algorithm 0.15: No-swap-regret dynamics(G ,T , ε)

Input : A normal-form game G = (P,A,C ) of n players, T ∈ N, and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and t ∈ {1, . . . ,T}.
for every step t = 1, . . . ,T

do



Each player i ∈ P independently chooses a mixed strategy pti
using an algorithm with average swap regret at most ε, with
actions corresponding to pure strategies.
Each player i ∈ P receives a loss vector ℓti = (ℓti (ai ))ai∈Ai

, where
ℓti (ai )← Eat−i∼pt−i

[Ci (ai ; a
t
−i )] for the product distribution

pt−i =
∏

j ̸=i p
t
j .

Output {pt : t ∈ {1, . . . ,T}}.

• No-swap-regret dynamics then converges to a correlated equilibrium.



Thank you for your attention.



Thank you for your attention.



Thank you for your attention.


