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Regret minimization

e We introduce a completely new model of interactions based on
so-called regret minimization. We apply online learning.

Sources: https://blogger.googleusercontent.com/

e Later, we apply these new methods to design new fast algorithms to
approximate correlated equilibria.

e Today, we introduce the model and some basic algorithms on how to
minimize regret.



BN
The setting



The setting

e Since we are introducing a new model, we will need some notation.



The setting

e Since we are introducing a new model, we will need some notation.

e We have an agent A in an adversary environment.



The setting

e Since we are introducing a new model, we will need some notation.
e We have an agent A in an adversary environment.
e There are N available actions for A in the set X = {1,..., N}.



The setting

e Since we are introducing a new model, we will need some notation.

We have an agent A in an adversary environment.
There are N available actions for A in the set X = {1,..., N}.

Ateachstept=1,...,T:



The setting

e Since we are introducing a new model, we will need some notation.

We have an agent A in an adversary environment.
There are N available actions for A in the set X = {1,..., N}.

Ateachstept=1,...,T:
o Our agent A selects a probability distribution p* = (pi,..., py)
over X,



The setting

e Since we are introducing a new model, we will need some notation.

We have an agent A in an adversary environment.
There are N available actions for A in the set X = {1,..., N}.

Ateachstept=1,...,T:

o Our agent A selects a probability distribution p* = (pi,..., py)
over X, where pf is the probability that A selects i in step t.



The setting

e Since we are introducing a new model, we will need some notation.

We have an agent A in an adversary environment.
There are N available actions for A in the set X = {1,..., N}.

Ateachstept=1,...,T:
o Our agent A selects a probability distribution p* = (pi,..., py)
over X, where pf is the probability that A selects i in step t.
o Then, the adversary chooses a loss vector (* = (¢5,..., (),



The setting

e Since we are introducing a new model, we will need some notation.

We have an agent A in an adversary environment.
There are N available actions for A in the set X = {1,..., N}.

Ateachstept=1,...,T:

o Our agent A selects a probability distribution p* = (pi,..., py)
over X, where pf is the probability that A selects i in step t.

o Then, the adversary chooses a loss vector (* = (¢4, ..., ¢}), where
0t € [-1,1] is the loss of action i in step t.



The setting

e Since we are introducing a new model, we will need some notation.

We have an agent A in an adversary environment.
There are N available actions for A in the set X = {1,..., N}.

Ateachstept=1,...,T:

o Our agent A selects a probability distribution p* = (pi,..., py)
over X, where pf is the probability that A selects i in step t.

o Then, the adversary chooses a loss vector (* = (¢4, ..., ¢}), where
0t € [-1,1] is the loss of action i in step t.

o The agent A then experiences loss (4 = SN | pt/t.



The setting

e Since we are introducing a new model, we will need some notation.

We have an agent A in an adversary environment.
There are N available actions for A in the set X = {1,... N},

At eachstept=1,..., T:
o Our agent A selects a probability distribution p* = (pi,..., py)
over X, where pf is the probability that A selects i in step t.
o Then, the adversary chooses a loss vector (* = (¢4, ..., ¢}), where
0t € [-1,1] is the loss of action i in step t.
o The agent A then experiences loss (4 = SV . ptft. This is the
expected loss of A in step t.



The setting

e Since we are introducing a new model, we will need some notation.

We have an agent A in an adversary environment.
There are N available actions for A in the set X = {1,... N},

At eachstept=1,..., T:
o Our agent A selects a probability distribution p* = (pi,..., py)
over X, where pf is the probability that A selects i in step t.
o Then, the adversary chooses a loss vector (* = (¢4, ..., ¢}), where
0t € [-1,1] is the loss of action i in step t.
o The agent A then experiences loss (4 = SV . ptft. This is the
expected loss of A in step t.

e After T steps, the cumulative loss of action i is L] = 37, (.



The setting

e Since we are introducing a new model, we will need some notation.

We have an agent A in an adversary environment.
There are N available actions for A in the set X = {1,... N},

At eachstept=1,..., T:
o Our agent A selects a probability distribution p* = (pi,..., py)
over X, where pf is the probability that A selects i in step t.
o Then, the adversary chooses a loss vector (* = (¢4, ..., ¢}), where
0t € [-1,1] is the loss of action i in step t.
o The agent A then experiences loss (4 = SV . ptft. This is the
expected loss of A in step t.

e After T steps, the cumulative loss of action i is L] = 37, (.

e The cumulative loss of Ais L} = ST ¢t
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External regret

e We need to be able to tell how well is our agent doing. We choose an
“external approach” and compare his loss to the loss of the best agent
from some comparison class A.

e We will mostly consider the class Ax = {A;: i € X}, where an agent
A; always chooses action i.

o Let R{ = L) —min{L}: B € Ax} be the external regret of A. That
is, RI = Li —min{L]: i€ X}

e Until specified otherwise, we consider only loss vectors from {0, 1}".
This is only to simplify the notation, all presented results can be
extended to the general case.
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Greedy algorithm

e So we are good with the comparison class Ax. How to design an agent
A that performs well against agents from Ax?

e We first try a natural greedy approach: select an action i € X for which
the cumulative loss L!™! at step t — 1 is the smallest.

Algorithm 0.12: GREEDY ALGORITHM(X, T)

Input = A set of actions X = {1,..., N} and number of steps T € N.
Output : A probability distribution p* for every t € {1,..., T}.
pt <+ (1,0,...,0),

fort=2...,T
Liin minjeX{Lffl}a
4o )T iex =1,
k < min St

pi < 1, pf < 0 for i # k,
Output {p*: t € {1,..., T}}.
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]

e This is rather weak since A can perform roughly N times worse than
the best action.
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fort=2..., T

do
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Randomized Greedy algorithm

e There is a good reason for the poor behavior. No deterministic
algorithm can perform significantly better (see the lecture notes).

e So it makes sense to introduce some randomness. We break ties at
random, splitting weights between the currently best actions.

Algorithm 0.23: RANDOMIZED GREEDY ALGORITHM(X, T)
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Randomized Greedy algorithm

e There is a good reason for the poor behavior. No deterministic
algorithm can perform significantly better (see the lecture notes).

e So it makes sense to introduce some randomness. We break ties at
random, splitting weights between the currently best actions.

Algorithm 0.24: RANDOMIZED GREEDY ALGORITHM(X, T)

Input : A set of actions X = {1,..., N} and number of steps T € N.
Output : A probability distribution p* for every t € {1,..., T}.
pt < (1/N,...,1/N),
fort=2..., T
Ly mi”jeX{Lf_1}>
do ¢ STl {ieX: LIt =11
pf <« 1/|S™ for every i € S*7! and pf < 0 otherwise.



Randomized Greedy algorithm

e There is a good reason for the poor behavior. No deterministic
algorithm can perform significantly better (see the lecture notes).

e So it makes sense to introduce some randomness. We break ties at
random, splitting weights between the currently best actions.

Algorithm 0.25: RANDOMIZED GREEDY ALGORITHM(X, T)

Input : A set of actions X = {1,..., N} and number of steps T € N.
Output : A probability distribution p* for every t € {1,..., T}.
pt <+ (1/N, ..., 1/N),

fort=2..., T
Liin mi”jeX{Lf_lh
do ¢ STl {ieX: LIt =11

pf <+ 1/|S" ! for every i € S*™! and pf + 0 otherwise.
Output {p*: t € {1,..., T}}.
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the Randomized greedy algorithm at time T € N satisfies
Lig<(@+InN)-L]
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Output : A probability distribution p* for every t € {1,..., T}.
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Polynomial weights algorithm

e This is better, but still not optimal. The losses are greatest when the
sets S* are small since the loss can be viewed as proportional to 1/|S¢|.

e We overcome this issue by assigning larger weights to actions that are
close to the best one.

Algorithm 0.34: POLYNOMIAL WEIGHTS ALGORITHM(X, T,7)

Input : A set of actions X = {1,...,N}, T € N, and 7 € (0,1/2].
Output : A probability distribution p* for every t € {1,..., T}.
w! <1 for every i € X,
pl %(1/N7"'71/N)7
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do
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e This is better, but still not optimal. The losses are greatest when the
sets S* are small since the loss can be viewed as proportional to 1/|S¢|.

e We overcome this issue by assigning larger weights to actions that are
close to the best one.

Algorithm 0.35: POLYNOMIAL WEIGHTS ALGORITHM(X, T,7)

Input : A set of actions X = {1,...,N}, T € N, and 7 € (0,1/2].
Output : A probability distribution p* for every t € {1,..., T}.
w! <1 for every i € X,
pt <+ (1/N,... . 1/N),
fort=2,.... T
wi < wiTH 1 =l
do § W<y wf,
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e This is better, but still not optimal. The losses are greatest when the
sets S* are small since the loss can be viewed as proportional to 1/|S¢|.

e We overcome this issue by assigning larger weights to actions that are
close to the best one.

Algorithm 0.36: POLYNOMIAL WEIGHTS ALGORITHM(X, T,7)

Input : A set of actions X = {1,...,N}, T € N, and 7 € (0,1/2].
Output : A probability distribution p* for every t € {1,..., T}.
w! <1 for every i € X,
pt <+ (1/N,... . 1/N),
fort=2,.... T
wi < wiTH 1 =l
do § W<y wf,
pi < w!/W" for every i € X.



Polynomial weights algorithm

e This is better, but still not optimal. The losses are greatest when the
sets S* are small since the loss can be viewed as proportional to 1/|S¢|.

e We overcome this issue by assigning larger weights to actions that are
close to the best one.

Algorithm 0.37: POLYNOMIAL WEIGHTS ALGORITHM(X, T,7)

Input : A set of actions X = {1,...,N}, T € N, and 7 € (0,1/2].
Output : A probability distribution p* for every t € {1,..., T}.
w! <1 for every i € X,
pt <+ (1/N,... . 1/N),
fort=2,.... T
wi < wiTH 1 =l
do § W<y wf,
pi < w!/W" for every i € X.
Output {p*: t € {1,..., T}}.
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k € X, the cumulative loss L1 of the Polynomial weights algorithm satisfies
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Theorem 2.49

For 1 € (0,1/2], every sequence of [—1, 1]-valued loss vectors, and every
k € X, the cumulative loss L1 of the Polynomial weights algorithm satisfies

Liw < Li +nQf +1InN/n,

where Q] = Z;l(é,t()z. In particular, if T > 4In N, then by setting
n=+/InN/T and noting that Q] < T, we obtain

Liw < LI +2VTInN.

e Proof (sketch): We show that if there is a significant loss, then the
total weight W* must drop substantially. For step t, we have
(o = SN witt/ W1, that is, (L, is the expected loss at step t.

e The weight w! of every action i is multiplied by (1 — n¢:™') at step t.
Thus, W = Wt — SN qwiet = WL — nlh,,).
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Polynomial weights algorithm: remarks

e This algorithm produces very good external regret. Time-averaged
external regret goes to zero.

e The bound L]y, < LT. +2v/TInN is essentially optimal.

Proposition 2.50
For integers N and T with T < [log, N, there exists a stochastic

generation of losses such that, for every online algorithm A, we have
E[L]] > T/2 and yet L]. =0.

min

Proposition 2.51
In the case of N = 2 actions, there exists a stochastic generation of losses
such that, for every online algorithm A, we have E[L] — L] .1 > Q(\/T).

e See lecture notes for the proofs.

e We do not need to know T in advance (Exercise).
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Besides game theory, the “multiplicative weight update method” has
many applications in various fields of science, for example in
optimization, theoretical computer science, and machine learning.
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alb+q) = ab+ac 10000 + 100b -

126 =6xy

Sources: https://clubitc.ro
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e Besides game theory, the “multiplicative weight update method” has
many applications in various fields of science, for example in
optimization, theoretical computer science, and machine learning.

alb+q) = ab+ac 10000 + 100b -

126 =6xy
J  x+2y=20

Sources: https://clubitc.ro
e See https://en.wikipedia.org/wiki/Multiplicative_weight_
update_method#Applications
e There are other algorithms producing small external regret, for example,
the Regret matching algorithm.
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e “Players in a normal-form game play against each other by selecting
actions according to the Polynomial-weights algorithm.”

Algorithm 0.40: NO-REGRET DYNAMICS(G, T ,¢)

Input : A normal-form game G = (P, A, C) of n players, T € N, and £ > 0.
Output : A prob. distribution pf on A; for each i € P and t € {1,..., T}.
for every stept=1,..., T

Each player i € P independently chooses a mixed strategy pf
using an algorithm with average regret at most ¢, with actions
corresponding to pure strategies.

Each player / € P receives a loss vector ¢} = (¢(a;))aea;, where
li(aj) < E e Npr [Ci(aj; at ;)] for the product distribution

pt Pi= Hﬂé, PJ

Output {p*: t € {1,..., T}}.

do







"ENROLL IN AGT" THEY SAID

Algorithm 2.6.4: No-REGRET DYNaMICS(G, T, ¢)

Input : A normal-form game & = (P, A, C') of n players, T € N and = > (.
Output : A probability distribution p! on A; foreachi € Pandt € {1,..., T}.
foreverystept =1,..., T

Each player i € P independently chooses a mixed strategy p! using

an algorithm with average regret at most =, with actions

corresponding to pure strategies.

do Each player i € P receives a loss vector {! = ((*(a;))a,c.4,, where
.":{a,] —E,t ot |Cilag;al ;)] for the product distribution
ﬂ’ i l_[_;:rp.:"
Output {p': t e {1,....T}}.
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Sources: Students of MFF UK



"ENROLL IN AGT" THEY SAID

Algorithm 2.6.4: No-REGRET DYNaMICS(G, T, ¢)

Input : A normal-form game & = (P, A, C') of n players, T € N and = > (.
Output : A probability distribution p! on A; foreachi € Pandt € {1,..., T}.
foreverystept =1,..., T

Each player i € P independently chooses a mixed strategy p! using

an algorithm with average regret at most =, with actions
corresponding to pure strategies.

Each player i € F receives a loss vector ff = ({:(m ))a,ea,, where
fi(a;) « Epe o0 |Cilajzal )] for the product distribution

a: i = l_[.r.-‘r p_:,.

Output {p': t e {1,....T}}.

“THERE'LL BE NO REGRET" THEY SAID

Sources: Students of MFF UK

Thank you for your attention.

do




