Algorithmic game theory

Martin Balko

6th lecture

November 8th 2024

Regret minimization

BN
Regret minimization

Regret minimization

e We introduce a completely new model of interactions based on
so-called regret minimization.

Regret minimization

e We introduce a completely new model of interactions based on
so-called regret minimization. We apply online learning.

Regret minimization

e We introduce a completely new model of interactions based on
so-called regret minimization. We apply online learning.

5 o~

Sources: https://blogger.googleusercontent.com/

Regret minimization

e We introduce a completely new model of interactions based on
so-called regret minimization. We apply online learning.

Sources: https://blogger.googleusercontent.com/

e Later, we apply these new methods to design new fast algorithms to
approximate correlated equilibria.

Regret minimization

e We introduce a completely new model of interactions based on
so-called regret minimization. We apply online learning.

Sources: https://blogger.googleusercontent.com/

e Later, we apply these new methods to design new fast algorithms to
approximate correlated equilibria.

e Today, we introduce the model and some basic algorithms on how to
minimize regret.

BN
The setting

The setting

e Since we are introducing a new model, we will need some notation.

The setting

e Since we are introducing a new model, we will need some notation.

e We have an agent A in an adversary environment.

The setting

e Since we are introducing a new model, we will need some notation.
e We have an agent A in an adversary environment.
e There are N available actions for A in the set X = {1,..., N}.

The setting

e Since we are introducing a new model, we will need some notation.

We have an agent A in an adversary environment.
There are N available actions for A in the set X = {1,..., N}.

Ateachstept=1,...,T:

The setting

e Since we are introducing a new model, we will need some notation.

We have an agent A in an adversary environment.
There are N available actions for A in the set X = {1,..., N}.

Ateachstept=1,...,T:
o Our agent A selects a probability distribution p* = (pi,..., py)
over X,

The setting

e Since we are introducing a new model, we will need some notation.

We have an agent A in an adversary environment.
There are N available actions for A in the set X = {1,..., N}.

Ateachstept=1,...,T:

o Our agent A selects a probability distribution p* = (pi,..., py)
over X, where pf is the probability that A selects i in step t.

The setting

e Since we are introducing a new model, we will need some notation.

We have an agent A in an adversary environment.
There are N available actions for A in the set X = {1,..., N}.

Ateachstept=1,...,T:
o Our agent A selects a probability distribution p* = (pi,..., py)
over X, where pf is the probability that A selects i in step t.
o Then, the adversary chooses a loss vector (* = (¢5,..., (),

The setting

e Since we are introducing a new model, we will need some notation.

We have an agent A in an adversary environment.
There are N available actions for A in the set X = {1,..., N}.

Ateachstept=1,...,T:

o Our agent A selects a probability distribution p* = (pi,..., py)
over X, where pf is the probability that A selects i in step t.

o Then, the adversary chooses a loss vector (* = (¢4, ..., ¢}), where
0t € [-1,1] is the loss of action i in step t.

The setting

e Since we are introducing a new model, we will need some notation.

We have an agent A in an adversary environment.
There are N available actions for A in the set X = {1,..., N}.

Ateachstept=1,...,T:

o Our agent A selects a probability distribution p* = (pi,..., py)
over X, where pf is the probability that A selects i in step t.

o Then, the adversary chooses a loss vector (* = (¢4, ..., ¢}), where
0t € [-1,1] is the loss of action i in step t.

o The agent A then experiences loss (4 = SN | pt/t.

The setting

e Since we are introducing a new model, we will need some notation.

We have an agent A in an adversary environment.
There are N available actions for A in the set X = {1,... N},

At eachstept=1,..., T:
o Our agent A selects a probability distribution p* = (pi,..., py)
over X, where pf is the probability that A selects i in step t.
o Then, the adversary chooses a loss vector (* = (¢4, ..., ¢}), where
0t € [-1,1] is the loss of action i in step t.
o The agent A then experiences loss (4 = SV . ptft. This is the
expected loss of A in step t.

The setting

e Since we are introducing a new model, we will need some notation.

We have an agent A in an adversary environment.
There are N available actions for A in the set X = {1,... N},

At eachstept=1,..., T:
o Our agent A selects a probability distribution p* = (pi,..., py)
over X, where pf is the probability that A selects i in step t.
o Then, the adversary chooses a loss vector (* = (¢4, ..., ¢}), where
0t € [-1,1] is the loss of action i in step t.
o The agent A then experiences loss (4 = SV . ptft. This is the
expected loss of A in step t.

e After T steps, the cumulative loss of action i is L] = 37, (.

The setting

e Since we are introducing a new model, we will need some notation.

We have an agent A in an adversary environment.
There are N available actions for A in the set X = {1,... N},

At eachstept=1,..., T:
o Our agent A selects a probability distribution p* = (pi,..., py)
over X, where pf is the probability that A selects i in step t.
o Then, the adversary chooses a loss vector (* = (¢4, ..., ¢}), where
0t € [-1,1] is the loss of action i in step t.
o The agent A then experiences loss (4 = SV . ptft. This is the
expected loss of A in step t.

e After T steps, the cumulative loss of action i is L] = 37, (.

e The cumulative loss of Ais L} = ST ¢t

BN
External regret

External regret

e We need to be able to tell how well is our agent doing.

External regret

e We need to be able to tell how well is our agent doing. We choose an
“external approach” and compare his loss to the loss of the best agent
from some comparison class A.

External regret

e We need to be able to tell how well is our agent doing. We choose an
“external approach” and compare his loss to the loss of the best agent
from some comparison class A.

e We will mostly consider the class Ax = {A;: i € X}, where an agent
A; always chooses action i.

External regret

e We need to be able to tell how well is our agent doing. We choose an
“external approach” and compare his loss to the loss of the best agent
from some comparison class A.

e We will mostly consider the class Ax = {A;: i € X}, where an agent
A; always chooses action i.

o Let R =L} —min{L}: B € Ax} be the external regret of A.

External regret

e We need to be able to tell how well is our agent doing. We choose an

“external approach” and compare his loss to the loss of the best agent
from some comparison class A.

e We will mostly consider the class Ax = {A;: i € X}, where an agent
A; always chooses action i.

o Let R{ = L) —min{L}: B € Ax} be the external regret of A. That
is, RI = Li —min{L]: i€ X}

External regret

e We need to be able to tell how well is our agent doing. We choose an
“external approach” and compare his loss to the loss of the best agent
from some comparison class A.

e We will mostly consider the class Ax = {A;: i € X}, where an agent
A; always chooses action i.

o Let R{ = L) —min{L}: B € Ax} be the external regret of A. That
is, RI = Li —min{L]: i€ X}

e Until specified otherwise, we consider only loss vectors from {0, 1}".

External regret

e We need to be able to tell how well is our agent doing. We choose an
“external approach” and compare his loss to the loss of the best agent
from some comparison class A.

e We will mostly consider the class Ax = {A;: i € X}, where an agent
A; always chooses action i.

o Let R{ = L) —min{L}: B € Ax} be the external regret of A. That
is, RI = Li —min{L]: i€ X}

e Until specified otherwise, we consider only loss vectors from {0, 1}".
This is only to simplify the notation, all presented results can be
extended to the general case.

BN
Example

Example

(review)

iNo Regret Learning E::E)
0

No single action significantly

outperforms the dynamic. ‘; 1 0
Weather Loss
Algorithm 1

Example

No Regret Learning

i (review)

0 1
No single action significantly
outperforms the dynamic. \ 1 0
Weather Toss
Algorithm 1
Umbrella ‘ ‘ ; ‘ " 1

Sunscreen

IS
Is the setting too restrictive?

|s the setting too restrictive?

e It might seem that the class Ax contains too simple agents.

Is the setting too restrictive?

e It might seem that the class Ax contains too simple agents. However,
we show that large comparison classes lead to a very large regret.

|s the setting too restrictive?

e It might seem that the class Ax contains too simple agents. However,
we show that large comparison classes lead to a very large regret.

e Let A, be the set of agents that assign probability 1 to an arbitrary
action from X in every step.

|s the setting too restrictive?

e It might seem that the class Ax contains too simple agents. However,
we show that large comparison classes lead to a very large regret.
e Let A, be the set of agents that assign probability 1 to an arbitrary
action from X in every step.
o In Ax each agent has to select the same action in all steps.

|s the setting too restrictive?

e It might seem that the class Ax contains too simple agents. However,
we show that large comparison classes lead to a very large regret.
e Let A, be the set of agents that assign probability 1 to an arbitrary

action from X in every step.
o In Ax each agent has to select the same action in all steps.

Observation 2.45
For any agent A and every T € N, there is a sequence of T loss vectors and

an agent B € A,y such that L] — L} > T(1—1/N).

|s the setting too restrictive?

e It might seem that the class Ax contains too simple agents. However,
we show that large comparison classes lead to a very large regret.
e Let A, be the set of agents that assign probability 1 to an arbitrary
action from X in every step.
o In Ax each agent has to select the same action in all steps.

Observation 2.45
For any agent A and every T € N, there is a sequence of T loss vectors and
an agent B € A,y such that L] — L} > T(1—1/N).

e That is almost as bad as it can get.

|s the setting too restrictive?

e It might seem that the class Ax contains too simple agents. However,
we show that large comparison classes lead to a very large regret.
e Let A, be the set of agents that assign probability 1 to an arbitrary
action from X in every step.
o In Ax each agent has to select the same action in all steps.

Observation 2.45
For any agent A and every T € N, there is a sequence of T loss vectors and
an agent B € A,y such that L] — L} > T(1—1/N).

e That is almost as bad as it can get.
e Proof:

|s the setting too restrictive?

e It might seem that the class Ax contains too simple agents. However,
we show that large comparison classes lead to a very large regret.
e Let A, be the set of agents that assign probability 1 to an arbitrary
action from X in every step.
o In Ax each agent has to select the same action in all steps.

Observation 2.45
For any agent A and every T € N, there is a sequence of T loss vectors and
an agent B € A,y such that L] — L} > T(1—1/N).

e That is almost as bad as it can get.
e Proof: For every t, let i; be the action with the lowest probability pf.

|s the setting too restrictive?

e It might seem that the class Ax contains too simple agents. However,
we show that large comparison classes lead to a very large regret.
e Let A, be the set of agents that assign probability 1 to an arbitrary
action from X in every step.
o In Ax each agent has to select the same action in all steps.

Observation 2.45
For any agent A and every T € N, there is a sequence of T loss vectors and
an agent B € A,y such that L] — L} > T(1—1/N).

e That is almost as bad as it can get.
e Proof: For every t, let i; be the action with the lowest probability pf.
We set (] =0

|s the setting too restrictive?

e It might seem that the class Ax contains too simple agents. However,
we show that large comparison classes lead to a very large regret.
e Let A, be the set of agents that assign probability 1 to an arbitrary
action from X in every step.
o In Ax each agent has to select the same action in all steps.

Observation 2.45
For any agent A and every T € N, there is a sequence of T loss vectors and
an agent B € A,y such that L] — L} > T(1—1/N).

e That is almost as bad as it can get.
e Proof: For every t, let i; be the action with the lowest probability pf.
We set (] =0 and (} = 1 for every | # i..

|s the setting too restrictive?

e It might seem that the class Ax contains too simple agents. However,
we show that large comparison classes lead to a very large regret.

e Let A, be the set of agents that assign probability 1 to an arbitrary
action from X in every step.

o In Ax each agent has to select the same action in all steps.
Observation 2.45

For any agent A and every T € N, there is a sequence of T loss vectors and
an agent B € A,y such that L] — L} > T(1—1/N).

e That is almost as bad as it can get.

e Proof: For every t, let i; be the action with the lowest probability pf.
We set (] =0 and (} = 1 for every | # i..

e Since pi <1/N, we have (3 >1—1/N

|s the setting too restrictive?

e It might seem that the class Ax contains too simple agents. However,
we show that large comparison classes lead to a very large regret.

e Let A, be the set of agents that assign probability 1 to an arbitrary
action from X in every step.

o In Ax each agent has to select the same action in all steps.
Observation 2.45

For any agent A and every T € N, there is a sequence of T loss vectors and
an agent B € A,y such that L] — L} > T(1—1/N).

e That is almost as bad as it can get.

e Proof: For every t, let i; be the action with the lowest probability pf.
We set (] =0 and (} = 1 for every | # i..

e Since pi <1/N, we have ;; > 1 —1/N and thus the cumulative loss
L} of A after T steps is at least T(1 — 1/N).

|s the setting too restrictive?

e It might seem that the class Ax contains too simple agents. However,
we show that large comparison classes lead to a very large regret.

e Let A, be the set of agents that assign probability 1 to an arbitrary
action from X in every step.

o In Ax each agent has to select the same action in all steps.
Observation 2.45

For any agent A and every T € N, there is a sequence of T loss vectors and
an agent B € A,y such that L] — L} > T(1—1/N).

e That is almost as bad as it can get.

e Proof: For every t, let i; be the action with the lowest probability pf.
We set /{ = 0 and (] = 1 for every i # i,.

e Since pi <1/N, we have ;; > 1 —1/N and thus the cumulative loss
L} of A after T steps is at least T(1 — 1/N).

e The algorithm B € A, that selects the action /; in step t with
probability 1 has the cumulative loss L} = 0.

|s the setting too restrictive?

e It might seem that the class Ax contains too simple agents. However,
we show that large comparison classes lead to a very large regret.

e Let A, be the set of agents that assign probability 1 to an arbitrary
action from X in every step.

o In Ax each agent has to select the same action in all steps.
Observation 2.45

For any agent A and every T € N, there is a sequence of T loss vectors and
an agent B € A,y such that L] — L} > T(1—1/N).

e That is almost as bad as it can get.

e Proof: For every t, let i; be the action with the lowest probability pf.
We set /{ = 0 and (] = 1 for every i # i,.

e Since pi <1/N, we have ;; > 1 —1/N and thus the cumulative loss
L} of A after T steps is at least T(1 — 1/N).

e The algorithm B € A, that selects the action /; in step t with
probability 1 has the cumulative loss L} = 0. [

NN
Greedy algorithm

Greedy algorithm

e So we are good with the comparison class Ax.

Greedy algorithm

e So we are good with the comparison class Ax. How to design an agent
A that performs well against agents from Ax?

Greedy algorithm

e So we are good with the comparison class Ax. How to design an agent
A that performs well against agents from Ax?
e We first try a natural greedy approach:

Greedy algorithm

e So we are good with the comparison class Ax. How to design an agent
A that performs well against agents from Ax?

e We first try a natural greedy approach: select an action i € X for which
the cumulative loss L!™! at step t — 1 is the smallest.

Greedy algorithm

e So we are good with the comparison class Ax. How to design an agent
A that performs well against agents from Ax?

e We first try a natural greedy approach: select an action i € X for which
the cumulative loss L!™! at step t — 1 is the smallest.

Algorithm 0.6: GREEDY ALGORITHM(X, T)

Input = A set of actions X = {1,..., N} and number of steps T € N.
Output : A probability distribution p* for every t € {1,..., T}.

Greedy algorithm

e So we are good with the comparison class Ax. How to design an agent
A that performs well against agents from Ax?

e We first try a natural greedy approach: select an action i € X for which
the cumulative loss L!™! at step t — 1 is the smallest.

Algorithm 0.7: GREEDY ALGORITHM(X, T)

Input = A set of actions X = {1,..., N} and number of steps T € N.
Output : A probability distribution p* for every t € {1,..., T}.
pt <+ (1,0,...,0),

Greedy algorithm

e So we are good with the comparison class Ax. How to design an agent
A that performs well against agents from Ax?

e We first try a natural greedy approach: select an action i € X for which
the cumulative loss L!™! at step t — 1 is the smallest.

Algorithm 0.8: GREEDY ALGORITHM(X, T)

Input = A set of actions X = {1,..., N} and number of steps T € N.
Output : A probability distribution p* for every t € {1,..., T}.

pt <+ (1,0,...,0),

fort=2...,T

do

Greedy algorithm

e So we are good with the comparison class Ax. How to design an agent
A that performs well against agents from Ax?

e We first try a natural greedy approach: select an action i € X for which
the cumulative loss L!™! at step t — 1 is the smallest.

Algorithm 0.9: GREEDY ALGORITHM(X, T)

Input = A set of actions X = {1,..., N} and number of steps T € N.
Output : A probability distribution p* for every t € {1,..., T}.
pt <+ (1,0,...,0),
fort=2...,T
Ly = minjex{L71},

min

do

Greedy algorithm

e So we are good with the comparison class Ax. How to design an agent
A that performs well against agents from Ax?

e We first try a natural greedy approach: select an action i € X for which
the cumulative loss L!™! at step t — 1 is the smallest.

Algorithm 0.10: GREEDY ALGORITHM(X, T)

Input = A set of actions X = {1,..., N} and number of steps T € N.
Output : A probability distribution p* for every t € {1,..., T}.

pt <+ (1,0,...,0),

fort=2...,T

Lopin = minjex{L; "},

St {ie X: Lt =11y

do k < min St

Greedy algorithm

e So we are good with the comparison class Ax. How to design an agent
A that performs well against agents from Ax?

e We first try a natural greedy approach: select an action i € X for which
the cumulative loss L!™! at step t — 1 is the smallest.

Algorithm 0.11: GREEDY ALGORITHM(X, T)

Input = A set of actions X = {1,..., N} and number of steps T € N.
Output : A probability distribution p* for every t € {1,..., T}.
pt <+ (1,0,...,0),

fort=2...,T
Liin minjeX{Lffl}a
4o)T iex =1,
k < min St

pi < 1, pf < 0 for i # k,

Greedy algorithm

e So we are good with the comparison class Ax. How to design an agent
A that performs well against agents from Ax?

e We first try a natural greedy approach: select an action i € X for which
the cumulative loss L!™! at step t — 1 is the smallest.

Algorithm 0.12: GREEDY ALGORITHM(X, T)

Input = A set of actions X = {1,..., N} and number of steps T € N.
Output : A probability distribution p* for every t € {1,..., T}.
pt <+ (1,0,...,0),

fort=2...,T
Liin minjeX{Lffl}a
4o)T iex =1,
k < min St

pi < 1, pf < 0 for i # k,
Output {p*: t € {1,..., T}}.

NN
Analysis of the Greedy algorithm

NN
Analysis of the Greedy algorithm

For any sequence of {0, 1}-valued loss vectors, the cumulative loss L{, ., of
the Greedy algorithm at time T € N satisfies

Lg}-reedy < N - L;in + (N _ 1)

NN
Analysis of the Greedy algorithm

For any sequence of {0, 1}-valued loss vectors, the cumulative loss L{, ., of
the Greedy algorithm at time T € N satisfies

Lg}-reedy < N - L;in + (N _ 1)

e Proof:

Analysis of the Greedy algorithm

Proposition 2.46

For any sequence of {0, 1}-valued loss vectors, the cumulative loss L{,,.q, of
the Greedy algorithm at time T € N satisfies

Lgrccdy <N-: Lr-:)in + (N - 1)

e Proof: At step t, if the Greedy algorithm incurs a loss of 1 and L ..

does not increase, then at least one action disappears from S* in the
next step.

Analysis of the Greedy algorithm

Proposition 2.46

For any sequence of {0, 1}-valued loss vectors, the cumulative loss L{,,.q, of
the Greedy algorithm at time T € N satisfies

Lereedy S N - L1+ (N —1).

min

e Proof: At step t, if the Greedy algorithm incurs a loss of 1 and L ..

does not increase, then at least one action disappears from S* in the
next step. This occurs at most N times and then L! . increases by 1.

min

Analysis of the Greedy algorithm

Proposition 2.46

For any sequence of {0, 1}-valued loss vectors, the cumulative loss L{,,.q, of
the Greedy algorithm at time T € N satisfies

Lgrecdy <N-: Lr-:n'n + (N - 1)

e Proof: At step t, if the Greedy algorithm incurs a loss of 1 and L,
does not increase, then at least one action disappears from S* in the
t

next step. This occurs at most N times and then L; . increases by 1.
e Thus, the Greedy algorithm incurs a loss of at most N between

L :
successive increments of L} . by 1.

Analysis of the Greedy algorithm

Proposition 2.46

For any sequence of {0, 1}-valued loss vectors, the cumulative loss L{,,.q, of
the Greedy algorithm at time T € N satisfies

Lgrocdy <N-: Lr-:vin + (N - 1)

e Proof: At step t, if the Greedy algorithm incurs a loss of 1 and L,
does not increase, then at least one action disappears from S* in the
t

next step. This occurs at most N times and then L; . increases by 1.
e Thus, the Greedy algorithm incurs a loss of at most N between

successive increments of L! . by 1. It follows that

Analysis of the Greedy algorithm

Proposition 2.46

For any sequence of {0, 1}-valued loss vectors, the cumulative loss L{,,.q, of
the Greedy algorithm at time T € N satisfies

Lgrocdy <N-: Lr-:vin + (N - 1)

e Proof: At step t, if the Greedy algorithm incurs a loss of 1 and L ..

does not increase, then at least one action disappears from S* in the

next step. This occurs at most N times and then L! . increases by 1.

e Thus, the Greedy algorithm incurs a loss of at most N between

successive increments of L! . by 1. It follows that

T
LGreedy

Analysis of the Greedy algorithm

Proposition 2.46

For any sequence of {0, 1}-valued loss vectors, the cumulative loss L{,,.q, of
the Greedy algorithm at time T € N satisfies
+(N—-1).

min

T T
LGI'ocdy S N-L

e Proof: At step t, if the Greedy algorithm incurs a loss of 1 and L ..
does not increase, then at least one action disappears from S* in the
next step. This occurs at most N times and then L! . increases by 1.

e Thus, the Greedy algorithm incurs a loss of at most N between
successive increments of L! . by 1. It follows that

Lg}-reedy S N- LT + N — |5 |

min

Analysis of the Greedy algorithm

Proposition 2.46

For any sequence of {0, 1}-valued loss vectors, the cumulative loss L{,,.q, of
the Greedy algorithm at time T € N satisfies
+(N—-1).

min

T T
LGI'ocdy S N-L

e Proof: At step t, if the Greedy algorithm incurs a loss of 1 and L ..
does not increase, then at least one action disappears from S* in the
next step. This occurs at most N times and then L! . increases by 1.

e Thus, the Greedy algorithm incurs a loss of at most N between
successive increments of L! . by 1. It follows that

Lireedy SN - L+ N—[STISN-LT + (N —1).

min

Analysis of the Greedy algorithm

Proposition 2.46

For any sequence of {0, 1}-valued loss vectors, the cumulative loss L{,,.q, of
the Greedy algorithm at time T € N satisfies
+(N—-1).

min

T T
LGI'ocdy S N-L

e Proof: At step t, if the Greedy algorithm incurs a loss of 1 and L ..
does not increase, then at least one action disappears from S* in the
next step. This occurs at most N times and then L! . increases by 1.

e Thus, the Greedy algorithm incurs a loss of at most N between
successive increments of L! . by 1. It follows that

Lireedy SN - L+ N—[STISN-LT + (N —1).

min

Analysis of the Greedy algorithm

Proposition 2.46

For any sequence of {0, 1}-valued loss vectors, the cumulative loss L{,,.q, of
the Greedy algorithm at time T € N satisfies
+(N—-1).

min

T T
LGrocdy S N-L

e Proof: At step t, if the Greedy algorithm incurs a loss of 1 and L! ..
does not increase, then at least one action disappears from S* in the
next step. This occurs at most N times and then L! . increases by 1.

e Thus, the Greedy algorithm incurs a loss of at most N between
successive increments of L . by 1. It follows that

min

Lg}-reedy < N- LT + N — |5 | < N - Lm/n (N - 1)

min

]

e This is rather weak since A can perform roughly N times worse than
the best action.

NN
Randomized Greedy algorithm

Randomized Greedy algorithm

e There is a good reason for the poor behavior.

Randomized Greedy algorithm

e There is a good reason for the poor behavior. No deterministic
algorithm can perform significantly better

Randomized Greedy algorithm

e There is a good reason for the poor behavior. No deterministic
algorithm can perform significantly better (see the lecture notes).

Randomized Greedy algorithm

e There is a good reason for the poor behavior. No deterministic
algorithm can perform significantly better (see the lecture notes).
e So it makes sense to introduce some randomness.

Randomized Greedy algorithm

e There is a good reason for the poor behavior. No deterministic
algorithm can perform significantly better (see the lecture notes).

e So it makes sense to introduce some randomness. We break ties at
random, splitting weights between the currently best actions.

Randomized Greedy algorithm

e There is a good reason for the poor behavior. No deterministic
algorithm can perform significantly better (see the lecture notes).

e So it makes sense to introduce some randomness. We break ties at
random, splitting weights between the currently best actions.

Algorithm 0.19: RANDOMIZED GREEDY ALGORITHM(X, T)

Input : A set of actions X = {1,..., N} and number of steps T € N.
Output : A probability distribution p* for every t € {1,..., T}.

Randomized Greedy algorithm

e There is a good reason for the poor behavior. No deterministic
algorithm can perform significantly better (see the lecture notes).

e So it makes sense to introduce some randomness. We break ties at
random, splitting weights between the currently best actions.

Algorithm 0.20: RANDOMIZED GREEDY ALGORITHM(X, T)

Input : A set of actions X = {1,..., N} and number of steps T € N.
Output : A probability distribution p* for every t € {1,..., T}.
pt <+ (1/N, ..., 1/N),

Randomized Greedy algorithm

e There is a good reason for the poor behavior. No deterministic
algorithm can perform significantly better (see the lecture notes).

e So it makes sense to introduce some randomness. We break ties at
random, splitting weights between the currently best actions.

Algorithm 0.21: RANDOMIZED GREEDY ALGORITHM(X, T)

Input : A set of actions X = {1,..., N} and number of steps T € N.
Output : A probability distribution p* for every t € {1,..., T}.
pt <+ (1/N,....1/N),

fort=2..., T

do

Randomized Greedy algorithm

e There is a good reason for the poor behavior. No deterministic
algorithm can perform significantly better (see the lecture notes).

e So it makes sense to introduce some randomness. We break ties at
random, splitting weights between the currently best actions.

Algorithm 0.22: RANDOMIZED GREEDY ALGORITHM(X, T)

Input : A set of actions X = {1,..., N} and number of steps T € N.
Output : A probability distribution p* for every t € {1,..., T}.
pt <+ (1/N,....1/N),
fort=2..., T
Lim mi”jeX{Lf_1}>

do

Randomized Greedy algorithm

e There is a good reason for the poor behavior. No deterministic
algorithm can perform significantly better (see the lecture notes).

e So it makes sense to introduce some randomness. We break ties at
random, splitting weights between the currently best actions.

Algorithm 0.23: RANDOMIZED GREEDY ALGORITHM(X, T)

Input : A set of actions X = {1,..., N} and number of steps T € N.
Output : A probability distribution p* for every t € {1,..., T}.
pt <+ (1/N,....1/N),
fort=2..., T
Ly mi”jeX{Lf_1}>

do STl {ieX: LTt =150,

Randomized Greedy algorithm

e There is a good reason for the poor behavior. No deterministic
algorithm can perform significantly better (see the lecture notes).

e So it makes sense to introduce some randomness. We break ties at
random, splitting weights between the currently best actions.

Algorithm 0.24: RANDOMIZED GREEDY ALGORITHM(X, T)

Input : A set of actions X = {1,..., N} and number of steps T € N.
Output : A probability distribution p* for every t € {1,..., T}.
pt < (1/N,...,1/N),
fort=2..., T
Ly mi”jeX{Lf_1}>
do ¢ STl {ieX: LIt =11
pf <« 1/|S™ for every i € S*7! and pf < 0 otherwise.

Randomized Greedy algorithm

e There is a good reason for the poor behavior. No deterministic
algorithm can perform significantly better (see the lecture notes).

e So it makes sense to introduce some randomness. We break ties at
random, splitting weights between the currently best actions.

Algorithm 0.25: RANDOMIZED GREEDY ALGORITHM(X, T)

Input : A set of actions X = {1,..., N} and number of steps T € N.
Output : A probability distribution p* for every t € {1,..., T}.
pt <+ (1/N, ..., 1/N),

fort=2..., T
Liin mi”jeX{Lf_lh
do ¢ STl {ieX: LIt =11

pf <+ 1/|S" ! for every i € S*™! and pf + 0 otherwise.
Output {p*: t € {1,..., T}}.

NN
Analysis of the Randomized greedy algorithm

Analysis of the Randomized greedy algorithm

Proposition 2.48

For any sequence of {0, 1}-valued loss vectors, the cumulative loss L} of
the Randomized greedy algorithm at time T € N satisfies
Lig<(@+InN)-L]

min

+In N.

Analysis of the Randomized greedy algorithm

Proposition 2.48

For any sequence of {0, 1}-valued loss vectors, the cumulative loss L} of
the Randomized greedy algorithm at time T € N satisfies
Lig<(@+InN)-L]

min

+In N.

e Proof (sketch):

Analysis of the Randomized greedy algorithm

Proposition 2.48

For any sequence of {0, 1}-valued loss vectors, the cumulative loss L} of
the Randomized greedy algorithm at time T € N satisfies
Lig<(@+InN)-L]

min

+In N.

e Proof (sketch): We proceed as in the previous proof.

Analysis of the Randomized greedy algorithm

Proposition 2.48

For any sequence of {0, 1}-valued loss vectors, the cumulative loss L} of
the Randomized greedy algorithm at time T € N satisfies
Lig<(@+InN)-L]

min

+In N.

e Proof (sketch): We proceed as in the previous proof. For j € N, let t;
be the time step t at which the loss L! ; first reaches value j.

Analysis of the Randomized greedy algorithm

Proposition 2.48

For any sequence of {0, 1}-valued loss vectors, the cumulative loss L} of
the Randomized greedy algorithm at time T € N satisfies
Lig<(@+InN)-L]

min

+In N.

e Proof (sketch): We proceed as in the previous proof. For j € N, let t;

be the time step t at which the loss L! ;. first reaches value j. We

estimate the loss of the algorithm between steps t; and tj

Analysis of the Randomized greedy algorithm

Proposition 2.48
For any sequence of {0, 1}-valued loss vectors, the cumulative loss L} of
the Randomized greedy algorithm at time T € N satisfies

LI <(1+InN)-LT. +InN.

e Proof (sketch): We proceed as in the previous proof. For j € N, let t;
be the time step t at which the loss L! ;. first reaches value j. We
estimate the loss of the algorithm between steps t; and tj

e Note that 1 < |Sf| < .

Analysis of the Randomized greedy algorithm

Proposition 2.48

For any sequence of {0, 1}-valued loss vectors, the cumulative loss L} of
the Randomized greedy algorithm at time T € N satisfies
Lig<(@+InN)-L]

min

+In N.

e Proof (sketch): We proceed as in the previous proof. For j € N, let t;
be the time step t at which the loss L! ;. first reaches value j. We
estimate the loss of the algorithm between steps t; and tj

e Note that 1 < |S*| < N. If the size of S* shrinks by k from n’ to n' — k
at some time t € (t;, tj11], then the loss of the algorithm at step t is

k/n',

Analysis of the Randomized greedy algorithm

Proposition 2.48

For any sequence of {0, 1}-valued loss vectors, the cumulative loss L} of
the Randomized greedy algorithm at time T € N satisfies
Lig<(@+InN)-L]

min

+In N.

e Proof (sketch): We proceed as in the previous proof. For j € N, let t;
be the time step t at which the loss L! ;. first reaches value j. We
estimate the loss of the algorithm between steps t; and tj

e Note that 1 < |S*| < N. If the size of S* shrinks by k from n’ to n' — k
at some time t € (t;, tj11], then the loss of the algorithm at step t is

k/n’, since the weight of each such action is 1/n'.

Analysis of the Randomized greedy algorithm

Proposition 2.48

For any sequence of {0, 1}-valued loss vectors, the cumulative loss L} of
the Randomized greedy algorithm at time T € N satisfies
Lig<(@+InN)-L]

min

+In N.

e Proof (sketch): We proceed as in the previous proof. For j € N, let t;
be the time step t at which the loss L! ;. first reaches value j. We
estimate the loss of the algorithm between steps t; and tj

e Note that 1 < |S*| < N. If the size of S* shrinks by k from n’ to n' — k
at some time t € (t;, tj11], then the loss of the algorithm at step t is
k/n’, since the weight of each such action is 1/n'.

e Clearly, k/n" <1/n"+1/(n —1)+---4+1/(n" — k+ 1), so we obtain
that the loss for the entire time interval (t;, tj+1] is at most

Analysis of the Randomized greedy algorithm

Proposition 2.48

For any sequence of {0, 1}-valued loss vectors, the cumulative loss L} of
the Randomized greedy algorithm at time T € N satisfies
Lig<(@+InN)-L]

min

+In N.

e Proof (sketch): We proceed as in the previous proof. For j € N, let t;
be the time step t at which the loss L! ;. first reaches value j. We
estimate the loss of the algorithm between steps t; and tj

e Note that 1 < |S*| < N. If the size of S* shrinks by k from n’ to n' — k
at some time t € (t;, tj11], then the loss of the algorithm at step t is
k/n’, since the weight of each such action is 1/n'.

e Clearly, k/n" <1/n"+1/(n —1)+---4+1/(n" — k+ 1), so we obtain
that the loss for the entire time interval (t;, tj+1] is at most
I/N+1/(N—1)+---+1/1

Analysis of the Randomized greedy algorithm

Proposition 2.48

For any sequence of {0, 1}-valued loss vectors, the cumulative loss L} of
the Randomized greedy algorithm at time T € N satisfies
Lig<(@+InN)-L]

min

+In N.

e Proof (sketch): We proceed as in the previous proof. For j € N, let t;
be the time step t at which the loss L! ;. first reaches value j. We
estimate the loss of the algorithm between steps t; and tj

e Note that 1 < |S*| < N. If the size of S* shrinks by k from n’ to n' — k
at some time t € (t;, tj11], then the loss of the algorithm at step t is
k/n’, since the weight of each such action is 1/n'.

e Clearly, k/n" <1/n"+1/(n —1)+---4+1/(n" — k+ 1), so we obtain
that the loss for the entire time interval (t;, tj+1] is at most
I/N+1/(N—-1)+---+1/1<1+InN.

Analysis of the Randomized greedy algorithm

Proposition 2.48

For any sequence of {0, 1}-valued loss vectors, the cumulative loss L} of
the Randomized greedy algorithm at time T € N satisfies
Lig<(@+InN)-L]

min

+In N.

e Proof (sketch): We proceed as in the previous proof. For j € N, let t;
be the time step t at which the loss L! ;. first reaches value j. We
estimate the loss of the algorithm between steps t; and tj

e Note that 1 < |S*| < N. If the size of S* shrinks by k from n’ to n' — k
at some time t € (t;, tj11], then the loss of the algorithm at step t is
k/n’, since the weight of each such action is 1/n'.

e Clearly, k/n" <1/n"+1/(n —1)+---4+1/(n" — k+ 1), so we obtain
that the loss for the entire time interval (t;, tj+1] is at most
1I/N+1/(N—1)+---4+1/1 <1+InN. It follows that

T
LRG

Analysis of the Randomized greedy algorithm

Proposition 2.48

For any sequence of {0, 1}-valued loss vectors, the cumulative loss L} of
the Randomized greedy algorithm at time T € N satisfies
Lig<(@+InN)-L]

min

+In N.

e Proof (sketch): We proceed as in the previous proof. For j € N, let t;
be the time step t at which the loss L! ;. first reaches value j. We
estimate the loss of the algorithm between steps t; and tj

e Note that 1 < |S*| < N. If the size of S* shrinks by k from n’ to n' — k
at some time t € (t;, tj11], then the loss of the algorithm at step t is
k/n’, since the weight of each such action is 1/n'.

e Clearly, k/n" <1/n"+1/(n —1)+---4+1/(n" — k+ 1), so we obtain
that the loss for the entire time interval (t;, tj+1] is at most
1I/N+1/(N—1)+---4+1/1 <1+InN. It follows that

Lo <@+InN)- L] +(1/N+1/(N—1)+---+1/(|ST| +1)).

Analysis of the Randomized greedy algorithm

Proposition 2.48

For any sequence of {0, 1}-valued loss vectors, the cumulative loss L} of
the Randomized greedy algorithm at time T € N satisfies
Lig<(@+InN)-L]

min

+In N.

e Proof (sketch): We proceed as in the previous proof. For j € N, let t;
be the time step t at which the loss L! ;. first reaches value j. We
estimate the loss of the algorithm between steps t; and tj

e Note that 1 < |S*| < N. If the size of S* shrinks by k from n’ to n' — k
at some time t € (t;, tj11], then the loss of the algorithm at step t is
k/n’, since the weight of each such action is 1/n'.

e Clearly, k/n" <1/n"+1/(n —1)+---4+1/(n" — k+ 1), so we obtain
that the loss for the entire time interval (t;, tj+1] is at most
1I/N+1/(N—1)+---4+1/1 <1+InN. It follows that

Lo <@+InN)- L] +(1/N+1/(N—1)+---+1/(|ST| +1)).

BN
Polynomial weights algorithm

Polynomial weights algorithm

e This is better, but still not optimal.

Polynomial weights algorithm

e This is better, but still not optimal. The losses are greatest when the
sets S* are small since the loss can be viewed as proportional to 1/|S¢|.

Polynomial weights algorithm

e This is better, but still not optimal. The losses are greatest when the
sets S* are small since the loss can be viewed as proportional to 1/|S¢|.

e We overcome this issue by assigning larger weights to actions that are
close to the best one.

Polynomial weights algorithm

e This is better, but still not optimal. The losses are greatest when the
sets S* are small since the loss can be viewed as proportional to 1/|S¢|.

e We overcome this issue by assigning larger weights to actions that are
close to the best one.

Algorithm 0.30: POLYNOMIAL WEIGHTS ALGORITHM(X, T,7)

Input : A set of actions X = {1,...,N}, T € N, and 7 € (0,1/2].
Output : A probability distribution p* for every t € {1,..., T}.

Polynomial weights algorithm

e This is better, but still not optimal. The losses are greatest when the
sets S* are small since the loss can be viewed as proportional to 1/|S¢|.

e We overcome this issue by assigning larger weights to actions that are
close to the best one.

Algorithm 0.31: POLYNOMIAL WEIGHTS ALGORITHM(X, T,7)

Input : A set of actions X = {1,...,N}, T € N, and 7 € (0,1/2].
Output : A probability distribution p* for every t € {1,..., T}.
w! <1 for every i € X,

Polynomial weights algorithm

e This is better, but still not optimal. The losses are greatest when the
sets S* are small since the loss can be viewed as proportional to 1/|S¢|.

e We overcome this issue by assigning larger weights to actions that are
close to the best one.

Algorithm 0.32: POLYNOMIAL WEIGHTS ALGORITHM(X, T,7)

Input : A set of actions X = {1,...,N}, T € N, and 7 € (0,1/2].
Output : A probability distribution p* for every t € {1,..., T}.
w! <1 for every i € X,

pt <+ (1/N,... . 1/N),

Polynomial weights algorithm

e This is better, but still not optimal. The losses are greatest when the
sets S* are small since the loss can be viewed as proportional to 1/|S¢|.

e We overcome this issue by assigning larger weights to actions that are
close to the best one.

Algorithm 0.33: POLYNOMIAL WEIGHTS ALGORITHM(X, T,7)

Input : A set of actions X = {1,...,N}, T € N, and 7 € (0,1/2].
Output : A probability distribution p* for every t € {1,..., T}.
w! <1 for every i € X,

pt <+ (1/N,... . 1/N),

fort=2,.... T

do

Polynomial weights algorithm

e This is better, but still not optimal. The losses are greatest when the
sets S* are small since the loss can be viewed as proportional to 1/|S¢|.

e We overcome this issue by assigning larger weights to actions that are
close to the best one.

Algorithm 0.34: POLYNOMIAL WEIGHTS ALGORITHM(X, T,7)

Input : A set of actions X = {1,...,N}, T € N, and 7 € (0,1/2].
Output : A probability distribution p* for every t € {1,..., T}.
w! <1 for every i € X,
pl %(1/N7"'71/N)7
fort=2,.... T
wi w1 =),
do

Polynomial weights algorithm

e This is better, but still not optimal. The losses are greatest when the
sets S* are small since the loss can be viewed as proportional to 1/|S¢|.

e We overcome this issue by assigning larger weights to actions that are
close to the best one.

Algorithm 0.35: POLYNOMIAL WEIGHTS ALGORITHM(X, T,7)

Input : A set of actions X = {1,...,N}, T € N, and 7 € (0,1/2].
Output : A probability distribution p* for every t € {1,..., T}.
w! <1 for every i € X,
pt <+ (1/N,... . 1/N),
fort=2,.... T
wi < wiTH 1 =l
do § W<y wf,

Polynomial weights algorithm

e This is better, but still not optimal. The losses are greatest when the
sets S* are small since the loss can be viewed as proportional to 1/|S¢|.

e We overcome this issue by assigning larger weights to actions that are
close to the best one.

Algorithm 0.36: POLYNOMIAL WEIGHTS ALGORITHM(X, T,7)

Input : A set of actions X = {1,...,N}, T € N, and 7 € (0,1/2].
Output : A probability distribution p* for every t € {1,..., T}.
w! <1 for every i € X,
pt <+ (1/N,... . 1/N),
fort=2,.... T
wi < wiTH 1 =l
do § W<y wf,
pi < w!/W" for every i € X.

Polynomial weights algorithm

e This is better, but still not optimal. The losses are greatest when the
sets S* are small since the loss can be viewed as proportional to 1/|S¢|.

e We overcome this issue by assigning larger weights to actions that are
close to the best one.

Algorithm 0.37: POLYNOMIAL WEIGHTS ALGORITHM(X, T,7)

Input : A set of actions X = {1,...,N}, T € N, and 7 € (0,1/2].
Output : A probability distribution p* for every t € {1,..., T}.
w! <1 for every i € X,
pt <+ (1/N,... . 1/N),
fort=2,.... T
wi < wiTH 1 =l
do § W<y wf,
pi < w!/W" for every i € X.
Output {p*: t € {1,..., T}}.

BN
Analysis of the Polynomial weights algorithm |

Analysis of the Polynomial weights algorithm |

Theorem 2.49

For 1 € (0,1/2], every sequence of [—1, 1]-valued loss vectors, and every
k € X, the cumulative loss L1 of the Polynomial weights algorithm satisfies

Analysis of the Polynomial weights algorithm |

Theorem 2.49

For 1 € (0,1/2], every sequence of [—1, 1]-valued loss vectors, and every
k € X, the cumulative loss L1 of the Polynomial weights algorithm satisfies

Liw < Li +nQf +1InN/n,

Analysis of the Polynomial weights algorithm |

Theorem 2.49

For 1 € (0,1/2], every sequence of [—1, 1]-valued loss vectors, and every
k € X, the cumulative loss L1 of the Polynomial weights algorithm satisfies

Liw < Li +nQf +1InN/n,
where Q] = 1, (6)°.

Analysis of the Polynomial weights algorithm |

Theorem 2.49

For 1 € (0,1/2], every sequence of [—1, 1]-valued loss vectors, and every
k € X, the cumulative loss L1 of the Polynomial weights algorithm satisfies

Liw < Li +nQf +1InN/n,

where Q] = 2321(412)2- In particular, if T > 4In N, then by setting
n=+/InN/T and noting that Q] < T, we obtain

Analysis of the Polynomial weights algorithm |

Theorem 2.49

For 1 € (0,1/2], every sequence of [—1, 1]-valued loss vectors, and every
k € X, the cumulative loss L1 of the Polynomial weights algorithm satisfies

Liw < Li +nQf +1InN/n,

where Q] = 2321(412)2- In particular, if T > 4In N, then by setting
n=+/InN/T and noting that Q] < T, we obtain

Liw < LI +2VTInN.

Analysis of the Polynomial weights algorithm |

Theorem 2.49

For 1 € (0,1/2], every sequence of [—1, 1]-valued loss vectors, and every
k € X, the cumulative loss L1 of the Polynomial weights algorithm satisfies

Liw < Li +nQf +1InN/n,

where Q] = 2321(412)2- In particular, if T > 4In N, then by setting
n=+/InN/T and noting that Q] < T, we obtain

Liw < LI +2VTInN.

e Proof (sketch):

Analysis of the Polynomial weights algorithm |

Theorem 2.49

For 1 € (0,1/2], every sequence of [—1, 1]-valued loss vectors, and every
k € X, the cumulative loss L1 of the Polynomial weights algorithm satisfies

Liw < Li +nQf +1InN/n,

where Q] = Z;Aé,ﬂ)? In particular, if T > 4In N, then by setting
n=+/InN/T and noting that Q] < T, we obtain

Liw < LI +2VTInN.

e Proof (sketch): We show that if there is a significant loss, then the
total weight W' must drop substantially.

Analysis of the Polynomial weights algorithm |

Theorem 2.49

For 1 € (0,1/2], every sequence of [—1, 1]-valued loss vectors, and every
k € X, the cumulative loss L1 of the Polynomial weights algorithm satisfies

Liw < Li +nQf +1InN/n,

where Q] = Z;Aé,ﬂ)? In particular, if T > 4In N, then by setting
n=+/InN/T and noting that Q] < T, we obtain

Liw < LI +2VTInN.

e Proof (sketch): We show that if there is a significant loss, then the
total weight W* must drop substantially. For step t, we have

loyy = oI, whE /W,

Analysis of the Polynomial weights algorithm |

Theorem 2.49

For 1 € (0,1/2], every sequence of [—1, 1]-valued loss vectors, and every
k € X, the cumulative loss L1 of the Polynomial weights algorithm satisfies

Liw < Li +nQf +1InN/n,

where Q] = 2321(412)2- In particular, if T > 4In N, then by setting
n=+/InN/T and noting that Q] < T, we obtain

Liw < LI +2VTInN.

e Proof (sketch): We show that if there is a significant loss, then the
total weight W* must drop substantially. For step t, we have
(o = SN witt/ W1, that is, (L, is the expected loss at step t.

Analysis of the Polynomial weights algorithm |

Theorem 2.49
For 1 € (0,1/2], every sequence of [—1, 1]-valued loss vectors, and every
k € X, the cumulative loss L1 of the Polynomial weights algorithm satisfies

Liw < Li +nQf +1InN/n,

where Q] = Z;l(é,t()z. In particular, if T > 4In N, then by setting
n=+/InN/T and noting that Q] < T, we obtain

Liw < LI +2VTInN.

min

e Proof (sketch): We show that if there is a significant loss, then the
total weight W* must drop substantially. For step t, we have
(o = SN witt/ W1, that is, (L, is the expected loss at step t.

e The weight w! of every action i is multiplied by (1 — n¢:™') at step t.

Analysis of the Polynomial weights algorithm |

Theorem 2.49

For 1 € (0,1/2], every sequence of [—1, 1]-valued loss vectors, and every
k € X, the cumulative loss L1 of the Polynomial weights algorithm satisfies

Liw < Li +nQf +1InN/n,

where Q] = Z;l(é,t()z. In particular, if T > 4In N, then by setting
n=+/InN/T and noting that Q] < T, we obtain

Liw < LI +2VTInN.

min

e Proof (sketch): We show that if there is a significant loss, then the
total weight W* must drop substantially. For step t, we have
(o = SN witt/ W1, that is, (L, is the expected loss at step t.

e The weight w! of every action i is multiplied by (1 — n¢:™') at step t.
Thus, Wit = Wt — SN pwiet

Analysis of the Polynomial weights algorithm |

Theorem 2.49

For 1 € (0,1/2], every sequence of [—1, 1]-valued loss vectors, and every
k € X, the cumulative loss L1 of the Polynomial weights algorithm satisfies

Liw < Li +nQf +1InN/n,

where Q] = Z;l(é,t()z. In particular, if T > 4In N, then by setting
n=+/InN/T and noting that Q] < T, we obtain

Liw < LI +2VTInN.

e Proof (sketch): We show that if there is a significant loss, then the
total weight W* must drop substantially. For step t, we have
(o = SN witt/ W1, that is, (L, is the expected loss at step t.

e The weight w! of every action i is multiplied by (1 — n¢:™') at step t.
Thus, W = Wt — SN qwiet = WL — nlh,,).

BN
Analysis of the Polynomial weights algorithm I

Analysis of the Polynomial weights algorithm [l

e Using W' =N and 1 —z < e Z for every z € R, we obtain

WT+1

Analysis of the Polynomial weights algorithm [l

e Using W' =N and 1 —z < e Z for every z € R, we obtain

!
W = WATT (1 =)
t=1

Analysis of the Polynomial weights algorithm [l

e Using W' =N and 1 —z < e Z for every z € R, we obtain

T T
W =W (1 —nthy) < N[e v

t=1 t=1

Analysis of the Polynomial weights algorithm ||

e Using W' =N and 1 —z < e Z for every z € R, we obtain

T T
W+ = WA (L =) < N[e = Ne 5 bbw,

t=1 t=1

Analysis of the Polynomial weights algorithm ||

e Using W' =N and 1 —z < e Z for every z € R, we obtain

T T
wi+l = wt H(l - ng,tDW) < NH e Mhw — Ne_UZtT:JfDW‘
t=1 t=1
e Taking the logarithms, we obtain

In WT+1

Analysis of the Polynomial weights algorithm ||

e Using W' =N and 1 —z < e Z for every z € R, we obtain

T T
W+ = WA (L =) < N[e = Ne 5 bbw,
t=1 t=1

e Taking the logarithms, we obtain

N W <InN =1 lhy

t=1

Analysis of the Polynomial weights algorithm ||

e Using W' =N and 1 —z < e Z for every z € R, we obtain

T T
W+ = WA (L =) < N[e = Ne 5 bbw,
t=1 t=1

e Taking the logarithms, we obtain

InWT <InN =1 lhy =InN—nLly.

t=1

Analysis of the Polynomial weights algorithm ||

e Using W' =N and 1 —z < e Z for every z € R, we obtain

T T
wi+l = wt H(l - ng,tDW) < NH e Mhw — Ne_UZtT:JfDW‘
t=1 t=1
e Taking the logarithms, we obtain

InWT <InN =1 lhy =InN—nLly.
t=1

e For the lower bound, we have WT+! > w1

Analysis of the Polynomial weights algorithm ||

e Using W' =N and 1 —z < e Z for every z € R, we obtain

T T
wi+l = wt H(l - ng,tDW) < NH e Mhw — Ne_UZtT:JItDW‘
t=1 t=1
e Taking the logarithms, we obtain

InWT <InN =1 lhy =InN—nLly.
t—1
e For the lower bound, we have W'+! > w,/ ! and thus, by taking

logarithms, using the recursive definition of weights and
In(1—z)>—z— 2 for z < 1/2, we obtain

In WT+1

Analysis of the Polynomial weights algorithm ||

e Using W' =N and 1 —z < e Z for every z € R, we obtain

T T
wi+l = wt H(l - ng,tDW) < NH e Mhw — Ne_UZtT:JItDW‘
t=1 t=1
e Taking the logarithms, we obtain

InWT <InN =1 lhy =InN—nLly.
t—1
e For the lower bound, we have W'+! > w,/ ! and thus, by taking

logarithms, using the recursive definition of weights and
In(1—z)>—z— 2 for z < 1/2, we obtain

In W™ > Inw,/

Analysis of the Polynomial weights algorithm ||

e Using W' =N and 1 —z < e Z for every z € R, we obtain

T T
wi+l = wt H(l - ng,tDW) < NH e Mhw — /\/e—nZLMEW.
t=1 t=1
e Taking the logarithms, we obtain

InWT <InN =1 lhy =InN—nLly.
t—1
e For the lower bound, we have W'+! > w,/ ! and thus, by taking

logarithms, using the recursive definition of weights and
In(1—z)>—z— 2 for z < 1/2, we obtain

-
n W > nw] ™ = "In(1-nt)
t=1

Analysis of the Polynomial weights algorithm ||

e Using W' =N and 1 —z < e Z for every z € R, we obtain

T T
wi+l = wt H(l - ng,tDW) < NH e Mhw — /\/e—nZLMEW.
t=1 t=1
e Taking the logarithms, we obtain

InWT <InN =1 lhy =InN—nLly.
t—1
e For the lower bound, we have W'+! > w,/ ! and thus, by taking

logarithms, using the recursive definition of weights and
In(1—z)>—z— 2 for z < 1/2, we obtain

-
n W > Inw/ ™ = "In(1—nt) > -0l —7°Q/.

t=1

Analysis of the Polynomial weights algorithm ||

e Using W' =N and 1 —z < e Z for every z € R, we obtain

T T
wi+l = wt H(l - ng,tDW) < NH e Mhw — /\/e—nZLMEW.
t=1 t=1
e Taking the logarithms, we obtain

InWT <InN =1 lhy =InN—nLly.
t=1
e For the lower bound, we have W'+! > w,/ ! and thus, by taking
logarithms, using the recursive definition of weights and
In(1—z)>—z— 2 for z < 1/2, we obtain

-
n W > Inw/ ™ = "In(1—nt) > -0l —7°Q/.
t=1
e Combining the lower and the upper bound, we have

Analysis of the Polynomial weights algorithm ||

e Using W' =N and 1 —z < e Z for every z € R, we obtain

T T
wi+l = wt H(l - ng,tDW) < NH e Mhw — /\/e—nZLMEW.
t=1 t=1
e Taking the logarithms, we obtain

InWT <InN =1 lhy =InN—nLly.
t—1
e For the lower bound, we have W'+! > w,/ ! and thus, by taking

logarithms, using the recursive definition of weights and
In(1—z)>—z— 2 for z < 1/2, we obtain

-
n W > Inw/ ™ = "In(1—nt) > -0l —7°Q/.
t=1
e Combining the lower and the upper bound, we have

—nLi =P Qf < InN —nlly.

Analysis of the Polynomial weights algorithm ||

e Using W' =N and 1 —z < e Z for every z € R, we obtain

T T
wi+l = wt H(l - ng,tDW) < NH e Mhw — /\/e—nZLMEW.
t=1 t=1
e Taking the logarithms, we obtain

InWT <InN =1 lhy =InN—nLly.
t—1
e For the lower bound, we have W'+! > w,/ ! and thus, by taking

logarithms, using the recursive definition of weights and
In(1—z)>—z— 2 for z < 1/2, we obtain

-
n W > Inw/ ™ = "In(1—nt) > -0l —7°Q/.
t=1
e Combining the lower and the upper bound, we have

—nLi =P Qf < InN —nlly.

BN
Polynomial weights algorithm: remarks

Polynomial weights algorithm: remarks

e This algorithm produces very good external regret.

Polynomial weights algorithm: remarks

e This algorithm produces very good external regret. Time-averaged
external regret goes to zero.

Polynomial weights algorithm: remarks

e This algorithm produces very good external regret. Time-averaged
external regret goes to zero.

e The bound L]y, < LT. +2v/TInN is essentially optimal.

min

Polynomial weights algorithm: remarks

e This algorithm produces very good external regret. Time-averaged
external regret goes to zero.

e The bound L]y, < LT. +2v/TInN is essentially optimal.

Proposition 2.50

For integers N and T with T < [log, N, there exists a stochastic
generation of losses such that, for every online algorithm A, we have
E[L]] > T/2 and yet L]. =0.

Polynomial weights algorithm: remarks

e This algorithm produces very good external regret. Time-averaged
external regret goes to zero.

e The bound L]y, < LT. +2v/TInN is essentially optimal.

Proposition 2.50

For integers N and T with T < [log, N, there exists a stochastic
generation of losses such that, for every online algorithm A, we have
E[L]] > T/2 and yet L]. =0.

min

Proposition 2.51
In the case of N = 2 actions, there exists a stochastic generation of losses
such that, for every online algorithm A, we have E[L] — L] .1 > Q(\/T).

Polynomial weights algorithm: remarks

e This algorithm produces very good external regret. Time-averaged
external regret goes to zero.

e The bound L]y, < LT. +2v/TInN is essentially optimal.

Proposition 2.50
For integers N and T with T < [log, N, there exists a stochastic

generation of losses such that, for every online algorithm A, we have
E[L]] > T/2 and yet L]. =0.

min

Proposition 2.51
In the case of N = 2 actions, there exists a stochastic generation of losses
such that, for every online algorithm A, we have E[L] — L] .1 > Q(\/T).

e See lecture notes for the proofs.

Polynomial weights algorithm: remarks

e This algorithm produces very good external regret. Time-averaged
external regret goes to zero.

e The bound L]y, < LT. +2v/TInN is essentially optimal.

Proposition 2.50
For integers N and T with T < [log, N, there exists a stochastic

generation of losses such that, for every online algorithm A, we have
E[L]] > T/2 and yet L]. =0.

min

Proposition 2.51
In the case of N = 2 actions, there exists a stochastic generation of losses
such that, for every online algorithm A, we have E[L] — L] .1 > Q(\/T).

e See lecture notes for the proofs.

e We do not need to know T in advance (Exercise).

https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications
https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications

Besides game theory, the “multiplicative weight update method” has
many applications in various fields of science, for example in
optimization, theoretical computer science, and machine learning.

(100%)2+100b,
alb+q) = ab+ac 10000 + 100b -

126 =6xy

Sources: https://clubitc.ro

https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications
https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications

e Besides game theory, the “multiplicative weight update method” has
many applications in various fields of science, for example in
optimization, theoretical computer science, and machine learning.

alb+q) = ab+ac 10000 + 100b -

126 =6xy
J x+2y=20

Sources: https://clubitc.ro

e See https://en.wikipedia.org/wiki/Multiplicative_weight_
update_method#Applications

https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications
https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications

e Besides game theory, the “multiplicative weight update method” has
many applications in various fields of science, for example in
optimization, theoretical computer science, and machine learning.

alb+q) = ab+ac 10000 + 100b -

126 =6xy
J x+2y=20

Sources: https://clubitc.ro
e See https://en.wikipedia.org/wiki/Multiplicative_weight_
update_method#Applications
e There are other algorithms producing small external regret, for example,
the Regret matching algorithm.

https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications
https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications

NN
The No-regret dynamics

The No-regret dynamics

e “Players in a normal-form game play against each other by selecting
actions according to the Polynomial-weights algorithm.”

The No-regret dynamics

e “Players in a normal-form game play against each other by selecting
actions according to the Polynomial-weights algorithm.”

Algorithm 0.40: NO-REGRET DYNAMICS(G, T ,¢)

Input : A normal-form game G = (P, A, C) of n players, T € N, and £ > 0.
Output : A prob. distribution pf on A; for each i € P and t € {1,..., T}.
for every stept=1,..., T

Each player i € P independently chooses a mixed strategy pf
using an algorithm with average regret at most ¢, with actions
corresponding to pure strategies.

Each player / € P receives a loss vector ¢} = (¢(a;))aea;, where
li(aj) < E e Npr [Ci(aj; at ;)] for the product distribution

pt Pi= Hﬂé, PJ

Output {p*: t € {1,..., T}}.

do

"ENROLL IN AGT" THEY SAID

Algorithm 2.6.4: No-REGRET DYNaMICS(G, T, ¢)

Input : A normal-form game & = (P, A, C') of n players, T € N and = > (.
Output : A probability distribution p! on A; foreachi € Pandt € {1,..., T}.
foreverystept =1,..., T

Each player i € P independently chooses a mixed strategy p! using

an algorithm with average regret at most =, with actions

corresponding to pure strategies.

do Each player i € P receives a loss vector {! = ((*(a;))a,c.4,, where
.":{a,] —E,t ot |Cilag;al ;)] for the product distribution
ﬂ’ i l_[_;:rp.:"
Output {p': t e {1,....T}}.

“THERE'LL BE NO REGRET" THEY SAID

Sources: Students of MFF UK

"ENROLL IN AGT" THEY SAID

Algorithm 2.6.4: No-REGRET DYNaMICS(G, T, ¢)

Input : A normal-form game & = (P, A, C') of n players, T € N and = > (.
Output : A probability distribution p! on A; foreachi € Pandt € {1,..., T}.
foreverystept =1,..., T

Each player i € P independently chooses a mixed strategy p! using

an algorithm with average regret at most =, with actions
corresponding to pure strategies.

Each player i € F receives a loss vector ff = ({:(m))a,ea,, where
fi(a;) « Epe o0 |Cilajzal)] for the product distribution

a: i = l_[.r.-‘r p_:,.

Output {p': t e {1,....T}}.

“THERE'LL BE NO REGRET" THEY SAID

Sources: Students of MFF UK

Thank you for your attention.

do

