
Algorithmic game theory

Martin Balko

6th lecture

November 8th 2024

Regret minimization

Regret minimization

• We introduce a completely new model of interactions based on
so-called regret minimization. We apply online learning.

Sources: https://blogger.googleusercontent.com/

• Later, we apply these new methods to design new fast algorithms to
approximate correlated equilibria.

• Today, we introduce the model and some basic algorithms on how to
minimize regret.

Regret minimization

• We introduce a completely new model of interactions based on
so-called regret minimization.

We apply online learning.

Sources: https://blogger.googleusercontent.com/

• Later, we apply these new methods to design new fast algorithms to
approximate correlated equilibria.

• Today, we introduce the model and some basic algorithms on how to
minimize regret.

Regret minimization

• We introduce a completely new model of interactions based on
so-called regret minimization. We apply online learning.

Sources: https://blogger.googleusercontent.com/

• Later, we apply these new methods to design new fast algorithms to
approximate correlated equilibria.

• Today, we introduce the model and some basic algorithms on how to
minimize regret.

Regret minimization

• We introduce a completely new model of interactions based on
so-called regret minimization. We apply online learning.

Sources: https://blogger.googleusercontent.com/

• Later, we apply these new methods to design new fast algorithms to
approximate correlated equilibria.

• Today, we introduce the model and some basic algorithms on how to
minimize regret.

Regret minimization

• We introduce a completely new model of interactions based on
so-called regret minimization. We apply online learning.

Sources: https://blogger.googleusercontent.com/

• Later, we apply these new methods to design new fast algorithms to
approximate correlated equilibria.

• Today, we introduce the model and some basic algorithms on how to
minimize regret.

Regret minimization

• We introduce a completely new model of interactions based on
so-called regret minimization. We apply online learning.

Sources: https://blogger.googleusercontent.com/

• Later, we apply these new methods to design new fast algorithms to
approximate correlated equilibria.

• Today, we introduce the model and some basic algorithms on how to
minimize regret.

The setting

• Since we are introducing a new model, we will need some notation.

• We have an agent A in an adversary environment.

• There are N available actions for A in the set X = {1, . . . ,N}.

• At each step t = 1, . . . ,T :

◦ Our agent A selects a probability distribution pt = (pt1, . . . , p
t
N)

over X , where pti is the probability that A selects i in step t.
◦ Then, the adversary chooses a loss vector ℓt = (ℓt1, . . . , ℓ

t
N), where

ℓti ∈ [−1, 1] is the loss of action i in step t.
◦ The agent A then experiences loss ℓtA =

∑N
i=1 p

t
i ℓ

t
i . This is the

expected loss of A in step t.

• After T steps, the cumulative loss of action i is LTi =
∑T

t=1 ℓ
t
i .

• The cumulative loss of A is LTA =
∑T

t=1 ℓ
t
A.

The setting

• Since we are introducing a new model, we will need some notation.

• We have an agent A in an adversary environment.

• There are N available actions for A in the set X = {1, . . . ,N}.

• At each step t = 1, . . . ,T :

◦ Our agent A selects a probability distribution pt = (pt1, . . . , p
t
N)

over X , where pti is the probability that A selects i in step t.
◦ Then, the adversary chooses a loss vector ℓt = (ℓt1, . . . , ℓ

t
N), where

ℓti ∈ [−1, 1] is the loss of action i in step t.
◦ The agent A then experiences loss ℓtA =

∑N
i=1 p

t
i ℓ

t
i . This is the

expected loss of A in step t.

• After T steps, the cumulative loss of action i is LTi =
∑T

t=1 ℓ
t
i .

• The cumulative loss of A is LTA =
∑T

t=1 ℓ
t
A.

The setting

• Since we are introducing a new model, we will need some notation.

• We have an agent A in an adversary environment.

• There are N available actions for A in the set X = {1, . . . ,N}.

• At each step t = 1, . . . ,T :

◦ Our agent A selects a probability distribution pt = (pt1, . . . , p
t
N)

over X , where pti is the probability that A selects i in step t.
◦ Then, the adversary chooses a loss vector ℓt = (ℓt1, . . . , ℓ

t
N), where

ℓti ∈ [−1, 1] is the loss of action i in step t.
◦ The agent A then experiences loss ℓtA =

∑N
i=1 p

t
i ℓ

t
i . This is the

expected loss of A in step t.

• After T steps, the cumulative loss of action i is LTi =
∑T

t=1 ℓ
t
i .

• The cumulative loss of A is LTA =
∑T

t=1 ℓ
t
A.

The setting

• Since we are introducing a new model, we will need some notation.

• We have an agent A in an adversary environment.

• There are N available actions for A in the set X = {1, . . . ,N}.

• At each step t = 1, . . . ,T :

◦ Our agent A selects a probability distribution pt = (pt1, . . . , p
t
N)

over X , where pti is the probability that A selects i in step t.
◦ Then, the adversary chooses a loss vector ℓt = (ℓt1, . . . , ℓ

t
N), where

ℓti ∈ [−1, 1] is the loss of action i in step t.
◦ The agent A then experiences loss ℓtA =

∑N
i=1 p

t
i ℓ

t
i . This is the

expected loss of A in step t.

• After T steps, the cumulative loss of action i is LTi =
∑T

t=1 ℓ
t
i .

• The cumulative loss of A is LTA =
∑T

t=1 ℓ
t
A.

The setting

• Since we are introducing a new model, we will need some notation.

• We have an agent A in an adversary environment.

• There are N available actions for A in the set X = {1, . . . ,N}.

• At each step t = 1, . . . ,T :

◦ Our agent A selects a probability distribution pt = (pt1, . . . , p
t
N)

over X , where pti is the probability that A selects i in step t.
◦ Then, the adversary chooses a loss vector ℓt = (ℓt1, . . . , ℓ

t
N), where

ℓti ∈ [−1, 1] is the loss of action i in step t.
◦ The agent A then experiences loss ℓtA =

∑N
i=1 p

t
i ℓ

t
i . This is the

expected loss of A in step t.

• After T steps, the cumulative loss of action i is LTi =
∑T

t=1 ℓ
t
i .

• The cumulative loss of A is LTA =
∑T

t=1 ℓ
t
A.

The setting

• Since we are introducing a new model, we will need some notation.

• We have an agent A in an adversary environment.

• There are N available actions for A in the set X = {1, . . . ,N}.

• At each step t = 1, . . . ,T :

◦ Our agent A selects a probability distribution pt = (pt1, . . . , p
t
N)

over X ,

where pti is the probability that A selects i in step t.
◦ Then, the adversary chooses a loss vector ℓt = (ℓt1, . . . , ℓ

t
N), where

ℓti ∈ [−1, 1] is the loss of action i in step t.
◦ The agent A then experiences loss ℓtA =

∑N
i=1 p

t
i ℓ

t
i . This is the

expected loss of A in step t.

• After T steps, the cumulative loss of action i is LTi =
∑T

t=1 ℓ
t
i .

• The cumulative loss of A is LTA =
∑T

t=1 ℓ
t
A.

The setting

• Since we are introducing a new model, we will need some notation.

• We have an agent A in an adversary environment.

• There are N available actions for A in the set X = {1, . . . ,N}.

• At each step t = 1, . . . ,T :

◦ Our agent A selects a probability distribution pt = (pt1, . . . , p
t
N)

over X , where pti is the probability that A selects i in step t.

◦ Then, the adversary chooses a loss vector ℓt = (ℓt1, . . . , ℓ
t
N), where

ℓti ∈ [−1, 1] is the loss of action i in step t.
◦ The agent A then experiences loss ℓtA =

∑N
i=1 p

t
i ℓ

t
i . This is the

expected loss of A in step t.

• After T steps, the cumulative loss of action i is LTi =
∑T

t=1 ℓ
t
i .

• The cumulative loss of A is LTA =
∑T

t=1 ℓ
t
A.

The setting

• Since we are introducing a new model, we will need some notation.

• We have an agent A in an adversary environment.

• There are N available actions for A in the set X = {1, . . . ,N}.

• At each step t = 1, . . . ,T :

◦ Our agent A selects a probability distribution pt = (pt1, . . . , p
t
N)

over X , where pti is the probability that A selects i in step t.
◦ Then, the adversary chooses a loss vector ℓt = (ℓt1, . . . , ℓ

t
N),

where
ℓti ∈ [−1, 1] is the loss of action i in step t.
◦ The agent A then experiences loss ℓtA =

∑N
i=1 p

t
i ℓ

t
i . This is the

expected loss of A in step t.

• After T steps, the cumulative loss of action i is LTi =
∑T

t=1 ℓ
t
i .

• The cumulative loss of A is LTA =
∑T

t=1 ℓ
t
A.

The setting

• Since we are introducing a new model, we will need some notation.

• We have an agent A in an adversary environment.

• There are N available actions for A in the set X = {1, . . . ,N}.

• At each step t = 1, . . . ,T :

◦ Our agent A selects a probability distribution pt = (pt1, . . . , p
t
N)

over X , where pti is the probability that A selects i in step t.
◦ Then, the adversary chooses a loss vector ℓt = (ℓt1, . . . , ℓ

t
N), where

ℓti ∈ [−1, 1] is the loss of action i in step t.

◦ The agent A then experiences loss ℓtA =
∑N

i=1 p
t
i ℓ

t
i . This is the

expected loss of A in step t.

• After T steps, the cumulative loss of action i is LTi =
∑T

t=1 ℓ
t
i .

• The cumulative loss of A is LTA =
∑T

t=1 ℓ
t
A.

The setting

• Since we are introducing a new model, we will need some notation.

• We have an agent A in an adversary environment.

• There are N available actions for A in the set X = {1, . . . ,N}.

• At each step t = 1, . . . ,T :

◦ Our agent A selects a probability distribution pt = (pt1, . . . , p
t
N)

over X , where pti is the probability that A selects i in step t.
◦ Then, the adversary chooses a loss vector ℓt = (ℓt1, . . . , ℓ

t
N), where

ℓti ∈ [−1, 1] is the loss of action i in step t.
◦ The agent A then experiences loss ℓtA =

∑N
i=1 p

t
i ℓ

t
i .

This is the
expected loss of A in step t.

• After T steps, the cumulative loss of action i is LTi =
∑T

t=1 ℓ
t
i .

• The cumulative loss of A is LTA =
∑T

t=1 ℓ
t
A.

The setting

• Since we are introducing a new model, we will need some notation.

• We have an agent A in an adversary environment.

• There are N available actions for A in the set X = {1, . . . ,N}.

• At each step t = 1, . . . ,T :

◦ Our agent A selects a probability distribution pt = (pt1, . . . , p
t
N)

over X , where pti is the probability that A selects i in step t.
◦ Then, the adversary chooses a loss vector ℓt = (ℓt1, . . . , ℓ

t
N), where

ℓti ∈ [−1, 1] is the loss of action i in step t.
◦ The agent A then experiences loss ℓtA =

∑N
i=1 p

t
i ℓ

t
i . This is the

expected loss of A in step t.

• After T steps, the cumulative loss of action i is LTi =
∑T

t=1 ℓ
t
i .

• The cumulative loss of A is LTA =
∑T

t=1 ℓ
t
A.

The setting

• Since we are introducing a new model, we will need some notation.

• We have an agent A in an adversary environment.

• There are N available actions for A in the set X = {1, . . . ,N}.

• At each step t = 1, . . . ,T :

◦ Our agent A selects a probability distribution pt = (pt1, . . . , p
t
N)

over X , where pti is the probability that A selects i in step t.
◦ Then, the adversary chooses a loss vector ℓt = (ℓt1, . . . , ℓ

t
N), where

ℓti ∈ [−1, 1] is the loss of action i in step t.
◦ The agent A then experiences loss ℓtA =

∑N
i=1 p

t
i ℓ

t
i . This is the

expected loss of A in step t.

• After T steps, the cumulative loss of action i is LTi =
∑T

t=1 ℓ
t
i .

• The cumulative loss of A is LTA =
∑T

t=1 ℓ
t
A.

The setting

• Since we are introducing a new model, we will need some notation.

• We have an agent A in an adversary environment.

• There are N available actions for A in the set X = {1, . . . ,N}.

• At each step t = 1, . . . ,T :

◦ Our agent A selects a probability distribution pt = (pt1, . . . , p
t
N)

over X , where pti is the probability that A selects i in step t.
◦ Then, the adversary chooses a loss vector ℓt = (ℓt1, . . . , ℓ

t
N), where

ℓti ∈ [−1, 1] is the loss of action i in step t.
◦ The agent A then experiences loss ℓtA =

∑N
i=1 p

t
i ℓ

t
i . This is the

expected loss of A in step t.

• After T steps, the cumulative loss of action i is LTi =
∑T

t=1 ℓ
t
i .

• The cumulative loss of A is LTA =
∑T

t=1 ℓ
t
A.

External regret

• We need to be able to tell how well is our agent doing. We choose an
“external approach” and compare his loss to the loss of the best agent
from some comparison class A.
• We will mostly consider the class AX = {Ai : i ∈ X}, where an agent
Ai always chooses action i .

• Let RT
A = LTA −min{LTB : B ∈ AX} be the external regret of A. That

is, RT
A = LTA −min{LTi : i ∈ X}

• Until specified otherwise, we consider only loss vectors from {0, 1}N .
This is only to simplify the notation, all presented results can be
extended to the general case.

External regret

• We need to be able to tell how well is our agent doing.

We choose an
“external approach” and compare his loss to the loss of the best agent
from some comparison class A.
• We will mostly consider the class AX = {Ai : i ∈ X}, where an agent
Ai always chooses action i .

• Let RT
A = LTA −min{LTB : B ∈ AX} be the external regret of A. That

is, RT
A = LTA −min{LTi : i ∈ X}

• Until specified otherwise, we consider only loss vectors from {0, 1}N .
This is only to simplify the notation, all presented results can be
extended to the general case.

External regret

• We need to be able to tell how well is our agent doing. We choose an
“external approach” and compare his loss to the loss of the best agent
from some comparison class A.

• We will mostly consider the class AX = {Ai : i ∈ X}, where an agent
Ai always chooses action i .

• Let RT
A = LTA −min{LTB : B ∈ AX} be the external regret of A. That

is, RT
A = LTA −min{LTi : i ∈ X}

• Until specified otherwise, we consider only loss vectors from {0, 1}N .
This is only to simplify the notation, all presented results can be
extended to the general case.

External regret

• We need to be able to tell how well is our agent doing. We choose an
“external approach” and compare his loss to the loss of the best agent
from some comparison class A.
• We will mostly consider the class AX = {Ai : i ∈ X}, where an agent
Ai always chooses action i .

• Let RT
A = LTA −min{LTB : B ∈ AX} be the external regret of A. That

is, RT
A = LTA −min{LTi : i ∈ X}

• Until specified otherwise, we consider only loss vectors from {0, 1}N .
This is only to simplify the notation, all presented results can be
extended to the general case.

External regret

• We need to be able to tell how well is our agent doing. We choose an
“external approach” and compare his loss to the loss of the best agent
from some comparison class A.
• We will mostly consider the class AX = {Ai : i ∈ X}, where an agent
Ai always chooses action i .

• Let RT
A = LTA −min{LTB : B ∈ AX} be the external regret of A.

That
is, RT

A = LTA −min{LTi : i ∈ X}

• Until specified otherwise, we consider only loss vectors from {0, 1}N .
This is only to simplify the notation, all presented results can be
extended to the general case.

External regret

• We need to be able to tell how well is our agent doing. We choose an
“external approach” and compare his loss to the loss of the best agent
from some comparison class A.
• We will mostly consider the class AX = {Ai : i ∈ X}, where an agent
Ai always chooses action i .

• Let RT
A = LTA −min{LTB : B ∈ AX} be the external regret of A. That

is, RT
A = LTA −min{LTi : i ∈ X}

• Until specified otherwise, we consider only loss vectors from {0, 1}N .
This is only to simplify the notation, all presented results can be
extended to the general case.

External regret

• We need to be able to tell how well is our agent doing. We choose an
“external approach” and compare his loss to the loss of the best agent
from some comparison class A.
• We will mostly consider the class AX = {Ai : i ∈ X}, where an agent
Ai always chooses action i .

• Let RT
A = LTA −min{LTB : B ∈ AX} be the external regret of A. That

is, RT
A = LTA −min{LTi : i ∈ X}

• Until specified otherwise, we consider only loss vectors from {0, 1}N .

This is only to simplify the notation, all presented results can be
extended to the general case.

External regret

• We need to be able to tell how well is our agent doing. We choose an
“external approach” and compare his loss to the loss of the best agent
from some comparison class A.
• We will mostly consider the class AX = {Ai : i ∈ X}, where an agent
Ai always chooses action i .

• Let RT
A = LTA −min{LTB : B ∈ AX} be the external regret of A. That

is, RT
A = LTA −min{LTi : i ∈ X}

• Until specified otherwise, we consider only loss vectors from {0, 1}N .
This is only to simplify the notation, all presented results can be
extended to the general case.

Example

Source: No regret algorithms in games (Georgios Piliouras)

Example

Source: No regret algorithms in games (Georgios Piliouras)

Example

Source: No regret algorithms in games (Georgios Piliouras)

Is the setting too restrictive?

• It might seem that the class AX contains too simple agents. However,
we show that large comparison classes lead to a very large regret.

• Let Aall be the set of agents that assign probability 1 to an arbitrary
action from X in every step.

◦ In AX each agent has to select the same action in all steps.

Observation 2.45

For any agent A and every T ∈ N, there is a sequence of T loss vectors and
an agent B ∈ Aall such that LTA − LTB ≥ T (1− 1/N).

• That is almost as bad as it can get.

• Proof: For every t, let it be the action with the lowest probability pti .
We set ℓtit = 0 and ℓti = 1 for every i ̸= it .

• Since ptit ≤ 1/N , we have ℓtA ≥ 1− 1/N and thus the cumulative loss
LTA of A after T steps is at least T (1− 1/N).

• The algorithm B ∈ Aall that selects the action it in step t with
probability 1 has the cumulative loss LTB = 0.

Is the setting too restrictive?

• It might seem that the class AX contains too simple agents.

However,
we show that large comparison classes lead to a very large regret.

• Let Aall be the set of agents that assign probability 1 to an arbitrary
action from X in every step.

◦ In AX each agent has to select the same action in all steps.

Observation 2.45

For any agent A and every T ∈ N, there is a sequence of T loss vectors and
an agent B ∈ Aall such that LTA − LTB ≥ T (1− 1/N).

• That is almost as bad as it can get.

• Proof: For every t, let it be the action with the lowest probability pti .
We set ℓtit = 0 and ℓti = 1 for every i ̸= it .

• Since ptit ≤ 1/N , we have ℓtA ≥ 1− 1/N and thus the cumulative loss
LTA of A after T steps is at least T (1− 1/N).

• The algorithm B ∈ Aall that selects the action it in step t with
probability 1 has the cumulative loss LTB = 0.

Is the setting too restrictive?

• It might seem that the class AX contains too simple agents. However,
we show that large comparison classes lead to a very large regret.

• Let Aall be the set of agents that assign probability 1 to an arbitrary
action from X in every step.

◦ In AX each agent has to select the same action in all steps.

Observation 2.45

For any agent A and every T ∈ N, there is a sequence of T loss vectors and
an agent B ∈ Aall such that LTA − LTB ≥ T (1− 1/N).

• That is almost as bad as it can get.

• Proof: For every t, let it be the action with the lowest probability pti .
We set ℓtit = 0 and ℓti = 1 for every i ̸= it .

• Since ptit ≤ 1/N , we have ℓtA ≥ 1− 1/N and thus the cumulative loss
LTA of A after T steps is at least T (1− 1/N).

• The algorithm B ∈ Aall that selects the action it in step t with
probability 1 has the cumulative loss LTB = 0.

Is the setting too restrictive?

• It might seem that the class AX contains too simple agents. However,
we show that large comparison classes lead to a very large regret.

• Let Aall be the set of agents that assign probability 1 to an arbitrary
action from X in every step.

◦ In AX each agent has to select the same action in all steps.

Observation 2.45

For any agent A and every T ∈ N, there is a sequence of T loss vectors and
an agent B ∈ Aall such that LTA − LTB ≥ T (1− 1/N).

• That is almost as bad as it can get.

• Proof: For every t, let it be the action with the lowest probability pti .
We set ℓtit = 0 and ℓti = 1 for every i ̸= it .

• Since ptit ≤ 1/N , we have ℓtA ≥ 1− 1/N and thus the cumulative loss
LTA of A after T steps is at least T (1− 1/N).

• The algorithm B ∈ Aall that selects the action it in step t with
probability 1 has the cumulative loss LTB = 0.

Is the setting too restrictive?

• It might seem that the class AX contains too simple agents. However,
we show that large comparison classes lead to a very large regret.

• Let Aall be the set of agents that assign probability 1 to an arbitrary
action from X in every step.

◦ In AX each agent has to select the same action in all steps.

Observation 2.45

For any agent A and every T ∈ N, there is a sequence of T loss vectors and
an agent B ∈ Aall such that LTA − LTB ≥ T (1− 1/N).

• That is almost as bad as it can get.

• Proof: For every t, let it be the action with the lowest probability pti .
We set ℓtit = 0 and ℓti = 1 for every i ̸= it .

• Since ptit ≤ 1/N , we have ℓtA ≥ 1− 1/N and thus the cumulative loss
LTA of A after T steps is at least T (1− 1/N).

• The algorithm B ∈ Aall that selects the action it in step t with
probability 1 has the cumulative loss LTB = 0.

Is the setting too restrictive?

• It might seem that the class AX contains too simple agents. However,
we show that large comparison classes lead to a very large regret.

• Let Aall be the set of agents that assign probability 1 to an arbitrary
action from X in every step.

◦ In AX each agent has to select the same action in all steps.

Observation 2.45

For any agent A and every T ∈ N, there is a sequence of T loss vectors and
an agent B ∈ Aall such that LTA − LTB ≥ T (1− 1/N).

• That is almost as bad as it can get.

• Proof: For every t, let it be the action with the lowest probability pti .
We set ℓtit = 0 and ℓti = 1 for every i ̸= it .

• Since ptit ≤ 1/N , we have ℓtA ≥ 1− 1/N and thus the cumulative loss
LTA of A after T steps is at least T (1− 1/N).

• The algorithm B ∈ Aall that selects the action it in step t with
probability 1 has the cumulative loss LTB = 0.

Is the setting too restrictive?

• It might seem that the class AX contains too simple agents. However,
we show that large comparison classes lead to a very large regret.

• Let Aall be the set of agents that assign probability 1 to an arbitrary
action from X in every step.

◦ In AX each agent has to select the same action in all steps.

Observation 2.45

For any agent A and every T ∈ N, there is a sequence of T loss vectors and
an agent B ∈ Aall such that LTA − LTB ≥ T (1− 1/N).

• That is almost as bad as it can get.

• Proof: For every t, let it be the action with the lowest probability pti .
We set ℓtit = 0 and ℓti = 1 for every i ̸= it .

• Since ptit ≤ 1/N , we have ℓtA ≥ 1− 1/N and thus the cumulative loss
LTA of A after T steps is at least T (1− 1/N).

• The algorithm B ∈ Aall that selects the action it in step t with
probability 1 has the cumulative loss LTB = 0.

Is the setting too restrictive?

• It might seem that the class AX contains too simple agents. However,
we show that large comparison classes lead to a very large regret.

• Let Aall be the set of agents that assign probability 1 to an arbitrary
action from X in every step.

◦ In AX each agent has to select the same action in all steps.

Observation 2.45

For any agent A and every T ∈ N, there is a sequence of T loss vectors and
an agent B ∈ Aall such that LTA − LTB ≥ T (1− 1/N).

• That is almost as bad as it can get.

• Proof:

For every t, let it be the action with the lowest probability pti .
We set ℓtit = 0 and ℓti = 1 for every i ̸= it .

• Since ptit ≤ 1/N , we have ℓtA ≥ 1− 1/N and thus the cumulative loss
LTA of A after T steps is at least T (1− 1/N).

• The algorithm B ∈ Aall that selects the action it in step t with
probability 1 has the cumulative loss LTB = 0.

Is the setting too restrictive?

• It might seem that the class AX contains too simple agents. However,
we show that large comparison classes lead to a very large regret.

• Let Aall be the set of agents that assign probability 1 to an arbitrary
action from X in every step.

◦ In AX each agent has to select the same action in all steps.

Observation 2.45

For any agent A and every T ∈ N, there is a sequence of T loss vectors and
an agent B ∈ Aall such that LTA − LTB ≥ T (1− 1/N).

• That is almost as bad as it can get.

• Proof: For every t, let it be the action with the lowest probability pti .

We set ℓtit = 0 and ℓti = 1 for every i ̸= it .

• Since ptit ≤ 1/N , we have ℓtA ≥ 1− 1/N and thus the cumulative loss
LTA of A after T steps is at least T (1− 1/N).

• The algorithm B ∈ Aall that selects the action it in step t with
probability 1 has the cumulative loss LTB = 0.

Is the setting too restrictive?

• It might seem that the class AX contains too simple agents. However,
we show that large comparison classes lead to a very large regret.

• Let Aall be the set of agents that assign probability 1 to an arbitrary
action from X in every step.

◦ In AX each agent has to select the same action in all steps.

Observation 2.45

For any agent A and every T ∈ N, there is a sequence of T loss vectors and
an agent B ∈ Aall such that LTA − LTB ≥ T (1− 1/N).

• That is almost as bad as it can get.

• Proof: For every t, let it be the action with the lowest probability pti .
We set ℓtit = 0

and ℓti = 1 for every i ̸= it .

• Since ptit ≤ 1/N , we have ℓtA ≥ 1− 1/N and thus the cumulative loss
LTA of A after T steps is at least T (1− 1/N).

• The algorithm B ∈ Aall that selects the action it in step t with
probability 1 has the cumulative loss LTB = 0.

Is the setting too restrictive?

• It might seem that the class AX contains too simple agents. However,
we show that large comparison classes lead to a very large regret.

• Let Aall be the set of agents that assign probability 1 to an arbitrary
action from X in every step.

◦ In AX each agent has to select the same action in all steps.

Observation 2.45

For any agent A and every T ∈ N, there is a sequence of T loss vectors and
an agent B ∈ Aall such that LTA − LTB ≥ T (1− 1/N).

• That is almost as bad as it can get.

• Proof: For every t, let it be the action with the lowest probability pti .
We set ℓtit = 0 and ℓti = 1 for every i ̸= it .

• Since ptit ≤ 1/N , we have ℓtA ≥ 1− 1/N and thus the cumulative loss
LTA of A after T steps is at least T (1− 1/N).

• The algorithm B ∈ Aall that selects the action it in step t with
probability 1 has the cumulative loss LTB = 0.

Is the setting too restrictive?

• It might seem that the class AX contains too simple agents. However,
we show that large comparison classes lead to a very large regret.

• Let Aall be the set of agents that assign probability 1 to an arbitrary
action from X in every step.

◦ In AX each agent has to select the same action in all steps.

Observation 2.45

For any agent A and every T ∈ N, there is a sequence of T loss vectors and
an agent B ∈ Aall such that LTA − LTB ≥ T (1− 1/N).

• That is almost as bad as it can get.

• Proof: For every t, let it be the action with the lowest probability pti .
We set ℓtit = 0 and ℓti = 1 for every i ̸= it .

• Since ptit ≤ 1/N , we have ℓtA ≥ 1− 1/N

and thus the cumulative loss
LTA of A after T steps is at least T (1− 1/N).

• The algorithm B ∈ Aall that selects the action it in step t with
probability 1 has the cumulative loss LTB = 0.

Is the setting too restrictive?

• It might seem that the class AX contains too simple agents. However,
we show that large comparison classes lead to a very large regret.

• Let Aall be the set of agents that assign probability 1 to an arbitrary
action from X in every step.

◦ In AX each agent has to select the same action in all steps.

Observation 2.45

For any agent A and every T ∈ N, there is a sequence of T loss vectors and
an agent B ∈ Aall such that LTA − LTB ≥ T (1− 1/N).

• That is almost as bad as it can get.

• Proof: For every t, let it be the action with the lowest probability pti .
We set ℓtit = 0 and ℓti = 1 for every i ̸= it .

• Since ptit ≤ 1/N , we have ℓtA ≥ 1− 1/N and thus the cumulative loss
LTA of A after T steps is at least T (1− 1/N).

• The algorithm B ∈ Aall that selects the action it in step t with
probability 1 has the cumulative loss LTB = 0.

Is the setting too restrictive?

• It might seem that the class AX contains too simple agents. However,
we show that large comparison classes lead to a very large regret.

• Let Aall be the set of agents that assign probability 1 to an arbitrary
action from X in every step.

◦ In AX each agent has to select the same action in all steps.

Observation 2.45

For any agent A and every T ∈ N, there is a sequence of T loss vectors and
an agent B ∈ Aall such that LTA − LTB ≥ T (1− 1/N).

• That is almost as bad as it can get.

• Proof: For every t, let it be the action with the lowest probability pti .
We set ℓtit = 0 and ℓti = 1 for every i ̸= it .

• Since ptit ≤ 1/N , we have ℓtA ≥ 1− 1/N and thus the cumulative loss
LTA of A after T steps is at least T (1− 1/N).

• The algorithm B ∈ Aall that selects the action it in step t with
probability 1 has the cumulative loss LTB = 0.

Is the setting too restrictive?

• It might seem that the class AX contains too simple agents. However,
we show that large comparison classes lead to a very large regret.

• Let Aall be the set of agents that assign probability 1 to an arbitrary
action from X in every step.

◦ In AX each agent has to select the same action in all steps.

Observation 2.45

For any agent A and every T ∈ N, there is a sequence of T loss vectors and
an agent B ∈ Aall such that LTA − LTB ≥ T (1− 1/N).

• That is almost as bad as it can get.

• Proof: For every t, let it be the action with the lowest probability pti .
We set ℓtit = 0 and ℓti = 1 for every i ̸= it .

• Since ptit ≤ 1/N , we have ℓtA ≥ 1− 1/N and thus the cumulative loss
LTA of A after T steps is at least T (1− 1/N).

• The algorithm B ∈ Aall that selects the action it in step t with
probability 1 has the cumulative loss LTB = 0.

Greedy algorithm

• So we are good with the comparison class AX . How to design an agent
A that performs well against agents from AX?
• We first try a natural greedy approach: select an action i ∈ X for which
the cumulative loss Lt−1

i at step t − 1 is the smallest.

Algorithm 0.1: Greedy algorithm(X ,T)

Input : A set of actions X = {1, . . . ,N} and number of steps T ∈ N.
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
p1 ← (1, 0, . . . , 0),
for t = 2, . . . ,T

do


Lt−1
min ← minj∈X{Lt−1

j },
S t−1 ← {i ∈ X : Lt−1

i = Lt−1
min },

k ← min S t−1,
ptk ← 1, pti ← 0 for i ̸= k ,

Output {pt : t ∈ {1, . . . ,T}}.

Greedy algorithm

• So we are good with the comparison class AX .

How to design an agent
A that performs well against agents from AX?
• We first try a natural greedy approach: select an action i ∈ X for which
the cumulative loss Lt−1

i at step t − 1 is the smallest.

Algorithm 0.2: Greedy algorithm(X ,T)

Input : A set of actions X = {1, . . . ,N} and number of steps T ∈ N.
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
p1 ← (1, 0, . . . , 0),
for t = 2, . . . ,T

do


Lt−1
min ← minj∈X{Lt−1

j },
S t−1 ← {i ∈ X : Lt−1

i = Lt−1
min },

k ← min S t−1,
ptk ← 1, pti ← 0 for i ̸= k ,

Output {pt : t ∈ {1, . . . ,T}}.

Greedy algorithm

• So we are good with the comparison class AX . How to design an agent
A that performs well against agents from AX?

• We first try a natural greedy approach: select an action i ∈ X for which
the cumulative loss Lt−1

i at step t − 1 is the smallest.

Algorithm 0.3: Greedy algorithm(X ,T)

Input : A set of actions X = {1, . . . ,N} and number of steps T ∈ N.
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
p1 ← (1, 0, . . . , 0),
for t = 2, . . . ,T

do


Lt−1
min ← minj∈X{Lt−1

j },
S t−1 ← {i ∈ X : Lt−1

i = Lt−1
min },

k ← min S t−1,
ptk ← 1, pti ← 0 for i ̸= k ,

Output {pt : t ∈ {1, . . . ,T}}.

Greedy algorithm

• So we are good with the comparison class AX . How to design an agent
A that performs well against agents from AX?
• We first try a natural greedy approach:

select an action i ∈ X for which
the cumulative loss Lt−1

i at step t − 1 is the smallest.

Algorithm 0.4: Greedy algorithm(X ,T)

Input : A set of actions X = {1, . . . ,N} and number of steps T ∈ N.
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
p1 ← (1, 0, . . . , 0),
for t = 2, . . . ,T

do


Lt−1
min ← minj∈X{Lt−1

j },
S t−1 ← {i ∈ X : Lt−1

i = Lt−1
min },

k ← min S t−1,
ptk ← 1, pti ← 0 for i ̸= k ,

Output {pt : t ∈ {1, . . . ,T}}.

Greedy algorithm

• So we are good with the comparison class AX . How to design an agent
A that performs well against agents from AX?
• We first try a natural greedy approach: select an action i ∈ X for which
the cumulative loss Lt−1

i at step t − 1 is the smallest.

Algorithm 0.5: Greedy algorithm(X ,T)

Input : A set of actions X = {1, . . . ,N} and number of steps T ∈ N.
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
p1 ← (1, 0, . . . , 0),
for t = 2, . . . ,T

do


Lt−1
min ← minj∈X{Lt−1

j },
S t−1 ← {i ∈ X : Lt−1

i = Lt−1
min },

k ← min S t−1,
ptk ← 1, pti ← 0 for i ̸= k ,

Output {pt : t ∈ {1, . . . ,T}}.

Greedy algorithm

• So we are good with the comparison class AX . How to design an agent
A that performs well against agents from AX?
• We first try a natural greedy approach: select an action i ∈ X for which
the cumulative loss Lt−1

i at step t − 1 is the smallest.

Algorithm 0.6: Greedy algorithm(X ,T)

Input : A set of actions X = {1, . . . ,N} and number of steps T ∈ N.
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.

p1 ← (1, 0, . . . , 0),
for t = 2, . . . ,T

do


Lt−1
min ← minj∈X{Lt−1

j },
S t−1 ← {i ∈ X : Lt−1

i = Lt−1
min },

k ← min S t−1,
ptk ← 1, pti ← 0 for i ̸= k ,

Output {pt : t ∈ {1, . . . ,T}}.

Greedy algorithm

• So we are good with the comparison class AX . How to design an agent
A that performs well against agents from AX?
• We first try a natural greedy approach: select an action i ∈ X for which
the cumulative loss Lt−1

i at step t − 1 is the smallest.

Algorithm 0.7: Greedy algorithm(X ,T)

Input : A set of actions X = {1, . . . ,N} and number of steps T ∈ N.
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
p1 ← (1, 0, . . . , 0),

for t = 2, . . . ,T

do


Lt−1
min ← minj∈X{Lt−1

j },
S t−1 ← {i ∈ X : Lt−1

i = Lt−1
min },

k ← min S t−1,
ptk ← 1, pti ← 0 for i ̸= k ,

Output {pt : t ∈ {1, . . . ,T}}.

Greedy algorithm

• So we are good with the comparison class AX . How to design an agent
A that performs well against agents from AX?
• We first try a natural greedy approach: select an action i ∈ X for which
the cumulative loss Lt−1

i at step t − 1 is the smallest.

Algorithm 0.8: Greedy algorithm(X ,T)

Input : A set of actions X = {1, . . . ,N} and number of steps T ∈ N.
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
p1 ← (1, 0, . . . , 0),
for t = 2, . . . ,T

do



Lt−1
min ← minj∈X{Lt−1

j },
S t−1 ← {i ∈ X : Lt−1

i = Lt−1
min },

k ← min S t−1,
ptk ← 1, pti ← 0 for i ̸= k ,

Output {pt : t ∈ {1, . . . ,T}}.

Greedy algorithm

• So we are good with the comparison class AX . How to design an agent
A that performs well against agents from AX?
• We first try a natural greedy approach: select an action i ∈ X for which
the cumulative loss Lt−1

i at step t − 1 is the smallest.

Algorithm 0.9: Greedy algorithm(X ,T)

Input : A set of actions X = {1, . . . ,N} and number of steps T ∈ N.
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
p1 ← (1, 0, . . . , 0),
for t = 2, . . . ,T

do


Lt−1
min ← minj∈X{Lt−1

j },

S t−1 ← {i ∈ X : Lt−1
i = Lt−1

min },
k ← min S t−1,
ptk ← 1, pti ← 0 for i ̸= k ,

Output {pt : t ∈ {1, . . . ,T}}.

Greedy algorithm

• So we are good with the comparison class AX . How to design an agent
A that performs well against agents from AX?
• We first try a natural greedy approach: select an action i ∈ X for which
the cumulative loss Lt−1

i at step t − 1 is the smallest.

Algorithm 0.10: Greedy algorithm(X ,T)

Input : A set of actions X = {1, . . . ,N} and number of steps T ∈ N.
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
p1 ← (1, 0, . . . , 0),
for t = 2, . . . ,T

do


Lt−1
min ← minj∈X{Lt−1

j },
S t−1 ← {i ∈ X : Lt−1

i = Lt−1
min },

k ← min S t−1,

ptk ← 1, pti ← 0 for i ̸= k ,
Output {pt : t ∈ {1, . . . ,T}}.

Greedy algorithm

• So we are good with the comparison class AX . How to design an agent
A that performs well against agents from AX?
• We first try a natural greedy approach: select an action i ∈ X for which
the cumulative loss Lt−1

i at step t − 1 is the smallest.

Algorithm 0.11: Greedy algorithm(X ,T)

Input : A set of actions X = {1, . . . ,N} and number of steps T ∈ N.
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
p1 ← (1, 0, . . . , 0),
for t = 2, . . . ,T

do


Lt−1
min ← minj∈X{Lt−1

j },
S t−1 ← {i ∈ X : Lt−1

i = Lt−1
min },

k ← min S t−1,
ptk ← 1, pti ← 0 for i ̸= k ,

Output {pt : t ∈ {1, . . . ,T}}.

Greedy algorithm

• So we are good with the comparison class AX . How to design an agent
A that performs well against agents from AX?
• We first try a natural greedy approach: select an action i ∈ X for which
the cumulative loss Lt−1

i at step t − 1 is the smallest.

Algorithm 0.12: Greedy algorithm(X ,T)

Input : A set of actions X = {1, . . . ,N} and number of steps T ∈ N.
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
p1 ← (1, 0, . . . , 0),
for t = 2, . . . ,T

do


Lt−1
min ← minj∈X{Lt−1

j },
S t−1 ← {i ∈ X : Lt−1

i = Lt−1
min },

k ← min S t−1,
ptk ← 1, pti ← 0 for i ̸= k ,

Output {pt : t ∈ {1, . . . ,T}}.

Analysis of the Greedy algorithm

Proposition 2.46

For any sequence of {0, 1}-valued loss vectors, the cumulative loss LTGreedy of
the Greedy algorithm at time T ∈ N satisfies

LTGreedy ≤ N · LTmin + (N − 1).

• Proof: At step t, if the Greedy algorithm incurs a loss of 1 and Ltmin

does not increase, then at least one action disappears from S t in the
next step. This occurs at most N times and then Ltmin increases by 1.

• Thus, the Greedy algorithm incurs a loss of at most N between
successive increments of Ltmin by 1. It follows that

LTGreedy ≤ N · LTmin + N − |ST | ≤ N · LTmin + (N − 1).

• This is rather weak since A can perform roughly N times worse than
the best action.

Analysis of the Greedy algorithm

Proposition 2.46

For any sequence of {0, 1}-valued loss vectors, the cumulative loss LTGreedy of
the Greedy algorithm at time T ∈ N satisfies

LTGreedy ≤ N · LTmin + (N − 1).

• Proof: At step t, if the Greedy algorithm incurs a loss of 1 and Ltmin

does not increase, then at least one action disappears from S t in the
next step. This occurs at most N times and then Ltmin increases by 1.

• Thus, the Greedy algorithm incurs a loss of at most N between
successive increments of Ltmin by 1. It follows that

LTGreedy ≤ N · LTmin + N − |ST | ≤ N · LTmin + (N − 1).

• This is rather weak since A can perform roughly N times worse than
the best action.

Analysis of the Greedy algorithm

Proposition 2.46

For any sequence of {0, 1}-valued loss vectors, the cumulative loss LTGreedy of
the Greedy algorithm at time T ∈ N satisfies

LTGreedy ≤ N · LTmin + (N − 1).

• Proof:

At step t, if the Greedy algorithm incurs a loss of 1 and Ltmin

does not increase, then at least one action disappears from S t in the
next step. This occurs at most N times and then Ltmin increases by 1.

• Thus, the Greedy algorithm incurs a loss of at most N between
successive increments of Ltmin by 1. It follows that

LTGreedy ≤ N · LTmin + N − |ST | ≤ N · LTmin + (N − 1).

• This is rather weak since A can perform roughly N times worse than
the best action.

Analysis of the Greedy algorithm

Proposition 2.46

For any sequence of {0, 1}-valued loss vectors, the cumulative loss LTGreedy of
the Greedy algorithm at time T ∈ N satisfies

LTGreedy ≤ N · LTmin + (N − 1).

• Proof: At step t, if the Greedy algorithm incurs a loss of 1 and Ltmin

does not increase, then at least one action disappears from S t in the
next step.

This occurs at most N times and then Ltmin increases by 1.

• Thus, the Greedy algorithm incurs a loss of at most N between
successive increments of Ltmin by 1. It follows that

LTGreedy ≤ N · LTmin + N − |ST | ≤ N · LTmin + (N − 1).

• This is rather weak since A can perform roughly N times worse than
the best action.

Analysis of the Greedy algorithm

Proposition 2.46

For any sequence of {0, 1}-valued loss vectors, the cumulative loss LTGreedy of
the Greedy algorithm at time T ∈ N satisfies

LTGreedy ≤ N · LTmin + (N − 1).

• Proof: At step t, if the Greedy algorithm incurs a loss of 1 and Ltmin

does not increase, then at least one action disappears from S t in the
next step. This occurs at most N times and then Ltmin increases by 1.

• Thus, the Greedy algorithm incurs a loss of at most N between
successive increments of Ltmin by 1. It follows that

LTGreedy ≤ N · LTmin + N − |ST | ≤ N · LTmin + (N − 1).

• This is rather weak since A can perform roughly N times worse than
the best action.

Analysis of the Greedy algorithm

Proposition 2.46

For any sequence of {0, 1}-valued loss vectors, the cumulative loss LTGreedy of
the Greedy algorithm at time T ∈ N satisfies

LTGreedy ≤ N · LTmin + (N − 1).

• Proof: At step t, if the Greedy algorithm incurs a loss of 1 and Ltmin

does not increase, then at least one action disappears from S t in the
next step. This occurs at most N times and then Ltmin increases by 1.

• Thus, the Greedy algorithm incurs a loss of at most N between
successive increments of Ltmin by 1.

It follows that

LTGreedy ≤ N · LTmin + N − |ST | ≤ N · LTmin + (N − 1).

• This is rather weak since A can perform roughly N times worse than
the best action.

Analysis of the Greedy algorithm

Proposition 2.46

For any sequence of {0, 1}-valued loss vectors, the cumulative loss LTGreedy of
the Greedy algorithm at time T ∈ N satisfies

LTGreedy ≤ N · LTmin + (N − 1).

• Proof: At step t, if the Greedy algorithm incurs a loss of 1 and Ltmin

does not increase, then at least one action disappears from S t in the
next step. This occurs at most N times and then Ltmin increases by 1.

• Thus, the Greedy algorithm incurs a loss of at most N between
successive increments of Ltmin by 1. It follows that

LTGreedy ≤ N · LTmin + N − |ST | ≤ N · LTmin + (N − 1).

• This is rather weak since A can perform roughly N times worse than
the best action.

Analysis of the Greedy algorithm

Proposition 2.46

For any sequence of {0, 1}-valued loss vectors, the cumulative loss LTGreedy of
the Greedy algorithm at time T ∈ N satisfies

LTGreedy ≤ N · LTmin + (N − 1).

• Proof: At step t, if the Greedy algorithm incurs a loss of 1 and Ltmin

does not increase, then at least one action disappears from S t in the
next step. This occurs at most N times and then Ltmin increases by 1.

• Thus, the Greedy algorithm incurs a loss of at most N between
successive increments of Ltmin by 1. It follows that

LTGreedy

≤ N · LTmin + N − |ST | ≤ N · LTmin + (N − 1).

• This is rather weak since A can perform roughly N times worse than
the best action.

Analysis of the Greedy algorithm

Proposition 2.46

For any sequence of {0, 1}-valued loss vectors, the cumulative loss LTGreedy of
the Greedy algorithm at time T ∈ N satisfies

LTGreedy ≤ N · LTmin + (N − 1).

• Proof: At step t, if the Greedy algorithm incurs a loss of 1 and Ltmin

does not increase, then at least one action disappears from S t in the
next step. This occurs at most N times and then Ltmin increases by 1.

• Thus, the Greedy algorithm incurs a loss of at most N between
successive increments of Ltmin by 1. It follows that

LTGreedy ≤ N · LTmin + N − |ST |

≤ N · LTmin + (N − 1).

• This is rather weak since A can perform roughly N times worse than
the best action.

Analysis of the Greedy algorithm

Proposition 2.46

For any sequence of {0, 1}-valued loss vectors, the cumulative loss LTGreedy of
the Greedy algorithm at time T ∈ N satisfies

LTGreedy ≤ N · LTmin + (N − 1).

• Proof: At step t, if the Greedy algorithm incurs a loss of 1 and Ltmin

does not increase, then at least one action disappears from S t in the
next step. This occurs at most N times and then Ltmin increases by 1.

• Thus, the Greedy algorithm incurs a loss of at most N between
successive increments of Ltmin by 1. It follows that

LTGreedy ≤ N · LTmin + N − |ST | ≤ N · LTmin + (N − 1).

• This is rather weak since A can perform roughly N times worse than
the best action.

Analysis of the Greedy algorithm

Proposition 2.46

For any sequence of {0, 1}-valued loss vectors, the cumulative loss LTGreedy of
the Greedy algorithm at time T ∈ N satisfies

LTGreedy ≤ N · LTmin + (N − 1).

• Proof: At step t, if the Greedy algorithm incurs a loss of 1 and Ltmin

does not increase, then at least one action disappears from S t in the
next step. This occurs at most N times and then Ltmin increases by 1.

• Thus, the Greedy algorithm incurs a loss of at most N between
successive increments of Ltmin by 1. It follows that

LTGreedy ≤ N · LTmin + N − |ST | ≤ N · LTmin + (N − 1).

• This is rather weak since A can perform roughly N times worse than
the best action.

Analysis of the Greedy algorithm

Proposition 2.46

For any sequence of {0, 1}-valued loss vectors, the cumulative loss LTGreedy of
the Greedy algorithm at time T ∈ N satisfies

LTGreedy ≤ N · LTmin + (N − 1).

• Proof: At step t, if the Greedy algorithm incurs a loss of 1 and Ltmin

does not increase, then at least one action disappears from S t in the
next step. This occurs at most N times and then Ltmin increases by 1.

• Thus, the Greedy algorithm incurs a loss of at most N between
successive increments of Ltmin by 1. It follows that

LTGreedy ≤ N · LTmin + N − |ST | ≤ N · LTmin + (N − 1).

• This is rather weak since A can perform roughly N times worse than
the best action.

Randomized Greedy algorithm

• There is a good reason for the poor behavior. No deterministic
algorithm can perform significantly better (see the lecture notes).
• So it makes sense to introduce some randomness. We break ties at
random, splitting weights between the currently best actions.

Algorithm 0.13: Randomized greedy algorithm(X ,T)

Input : A set of actions X = {1, . . . ,N} and number of steps T ∈ N.
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
p1 ← (1/N , . . . , 1/N),
for t = 2, . . . ,T

do


Lt−1
min ← minj∈X{Lt−1

j },
S t−1 ← {i ∈ X : Lt−1

i = Lt−1
min },

pti ← 1/|S t−1| for every i ∈ S t−1 and pti ← 0 otherwise.
Output {pt : t ∈ {1, . . . ,T}}.

Randomized Greedy algorithm

• There is a good reason for the poor behavior.

No deterministic
algorithm can perform significantly better (see the lecture notes).
• So it makes sense to introduce some randomness. We break ties at
random, splitting weights between the currently best actions.

Algorithm 0.14: Randomized greedy algorithm(X ,T)

Input : A set of actions X = {1, . . . ,N} and number of steps T ∈ N.
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
p1 ← (1/N , . . . , 1/N),
for t = 2, . . . ,T

do


Lt−1
min ← minj∈X{Lt−1

j },
S t−1 ← {i ∈ X : Lt−1

i = Lt−1
min },

pti ← 1/|S t−1| for every i ∈ S t−1 and pti ← 0 otherwise.
Output {pt : t ∈ {1, . . . ,T}}.

Randomized Greedy algorithm

• There is a good reason for the poor behavior. No deterministic
algorithm can perform significantly better

(see the lecture notes).
• So it makes sense to introduce some randomness. We break ties at
random, splitting weights between the currently best actions.

Algorithm 0.15: Randomized greedy algorithm(X ,T)

Input : A set of actions X = {1, . . . ,N} and number of steps T ∈ N.
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
p1 ← (1/N , . . . , 1/N),
for t = 2, . . . ,T

do


Lt−1
min ← minj∈X{Lt−1

j },
S t−1 ← {i ∈ X : Lt−1

i = Lt−1
min },

pti ← 1/|S t−1| for every i ∈ S t−1 and pti ← 0 otherwise.
Output {pt : t ∈ {1, . . . ,T}}.

Randomized Greedy algorithm

• There is a good reason for the poor behavior. No deterministic
algorithm can perform significantly better (see the lecture notes).

• So it makes sense to introduce some randomness. We break ties at
random, splitting weights between the currently best actions.

Algorithm 0.16: Randomized greedy algorithm(X ,T)

Input : A set of actions X = {1, . . . ,N} and number of steps T ∈ N.
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
p1 ← (1/N , . . . , 1/N),
for t = 2, . . . ,T

do


Lt−1
min ← minj∈X{Lt−1

j },
S t−1 ← {i ∈ X : Lt−1

i = Lt−1
min },

pti ← 1/|S t−1| for every i ∈ S t−1 and pti ← 0 otherwise.
Output {pt : t ∈ {1, . . . ,T}}.

Randomized Greedy algorithm

• There is a good reason for the poor behavior. No deterministic
algorithm can perform significantly better (see the lecture notes).
• So it makes sense to introduce some randomness.

We break ties at
random, splitting weights between the currently best actions.

Algorithm 0.17: Randomized greedy algorithm(X ,T)

Input : A set of actions X = {1, . . . ,N} and number of steps T ∈ N.
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
p1 ← (1/N , . . . , 1/N),
for t = 2, . . . ,T

do


Lt−1
min ← minj∈X{Lt−1

j },
S t−1 ← {i ∈ X : Lt−1

i = Lt−1
min },

pti ← 1/|S t−1| for every i ∈ S t−1 and pti ← 0 otherwise.
Output {pt : t ∈ {1, . . . ,T}}.

Randomized Greedy algorithm

• There is a good reason for the poor behavior. No deterministic
algorithm can perform significantly better (see the lecture notes).
• So it makes sense to introduce some randomness. We break ties at
random, splitting weights between the currently best actions.

Algorithm 0.18: Randomized greedy algorithm(X ,T)

Input : A set of actions X = {1, . . . ,N} and number of steps T ∈ N.
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
p1 ← (1/N , . . . , 1/N),
for t = 2, . . . ,T

do


Lt−1
min ← minj∈X{Lt−1

j },
S t−1 ← {i ∈ X : Lt−1

i = Lt−1
min },

pti ← 1/|S t−1| for every i ∈ S t−1 and pti ← 0 otherwise.
Output {pt : t ∈ {1, . . . ,T}}.

Randomized Greedy algorithm

• There is a good reason for the poor behavior. No deterministic
algorithm can perform significantly better (see the lecture notes).
• So it makes sense to introduce some randomness. We break ties at
random, splitting weights between the currently best actions.

Algorithm 0.19: Randomized greedy algorithm(X ,T)

Input : A set of actions X = {1, . . . ,N} and number of steps T ∈ N.
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.

p1 ← (1/N , . . . , 1/N),
for t = 2, . . . ,T

do


Lt−1
min ← minj∈X{Lt−1

j },
S t−1 ← {i ∈ X : Lt−1

i = Lt−1
min },

pti ← 1/|S t−1| for every i ∈ S t−1 and pti ← 0 otherwise.
Output {pt : t ∈ {1, . . . ,T}}.

Randomized Greedy algorithm

• There is a good reason for the poor behavior. No deterministic
algorithm can perform significantly better (see the lecture notes).
• So it makes sense to introduce some randomness. We break ties at
random, splitting weights between the currently best actions.

Algorithm 0.20: Randomized greedy algorithm(X ,T)

Input : A set of actions X = {1, . . . ,N} and number of steps T ∈ N.
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
p1 ← (1/N , . . . , 1/N),

for t = 2, . . . ,T

do


Lt−1
min ← minj∈X{Lt−1

j },
S t−1 ← {i ∈ X : Lt−1

i = Lt−1
min },

pti ← 1/|S t−1| for every i ∈ S t−1 and pti ← 0 otherwise.
Output {pt : t ∈ {1, . . . ,T}}.

Randomized Greedy algorithm

• There is a good reason for the poor behavior. No deterministic
algorithm can perform significantly better (see the lecture notes).
• So it makes sense to introduce some randomness. We break ties at
random, splitting weights between the currently best actions.

Algorithm 0.21: Randomized greedy algorithm(X ,T)

Input : A set of actions X = {1, . . . ,N} and number of steps T ∈ N.
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
p1 ← (1/N , . . . , 1/N),
for t = 2, . . . ,T

do



Lt−1
min ← minj∈X{Lt−1

j },
S t−1 ← {i ∈ X : Lt−1

i = Lt−1
min },

pti ← 1/|S t−1| for every i ∈ S t−1 and pti ← 0 otherwise.
Output {pt : t ∈ {1, . . . ,T}}.

Randomized Greedy algorithm

• There is a good reason for the poor behavior. No deterministic
algorithm can perform significantly better (see the lecture notes).
• So it makes sense to introduce some randomness. We break ties at
random, splitting weights between the currently best actions.

Algorithm 0.22: Randomized greedy algorithm(X ,T)

Input : A set of actions X = {1, . . . ,N} and number of steps T ∈ N.
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
p1 ← (1/N , . . . , 1/N),
for t = 2, . . . ,T

do


Lt−1
min ← minj∈X{Lt−1

j },

S t−1 ← {i ∈ X : Lt−1
i = Lt−1

min },
pti ← 1/|S t−1| for every i ∈ S t−1 and pti ← 0 otherwise.

Output {pt : t ∈ {1, . . . ,T}}.

Randomized Greedy algorithm

• There is a good reason for the poor behavior. No deterministic
algorithm can perform significantly better (see the lecture notes).
• So it makes sense to introduce some randomness. We break ties at
random, splitting weights between the currently best actions.

Algorithm 0.23: Randomized greedy algorithm(X ,T)

Input : A set of actions X = {1, . . . ,N} and number of steps T ∈ N.
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
p1 ← (1/N , . . . , 1/N),
for t = 2, . . . ,T

do


Lt−1
min ← minj∈X{Lt−1

j },
S t−1 ← {i ∈ X : Lt−1

i = Lt−1
min },

pti ← 1/|S t−1| for every i ∈ S t−1 and pti ← 0 otherwise.
Output {pt : t ∈ {1, . . . ,T}}.

Randomized Greedy algorithm

• There is a good reason for the poor behavior. No deterministic
algorithm can perform significantly better (see the lecture notes).
• So it makes sense to introduce some randomness. We break ties at
random, splitting weights between the currently best actions.

Algorithm 0.24: Randomized greedy algorithm(X ,T)

Input : A set of actions X = {1, . . . ,N} and number of steps T ∈ N.
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
p1 ← (1/N , . . . , 1/N),
for t = 2, . . . ,T

do


Lt−1
min ← minj∈X{Lt−1

j },
S t−1 ← {i ∈ X : Lt−1

i = Lt−1
min },

pti ← 1/|S t−1| for every i ∈ S t−1 and pti ← 0 otherwise.

Output {pt : t ∈ {1, . . . ,T}}.

Randomized Greedy algorithm

• There is a good reason for the poor behavior. No deterministic
algorithm can perform significantly better (see the lecture notes).
• So it makes sense to introduce some randomness. We break ties at
random, splitting weights between the currently best actions.

Algorithm 0.25: Randomized greedy algorithm(X ,T)

Input : A set of actions X = {1, . . . ,N} and number of steps T ∈ N.
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
p1 ← (1/N , . . . , 1/N),
for t = 2, . . . ,T

do


Lt−1
min ← minj∈X{Lt−1

j },
S t−1 ← {i ∈ X : Lt−1

i = Lt−1
min },

pti ← 1/|S t−1| for every i ∈ S t−1 and pti ← 0 otherwise.
Output {pt : t ∈ {1, . . . ,T}}.

Analysis of the Randomized greedy algorithm

Proposition 2.48

For any sequence of {0, 1}-valued loss vectors, the cumulative loss LTRG of
the Randomized greedy algorithm at time T ∈ N satisfies

LTRG ≤ (1 + lnN) · LTmin + lnN .

• Proof (sketch): We proceed as in the previous proof. For j ∈ N, let tj
be the time step t at which the loss Ltmin first reaches value j . We
estimate the loss of the algorithm between steps tj and tj+1.
• Note that 1 ≤ |S t | ≤ N . If the size of S t shrinks by k from n′ to n′ − k
at some time t ∈ (tj , tj+1], then the loss of the algorithm at step t is
k/n′, since the weight of each such action is 1/n′.
• Clearly, k/n′ ≤ 1/n′ + 1/(n′ − 1) + · · ·+ 1/(n′ − k + 1), so we obtain
that the loss for the entire time interval (tj , tj+1] is at most
1/N + 1/(N − 1) + · · ·+ 1/1 ≤ 1 + lnN . It follows that

LTRG ≤ (1 + lnN) · LTmin + (1/N + 1/(N − 1) + · · ·+ 1/(|ST |+ 1)).

Analysis of the Randomized greedy algorithm

Proposition 2.48

For any sequence of {0, 1}-valued loss vectors, the cumulative loss LTRG of
the Randomized greedy algorithm at time T ∈ N satisfies

LTRG ≤ (1 + lnN) · LTmin + lnN .

• Proof (sketch): We proceed as in the previous proof. For j ∈ N, let tj
be the time step t at which the loss Ltmin first reaches value j . We
estimate the loss of the algorithm between steps tj and tj+1.
• Note that 1 ≤ |S t | ≤ N . If the size of S t shrinks by k from n′ to n′ − k
at some time t ∈ (tj , tj+1], then the loss of the algorithm at step t is
k/n′, since the weight of each such action is 1/n′.
• Clearly, k/n′ ≤ 1/n′ + 1/(n′ − 1) + · · ·+ 1/(n′ − k + 1), so we obtain
that the loss for the entire time interval (tj , tj+1] is at most
1/N + 1/(N − 1) + · · ·+ 1/1 ≤ 1 + lnN . It follows that

LTRG ≤ (1 + lnN) · LTmin + (1/N + 1/(N − 1) + · · ·+ 1/(|ST |+ 1)).

Analysis of the Randomized greedy algorithm

Proposition 2.48

For any sequence of {0, 1}-valued loss vectors, the cumulative loss LTRG of
the Randomized greedy algorithm at time T ∈ N satisfies

LTRG ≤ (1 + lnN) · LTmin + lnN .

• Proof (sketch):

We proceed as in the previous proof. For j ∈ N, let tj
be the time step t at which the loss Ltmin first reaches value j . We
estimate the loss of the algorithm between steps tj and tj+1.
• Note that 1 ≤ |S t | ≤ N . If the size of S t shrinks by k from n′ to n′ − k
at some time t ∈ (tj , tj+1], then the loss of the algorithm at step t is
k/n′, since the weight of each such action is 1/n′.
• Clearly, k/n′ ≤ 1/n′ + 1/(n′ − 1) + · · ·+ 1/(n′ − k + 1), so we obtain
that the loss for the entire time interval (tj , tj+1] is at most
1/N + 1/(N − 1) + · · ·+ 1/1 ≤ 1 + lnN . It follows that

LTRG ≤ (1 + lnN) · LTmin + (1/N + 1/(N − 1) + · · ·+ 1/(|ST |+ 1)).

Analysis of the Randomized greedy algorithm

Proposition 2.48

For any sequence of {0, 1}-valued loss vectors, the cumulative loss LTRG of
the Randomized greedy algorithm at time T ∈ N satisfies

LTRG ≤ (1 + lnN) · LTmin + lnN .

• Proof (sketch): We proceed as in the previous proof.

For j ∈ N, let tj
be the time step t at which the loss Ltmin first reaches value j . We
estimate the loss of the algorithm between steps tj and tj+1.
• Note that 1 ≤ |S t | ≤ N . If the size of S t shrinks by k from n′ to n′ − k
at some time t ∈ (tj , tj+1], then the loss of the algorithm at step t is
k/n′, since the weight of each such action is 1/n′.
• Clearly, k/n′ ≤ 1/n′ + 1/(n′ − 1) + · · ·+ 1/(n′ − k + 1), so we obtain
that the loss for the entire time interval (tj , tj+1] is at most
1/N + 1/(N − 1) + · · ·+ 1/1 ≤ 1 + lnN . It follows that

LTRG ≤ (1 + lnN) · LTmin + (1/N + 1/(N − 1) + · · ·+ 1/(|ST |+ 1)).

Analysis of the Randomized greedy algorithm

Proposition 2.48

For any sequence of {0, 1}-valued loss vectors, the cumulative loss LTRG of
the Randomized greedy algorithm at time T ∈ N satisfies

LTRG ≤ (1 + lnN) · LTmin + lnN .

• Proof (sketch): We proceed as in the previous proof. For j ∈ N, let tj
be the time step t at which the loss Ltmin first reaches value j .

We
estimate the loss of the algorithm between steps tj and tj+1.
• Note that 1 ≤ |S t | ≤ N . If the size of S t shrinks by k from n′ to n′ − k
at some time t ∈ (tj , tj+1], then the loss of the algorithm at step t is
k/n′, since the weight of each such action is 1/n′.
• Clearly, k/n′ ≤ 1/n′ + 1/(n′ − 1) + · · ·+ 1/(n′ − k + 1), so we obtain
that the loss for the entire time interval (tj , tj+1] is at most
1/N + 1/(N − 1) + · · ·+ 1/1 ≤ 1 + lnN . It follows that

LTRG ≤ (1 + lnN) · LTmin + (1/N + 1/(N − 1) + · · ·+ 1/(|ST |+ 1)).

Analysis of the Randomized greedy algorithm

Proposition 2.48

For any sequence of {0, 1}-valued loss vectors, the cumulative loss LTRG of
the Randomized greedy algorithm at time T ∈ N satisfies

LTRG ≤ (1 + lnN) · LTmin + lnN .

• Proof (sketch): We proceed as in the previous proof. For j ∈ N, let tj
be the time step t at which the loss Ltmin first reaches value j . We
estimate the loss of the algorithm between steps tj and tj+1.

• Note that 1 ≤ |S t | ≤ N . If the size of S t shrinks by k from n′ to n′ − k
at some time t ∈ (tj , tj+1], then the loss of the algorithm at step t is
k/n′, since the weight of each such action is 1/n′.
• Clearly, k/n′ ≤ 1/n′ + 1/(n′ − 1) + · · ·+ 1/(n′ − k + 1), so we obtain
that the loss for the entire time interval (tj , tj+1] is at most
1/N + 1/(N − 1) + · · ·+ 1/1 ≤ 1 + lnN . It follows that

LTRG ≤ (1 + lnN) · LTmin + (1/N + 1/(N − 1) + · · ·+ 1/(|ST |+ 1)).

Analysis of the Randomized greedy algorithm

Proposition 2.48

For any sequence of {0, 1}-valued loss vectors, the cumulative loss LTRG of
the Randomized greedy algorithm at time T ∈ N satisfies

LTRG ≤ (1 + lnN) · LTmin + lnN .

• Proof (sketch): We proceed as in the previous proof. For j ∈ N, let tj
be the time step t at which the loss Ltmin first reaches value j . We
estimate the loss of the algorithm between steps tj and tj+1.
• Note that 1 ≤ |S t | ≤ N .

If the size of S t shrinks by k from n′ to n′ − k
at some time t ∈ (tj , tj+1], then the loss of the algorithm at step t is
k/n′, since the weight of each such action is 1/n′.
• Clearly, k/n′ ≤ 1/n′ + 1/(n′ − 1) + · · ·+ 1/(n′ − k + 1), so we obtain
that the loss for the entire time interval (tj , tj+1] is at most
1/N + 1/(N − 1) + · · ·+ 1/1 ≤ 1 + lnN . It follows that

LTRG ≤ (1 + lnN) · LTmin + (1/N + 1/(N − 1) + · · ·+ 1/(|ST |+ 1)).

Analysis of the Randomized greedy algorithm

Proposition 2.48

For any sequence of {0, 1}-valued loss vectors, the cumulative loss LTRG of
the Randomized greedy algorithm at time T ∈ N satisfies

LTRG ≤ (1 + lnN) · LTmin + lnN .

• Proof (sketch): We proceed as in the previous proof. For j ∈ N, let tj
be the time step t at which the loss Ltmin first reaches value j . We
estimate the loss of the algorithm between steps tj and tj+1.
• Note that 1 ≤ |S t | ≤ N . If the size of S t shrinks by k from n′ to n′ − k
at some time t ∈ (tj , tj+1], then the loss of the algorithm at step t is
k/n′,

since the weight of each such action is 1/n′.
• Clearly, k/n′ ≤ 1/n′ + 1/(n′ − 1) + · · ·+ 1/(n′ − k + 1), so we obtain
that the loss for the entire time interval (tj , tj+1] is at most
1/N + 1/(N − 1) + · · ·+ 1/1 ≤ 1 + lnN . It follows that

LTRG ≤ (1 + lnN) · LTmin + (1/N + 1/(N − 1) + · · ·+ 1/(|ST |+ 1)).

Analysis of the Randomized greedy algorithm

Proposition 2.48

For any sequence of {0, 1}-valued loss vectors, the cumulative loss LTRG of
the Randomized greedy algorithm at time T ∈ N satisfies

LTRG ≤ (1 + lnN) · LTmin + lnN .

• Proof (sketch): We proceed as in the previous proof. For j ∈ N, let tj
be the time step t at which the loss Ltmin first reaches value j . We
estimate the loss of the algorithm between steps tj and tj+1.
• Note that 1 ≤ |S t | ≤ N . If the size of S t shrinks by k from n′ to n′ − k
at some time t ∈ (tj , tj+1], then the loss of the algorithm at step t is
k/n′, since the weight of each such action is 1/n′.

• Clearly, k/n′ ≤ 1/n′ + 1/(n′ − 1) + · · ·+ 1/(n′ − k + 1), so we obtain
that the loss for the entire time interval (tj , tj+1] is at most
1/N + 1/(N − 1) + · · ·+ 1/1 ≤ 1 + lnN . It follows that

LTRG ≤ (1 + lnN) · LTmin + (1/N + 1/(N − 1) + · · ·+ 1/(|ST |+ 1)).

Analysis of the Randomized greedy algorithm

Proposition 2.48

For any sequence of {0, 1}-valued loss vectors, the cumulative loss LTRG of
the Randomized greedy algorithm at time T ∈ N satisfies

LTRG ≤ (1 + lnN) · LTmin + lnN .

• Proof (sketch): We proceed as in the previous proof. For j ∈ N, let tj
be the time step t at which the loss Ltmin first reaches value j . We
estimate the loss of the algorithm between steps tj and tj+1.
• Note that 1 ≤ |S t | ≤ N . If the size of S t shrinks by k from n′ to n′ − k
at some time t ∈ (tj , tj+1], then the loss of the algorithm at step t is
k/n′, since the weight of each such action is 1/n′.
• Clearly, k/n′ ≤ 1/n′ + 1/(n′ − 1) + · · ·+ 1/(n′ − k + 1), so we obtain
that the loss for the entire time interval (tj , tj+1] is at most

1/N + 1/(N − 1) + · · ·+ 1/1 ≤ 1 + lnN . It follows that

LTRG ≤ (1 + lnN) · LTmin + (1/N + 1/(N − 1) + · · ·+ 1/(|ST |+ 1)).

Analysis of the Randomized greedy algorithm

Proposition 2.48

For any sequence of {0, 1}-valued loss vectors, the cumulative loss LTRG of
the Randomized greedy algorithm at time T ∈ N satisfies

LTRG ≤ (1 + lnN) · LTmin + lnN .

• Proof (sketch): We proceed as in the previous proof. For j ∈ N, let tj
be the time step t at which the loss Ltmin first reaches value j . We
estimate the loss of the algorithm between steps tj and tj+1.
• Note that 1 ≤ |S t | ≤ N . If the size of S t shrinks by k from n′ to n′ − k
at some time t ∈ (tj , tj+1], then the loss of the algorithm at step t is
k/n′, since the weight of each such action is 1/n′.
• Clearly, k/n′ ≤ 1/n′ + 1/(n′ − 1) + · · ·+ 1/(n′ − k + 1), so we obtain
that the loss for the entire time interval (tj , tj+1] is at most
1/N + 1/(N − 1) + · · ·+ 1/1

≤ 1 + lnN . It follows that

LTRG ≤ (1 + lnN) · LTmin + (1/N + 1/(N − 1) + · · ·+ 1/(|ST |+ 1)).

Analysis of the Randomized greedy algorithm

Proposition 2.48

For any sequence of {0, 1}-valued loss vectors, the cumulative loss LTRG of
the Randomized greedy algorithm at time T ∈ N satisfies

LTRG ≤ (1 + lnN) · LTmin + lnN .

• Proof (sketch): We proceed as in the previous proof. For j ∈ N, let tj
be the time step t at which the loss Ltmin first reaches value j . We
estimate the loss of the algorithm between steps tj and tj+1.
• Note that 1 ≤ |S t | ≤ N . If the size of S t shrinks by k from n′ to n′ − k
at some time t ∈ (tj , tj+1], then the loss of the algorithm at step t is
k/n′, since the weight of each such action is 1/n′.
• Clearly, k/n′ ≤ 1/n′ + 1/(n′ − 1) + · · ·+ 1/(n′ − k + 1), so we obtain
that the loss for the entire time interval (tj , tj+1] is at most
1/N + 1/(N − 1) + · · ·+ 1/1 ≤ 1 + lnN .

It follows that

LTRG ≤ (1 + lnN) · LTmin + (1/N + 1/(N − 1) + · · ·+ 1/(|ST |+ 1)).

Analysis of the Randomized greedy algorithm

Proposition 2.48

For any sequence of {0, 1}-valued loss vectors, the cumulative loss LTRG of
the Randomized greedy algorithm at time T ∈ N satisfies

LTRG ≤ (1 + lnN) · LTmin + lnN .

• Proof (sketch): We proceed as in the previous proof. For j ∈ N, let tj
be the time step t at which the loss Ltmin first reaches value j . We
estimate the loss of the algorithm between steps tj and tj+1.
• Note that 1 ≤ |S t | ≤ N . If the size of S t shrinks by k from n′ to n′ − k
at some time t ∈ (tj , tj+1], then the loss of the algorithm at step t is
k/n′, since the weight of each such action is 1/n′.
• Clearly, k/n′ ≤ 1/n′ + 1/(n′ − 1) + · · ·+ 1/(n′ − k + 1), so we obtain
that the loss for the entire time interval (tj , tj+1] is at most
1/N + 1/(N − 1) + · · ·+ 1/1 ≤ 1 + lnN . It follows that

LTRG

≤ (1 + lnN) · LTmin + (1/N + 1/(N − 1) + · · ·+ 1/(|ST |+ 1)).

Analysis of the Randomized greedy algorithm

Proposition 2.48

For any sequence of {0, 1}-valued loss vectors, the cumulative loss LTRG of
the Randomized greedy algorithm at time T ∈ N satisfies

LTRG ≤ (1 + lnN) · LTmin + lnN .

• Proof (sketch): We proceed as in the previous proof. For j ∈ N, let tj
be the time step t at which the loss Ltmin first reaches value j . We
estimate the loss of the algorithm between steps tj and tj+1.
• Note that 1 ≤ |S t | ≤ N . If the size of S t shrinks by k from n′ to n′ − k
at some time t ∈ (tj , tj+1], then the loss of the algorithm at step t is
k/n′, since the weight of each such action is 1/n′.
• Clearly, k/n′ ≤ 1/n′ + 1/(n′ − 1) + · · ·+ 1/(n′ − k + 1), so we obtain
that the loss for the entire time interval (tj , tj+1] is at most
1/N + 1/(N − 1) + · · ·+ 1/1 ≤ 1 + lnN . It follows that

LTRG ≤ (1 + lnN) · LTmin + (1/N + 1/(N − 1) + · · ·+ 1/(|ST |+ 1)).

Analysis of the Randomized greedy algorithm

Proposition 2.48

For any sequence of {0, 1}-valued loss vectors, the cumulative loss LTRG of
the Randomized greedy algorithm at time T ∈ N satisfies

LTRG ≤ (1 + lnN) · LTmin + lnN .

• Proof (sketch): We proceed as in the previous proof. For j ∈ N, let tj
be the time step t at which the loss Ltmin first reaches value j . We
estimate the loss of the algorithm between steps tj and tj+1.
• Note that 1 ≤ |S t | ≤ N . If the size of S t shrinks by k from n′ to n′ − k
at some time t ∈ (tj , tj+1], then the loss of the algorithm at step t is
k/n′, since the weight of each such action is 1/n′.
• Clearly, k/n′ ≤ 1/n′ + 1/(n′ − 1) + · · ·+ 1/(n′ − k + 1), so we obtain
that the loss for the entire time interval (tj , tj+1] is at most
1/N + 1/(N − 1) + · · ·+ 1/1 ≤ 1 + lnN . It follows that

LTRG ≤ (1 + lnN) · LTmin + (1/N + 1/(N − 1) + · · ·+ 1/(|ST |+ 1)).

Polynomial weights algorithm

• This is better, but still not optimal. The losses are greatest when the
sets S t are small since the loss can be viewed as proportional to 1/|S t |.
• We overcome this issue by assigning larger weights to actions that are
close to the best one.

Algorithm 0.26: Polynomial weights algorithm(X ,T , η)

Input : A set of actions X = {1, . . . ,N}, T ∈ N, and η ∈ (0, 1/2].
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
w 1
i ← 1 for every i ∈ X ,

p1 ← (1/N , . . . , 1/N),
for t = 2, . . . ,T

do

w t
i ← w t−1

i (1− ηℓt−1
i),

W t ←
∑

i∈X w t
i ,

pti ← w t
i /W

t for every i ∈ X .
Output {pt : t ∈ {1, . . . ,T}}.

Polynomial weights algorithm

• This is better, but still not optimal.

The losses are greatest when the
sets S t are small since the loss can be viewed as proportional to 1/|S t |.
• We overcome this issue by assigning larger weights to actions that are
close to the best one.

Algorithm 0.27: Polynomial weights algorithm(X ,T , η)

Input : A set of actions X = {1, . . . ,N}, T ∈ N, and η ∈ (0, 1/2].
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
w 1
i ← 1 for every i ∈ X ,

p1 ← (1/N , . . . , 1/N),
for t = 2, . . . ,T

do

w t
i ← w t−1

i (1− ηℓt−1
i),

W t ←
∑

i∈X w t
i ,

pti ← w t
i /W

t for every i ∈ X .
Output {pt : t ∈ {1, . . . ,T}}.

Polynomial weights algorithm

• This is better, but still not optimal. The losses are greatest when the
sets S t are small since the loss can be viewed as proportional to 1/|S t |.

• We overcome this issue by assigning larger weights to actions that are
close to the best one.

Algorithm 0.28: Polynomial weights algorithm(X ,T , η)

Input : A set of actions X = {1, . . . ,N}, T ∈ N, and η ∈ (0, 1/2].
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
w 1
i ← 1 for every i ∈ X ,

p1 ← (1/N , . . . , 1/N),
for t = 2, . . . ,T

do

w t
i ← w t−1

i (1− ηℓt−1
i),

W t ←
∑

i∈X w t
i ,

pti ← w t
i /W

t for every i ∈ X .
Output {pt : t ∈ {1, . . . ,T}}.

Polynomial weights algorithm

• This is better, but still not optimal. The losses are greatest when the
sets S t are small since the loss can be viewed as proportional to 1/|S t |.
• We overcome this issue by assigning larger weights to actions that are
close to the best one.

Algorithm 0.29: Polynomial weights algorithm(X ,T , η)

Input : A set of actions X = {1, . . . ,N}, T ∈ N, and η ∈ (0, 1/2].
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
w 1
i ← 1 for every i ∈ X ,

p1 ← (1/N , . . . , 1/N),
for t = 2, . . . ,T

do

w t
i ← w t−1

i (1− ηℓt−1
i),

W t ←
∑

i∈X w t
i ,

pti ← w t
i /W

t for every i ∈ X .
Output {pt : t ∈ {1, . . . ,T}}.

Polynomial weights algorithm

• This is better, but still not optimal. The losses are greatest when the
sets S t are small since the loss can be viewed as proportional to 1/|S t |.
• We overcome this issue by assigning larger weights to actions that are
close to the best one.

Algorithm 0.30: Polynomial weights algorithm(X ,T , η)

Input : A set of actions X = {1, . . . ,N}, T ∈ N, and η ∈ (0, 1/2].
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.

w 1
i ← 1 for every i ∈ X ,

p1 ← (1/N , . . . , 1/N),
for t = 2, . . . ,T

do

w t
i ← w t−1

i (1− ηℓt−1
i),

W t ←
∑

i∈X w t
i ,

pti ← w t
i /W

t for every i ∈ X .
Output {pt : t ∈ {1, . . . ,T}}.

Polynomial weights algorithm

• This is better, but still not optimal. The losses are greatest when the
sets S t are small since the loss can be viewed as proportional to 1/|S t |.
• We overcome this issue by assigning larger weights to actions that are
close to the best one.

Algorithm 0.31: Polynomial weights algorithm(X ,T , η)

Input : A set of actions X = {1, . . . ,N}, T ∈ N, and η ∈ (0, 1/2].
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
w 1
i ← 1 for every i ∈ X ,

p1 ← (1/N , . . . , 1/N),
for t = 2, . . . ,T

do

w t
i ← w t−1

i (1− ηℓt−1
i),

W t ←
∑

i∈X w t
i ,

pti ← w t
i /W

t for every i ∈ X .
Output {pt : t ∈ {1, . . . ,T}}.

Polynomial weights algorithm

• This is better, but still not optimal. The losses are greatest when the
sets S t are small since the loss can be viewed as proportional to 1/|S t |.
• We overcome this issue by assigning larger weights to actions that are
close to the best one.

Algorithm 0.32: Polynomial weights algorithm(X ,T , η)

Input : A set of actions X = {1, . . . ,N}, T ∈ N, and η ∈ (0, 1/2].
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
w 1
i ← 1 for every i ∈ X ,

p1 ← (1/N , . . . , 1/N),

for t = 2, . . . ,T

do

w t
i ← w t−1

i (1− ηℓt−1
i),

W t ←
∑

i∈X w t
i ,

pti ← w t
i /W

t for every i ∈ X .
Output {pt : t ∈ {1, . . . ,T}}.

Polynomial weights algorithm

• This is better, but still not optimal. The losses are greatest when the
sets S t are small since the loss can be viewed as proportional to 1/|S t |.
• We overcome this issue by assigning larger weights to actions that are
close to the best one.

Algorithm 0.33: Polynomial weights algorithm(X ,T , η)

Input : A set of actions X = {1, . . . ,N}, T ∈ N, and η ∈ (0, 1/2].
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
w 1
i ← 1 for every i ∈ X ,

p1 ← (1/N , . . . , 1/N),
for t = 2, . . . ,T

do



w t
i ← w t−1

i (1− ηℓt−1
i),

W t ←
∑

i∈X w t
i ,

pti ← w t
i /W

t for every i ∈ X .
Output {pt : t ∈ {1, . . . ,T}}.

Polynomial weights algorithm

• This is better, but still not optimal. The losses are greatest when the
sets S t are small since the loss can be viewed as proportional to 1/|S t |.
• We overcome this issue by assigning larger weights to actions that are
close to the best one.

Algorithm 0.34: Polynomial weights algorithm(X ,T , η)

Input : A set of actions X = {1, . . . ,N}, T ∈ N, and η ∈ (0, 1/2].
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
w 1
i ← 1 for every i ∈ X ,

p1 ← (1/N , . . . , 1/N),
for t = 2, . . . ,T

do

w t
i ← w t−1

i (1− ηℓt−1
i),

W t ←
∑

i∈X w t
i ,

pti ← w t
i /W

t for every i ∈ X .
Output {pt : t ∈ {1, . . . ,T}}.

Polynomial weights algorithm

• This is better, but still not optimal. The losses are greatest when the
sets S t are small since the loss can be viewed as proportional to 1/|S t |.
• We overcome this issue by assigning larger weights to actions that are
close to the best one.

Algorithm 0.35: Polynomial weights algorithm(X ,T , η)

Input : A set of actions X = {1, . . . ,N}, T ∈ N, and η ∈ (0, 1/2].
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
w 1
i ← 1 for every i ∈ X ,

p1 ← (1/N , . . . , 1/N),
for t = 2, . . . ,T

do

w t
i ← w t−1

i (1− ηℓt−1
i),

W t ←
∑

i∈X w t
i ,

pti ← w t
i /W

t for every i ∈ X .
Output {pt : t ∈ {1, . . . ,T}}.

Polynomial weights algorithm

• This is better, but still not optimal. The losses are greatest when the
sets S t are small since the loss can be viewed as proportional to 1/|S t |.
• We overcome this issue by assigning larger weights to actions that are
close to the best one.

Algorithm 0.36: Polynomial weights algorithm(X ,T , η)

Input : A set of actions X = {1, . . . ,N}, T ∈ N, and η ∈ (0, 1/2].
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
w 1
i ← 1 for every i ∈ X ,

p1 ← (1/N , . . . , 1/N),
for t = 2, . . . ,T

do

w t
i ← w t−1

i (1− ηℓt−1
i),

W t ←
∑

i∈X w t
i ,

pti ← w t
i /W

t for every i ∈ X .

Output {pt : t ∈ {1, . . . ,T}}.

Polynomial weights algorithm

• This is better, but still not optimal. The losses are greatest when the
sets S t are small since the loss can be viewed as proportional to 1/|S t |.
• We overcome this issue by assigning larger weights to actions that are
close to the best one.

Algorithm 0.37: Polynomial weights algorithm(X ,T , η)

Input : A set of actions X = {1, . . . ,N}, T ∈ N, and η ∈ (0, 1/2].
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
w 1
i ← 1 for every i ∈ X ,

p1 ← (1/N , . . . , 1/N),
for t = 2, . . . ,T

do

w t
i ← w t−1

i (1− ηℓt−1
i),

W t ←
∑

i∈X w t
i ,

pti ← w t
i /W

t for every i ∈ X .
Output {pt : t ∈ {1, . . . ,T}}.

Analysis of the Polynomial weights algorithm I

Theorem 2.49

For η ∈ (0, 1/2], every sequence of [−1, 1]-valued loss vectors, and every
k ∈ X , the cumulative loss LTPW of the Polynomial weights algorithm satisfies

LTPW ≤ LTk + ηQT
k + lnN/η,

where QT
k =

∑T
t=1(ℓ

t
k)

2. In particular, if T ≥ 4 lnN , then by setting

η =
√

lnN/T and noting that QT
k ≤ T , we obtain

LTPW ≤ LTmin + 2
√
T lnN .

• Proof (sketch): We show that if there is a significant loss, then the
total weight W t must drop substantially. For step t, we have
ℓtPW =

∑N
i=1 w

t
i ℓ

t
i /W

t , that is, ℓtPW is the expected loss at step t.

• The weight w t
i of every action i is multiplied by (1− ηℓt−1

i) at step t.

Thus, W t+1 = W t −
∑N

i=1 ηw
t
i ℓ

t
i = W t(1− ηℓtPW).

Analysis of the Polynomial weights algorithm I

Theorem 2.49

For η ∈ (0, 1/2], every sequence of [−1, 1]-valued loss vectors, and every
k ∈ X , the cumulative loss LTPW of the Polynomial weights algorithm satisfies

LTPW ≤ LTk + ηQT
k + lnN/η,

where QT
k =

∑T
t=1(ℓ

t
k)

2. In particular, if T ≥ 4 lnN , then by setting

η =
√

lnN/T and noting that QT
k ≤ T , we obtain

LTPW ≤ LTmin + 2
√
T lnN .

• Proof (sketch): We show that if there is a significant loss, then the
total weight W t must drop substantially. For step t, we have
ℓtPW =

∑N
i=1 w

t
i ℓ

t
i /W

t , that is, ℓtPW is the expected loss at step t.

• The weight w t
i of every action i is multiplied by (1− ηℓt−1

i) at step t.

Thus, W t+1 = W t −
∑N

i=1 ηw
t
i ℓ

t
i = W t(1− ηℓtPW).

Analysis of the Polynomial weights algorithm I

Theorem 2.49

For η ∈ (0, 1/2], every sequence of [−1, 1]-valued loss vectors, and every
k ∈ X , the cumulative loss LTPW of the Polynomial weights algorithm satisfies

LTPW ≤ LTk + ηQT
k + lnN/η,

where QT
k =

∑T
t=1(ℓ

t
k)

2. In particular, if T ≥ 4 lnN , then by setting

η =
√

lnN/T and noting that QT
k ≤ T , we obtain

LTPW ≤ LTmin + 2
√
T lnN .

• Proof (sketch): We show that if there is a significant loss, then the
total weight W t must drop substantially. For step t, we have
ℓtPW =

∑N
i=1 w

t
i ℓ

t
i /W

t , that is, ℓtPW is the expected loss at step t.

• The weight w t
i of every action i is multiplied by (1− ηℓt−1

i) at step t.

Thus, W t+1 = W t −
∑N

i=1 ηw
t
i ℓ

t
i = W t(1− ηℓtPW).

Analysis of the Polynomial weights algorithm I

Theorem 2.49

For η ∈ (0, 1/2], every sequence of [−1, 1]-valued loss vectors, and every
k ∈ X , the cumulative loss LTPW of the Polynomial weights algorithm satisfies

LTPW ≤ LTk + ηQT
k + lnN/η,

where QT
k =

∑T
t=1(ℓ

t
k)

2.

In particular, if T ≥ 4 lnN , then by setting

η =
√

lnN/T and noting that QT
k ≤ T , we obtain

LTPW ≤ LTmin + 2
√
T lnN .

• Proof (sketch): We show that if there is a significant loss, then the
total weight W t must drop substantially. For step t, we have
ℓtPW =

∑N
i=1 w

t
i ℓ

t
i /W

t , that is, ℓtPW is the expected loss at step t.

• The weight w t
i of every action i is multiplied by (1− ηℓt−1

i) at step t.

Thus, W t+1 = W t −
∑N

i=1 ηw
t
i ℓ

t
i = W t(1− ηℓtPW).

Analysis of the Polynomial weights algorithm I

Theorem 2.49

For η ∈ (0, 1/2], every sequence of [−1, 1]-valued loss vectors, and every
k ∈ X , the cumulative loss LTPW of the Polynomial weights algorithm satisfies

LTPW ≤ LTk + ηQT
k + lnN/η,

where QT
k =

∑T
t=1(ℓ

t
k)

2. In particular, if T ≥ 4 lnN , then by setting

η =
√
lnN/T and noting that QT

k ≤ T , we obtain

LTPW ≤ LTmin + 2
√
T lnN .

• Proof (sketch): We show that if there is a significant loss, then the
total weight W t must drop substantially. For step t, we have
ℓtPW =

∑N
i=1 w

t
i ℓ

t
i /W

t , that is, ℓtPW is the expected loss at step t.

• The weight w t
i of every action i is multiplied by (1− ηℓt−1

i) at step t.

Thus, W t+1 = W t −
∑N

i=1 ηw
t
i ℓ

t
i = W t(1− ηℓtPW).

Analysis of the Polynomial weights algorithm I

Theorem 2.49

For η ∈ (0, 1/2], every sequence of [−1, 1]-valued loss vectors, and every
k ∈ X , the cumulative loss LTPW of the Polynomial weights algorithm satisfies

LTPW ≤ LTk + ηQT
k + lnN/η,

where QT
k =

∑T
t=1(ℓ

t
k)

2. In particular, if T ≥ 4 lnN , then by setting

η =
√
lnN/T and noting that QT

k ≤ T , we obtain

LTPW ≤ LTmin + 2
√
T lnN .

• Proof (sketch): We show that if there is a significant loss, then the
total weight W t must drop substantially. For step t, we have
ℓtPW =

∑N
i=1 w

t
i ℓ

t
i /W

t , that is, ℓtPW is the expected loss at step t.

• The weight w t
i of every action i is multiplied by (1− ηℓt−1

i) at step t.

Thus, W t+1 = W t −
∑N

i=1 ηw
t
i ℓ

t
i = W t(1− ηℓtPW).

Analysis of the Polynomial weights algorithm I

Theorem 2.49

For η ∈ (0, 1/2], every sequence of [−1, 1]-valued loss vectors, and every
k ∈ X , the cumulative loss LTPW of the Polynomial weights algorithm satisfies

LTPW ≤ LTk + ηQT
k + lnN/η,

where QT
k =

∑T
t=1(ℓ

t
k)

2. In particular, if T ≥ 4 lnN , then by setting

η =
√
lnN/T and noting that QT

k ≤ T , we obtain

LTPW ≤ LTmin + 2
√
T lnN .

• Proof (sketch):

We show that if there is a significant loss, then the
total weight W t must drop substantially. For step t, we have
ℓtPW =

∑N
i=1 w

t
i ℓ

t
i /W

t , that is, ℓtPW is the expected loss at step t.

• The weight w t
i of every action i is multiplied by (1− ηℓt−1

i) at step t.

Thus, W t+1 = W t −
∑N

i=1 ηw
t
i ℓ

t
i = W t(1− ηℓtPW).

Analysis of the Polynomial weights algorithm I

Theorem 2.49

For η ∈ (0, 1/2], every sequence of [−1, 1]-valued loss vectors, and every
k ∈ X , the cumulative loss LTPW of the Polynomial weights algorithm satisfies

LTPW ≤ LTk + ηQT
k + lnN/η,

where QT
k =

∑T
t=1(ℓ

t
k)

2. In particular, if T ≥ 4 lnN , then by setting

η =
√
lnN/T and noting that QT

k ≤ T , we obtain

LTPW ≤ LTmin + 2
√
T lnN .

• Proof (sketch): We show that if there is a significant loss, then the
total weight W t must drop substantially.

For step t, we have
ℓtPW =

∑N
i=1 w

t
i ℓ

t
i /W

t , that is, ℓtPW is the expected loss at step t.

• The weight w t
i of every action i is multiplied by (1− ηℓt−1

i) at step t.

Thus, W t+1 = W t −
∑N

i=1 ηw
t
i ℓ

t
i = W t(1− ηℓtPW).

Analysis of the Polynomial weights algorithm I

Theorem 2.49

For η ∈ (0, 1/2], every sequence of [−1, 1]-valued loss vectors, and every
k ∈ X , the cumulative loss LTPW of the Polynomial weights algorithm satisfies

LTPW ≤ LTk + ηQT
k + lnN/η,

where QT
k =

∑T
t=1(ℓ

t
k)

2. In particular, if T ≥ 4 lnN , then by setting

η =
√
lnN/T and noting that QT

k ≤ T , we obtain

LTPW ≤ LTmin + 2
√
T lnN .

• Proof (sketch): We show that if there is a significant loss, then the
total weight W t must drop substantially. For step t, we have
ℓtPW =

∑N
i=1 w

t
i ℓ

t
i /W

t ,

that is, ℓtPW is the expected loss at step t.

• The weight w t
i of every action i is multiplied by (1− ηℓt−1

i) at step t.

Thus, W t+1 = W t −
∑N

i=1 ηw
t
i ℓ

t
i = W t(1− ηℓtPW).

Analysis of the Polynomial weights algorithm I

Theorem 2.49

For η ∈ (0, 1/2], every sequence of [−1, 1]-valued loss vectors, and every
k ∈ X , the cumulative loss LTPW of the Polynomial weights algorithm satisfies

LTPW ≤ LTk + ηQT
k + lnN/η,

where QT
k =

∑T
t=1(ℓ

t
k)

2. In particular, if T ≥ 4 lnN , then by setting

η =
√
lnN/T and noting that QT

k ≤ T , we obtain

LTPW ≤ LTmin + 2
√
T lnN .

• Proof (sketch): We show that if there is a significant loss, then the
total weight W t must drop substantially. For step t, we have
ℓtPW =

∑N
i=1 w

t
i ℓ

t
i /W

t , that is, ℓtPW is the expected loss at step t.

• The weight w t
i of every action i is multiplied by (1− ηℓt−1

i) at step t.

Thus, W t+1 = W t −
∑N

i=1 ηw
t
i ℓ

t
i = W t(1− ηℓtPW).

Analysis of the Polynomial weights algorithm I

Theorem 2.49

For η ∈ (0, 1/2], every sequence of [−1, 1]-valued loss vectors, and every
k ∈ X , the cumulative loss LTPW of the Polynomial weights algorithm satisfies

LTPW ≤ LTk + ηQT
k + lnN/η,

where QT
k =

∑T
t=1(ℓ

t
k)

2. In particular, if T ≥ 4 lnN , then by setting

η =
√
lnN/T and noting that QT

k ≤ T , we obtain

LTPW ≤ LTmin + 2
√
T lnN .

• Proof (sketch): We show that if there is a significant loss, then the
total weight W t must drop substantially. For step t, we have
ℓtPW =

∑N
i=1 w

t
i ℓ

t
i /W

t , that is, ℓtPW is the expected loss at step t.

• The weight w t
i of every action i is multiplied by (1− ηℓt−1

i) at step t.

Thus, W t+1 = W t −
∑N

i=1 ηw
t
i ℓ

t
i = W t(1− ηℓtPW).

Analysis of the Polynomial weights algorithm I

Theorem 2.49

For η ∈ (0, 1/2], every sequence of [−1, 1]-valued loss vectors, and every
k ∈ X , the cumulative loss LTPW of the Polynomial weights algorithm satisfies

LTPW ≤ LTk + ηQT
k + lnN/η,

where QT
k =

∑T
t=1(ℓ

t
k)

2. In particular, if T ≥ 4 lnN , then by setting

η =
√
lnN/T and noting that QT

k ≤ T , we obtain

LTPW ≤ LTmin + 2
√
T lnN .

• Proof (sketch): We show that if there is a significant loss, then the
total weight W t must drop substantially. For step t, we have
ℓtPW =

∑N
i=1 w

t
i ℓ

t
i /W

t , that is, ℓtPW is the expected loss at step t.

• The weight w t
i of every action i is multiplied by (1− ηℓt−1

i) at step t.

Thus, W t+1 = W t −
∑N

i=1 ηw
t
i ℓ

t
i

= W t(1− ηℓtPW).

Analysis of the Polynomial weights algorithm I

Theorem 2.49

For η ∈ (0, 1/2], every sequence of [−1, 1]-valued loss vectors, and every
k ∈ X , the cumulative loss LTPW of the Polynomial weights algorithm satisfies

LTPW ≤ LTk + ηQT
k + lnN/η,

where QT
k =

∑T
t=1(ℓ

t
k)

2. In particular, if T ≥ 4 lnN , then by setting

η =
√
lnN/T and noting that QT

k ≤ T , we obtain

LTPW ≤ LTmin + 2
√
T lnN .

• Proof (sketch): We show that if there is a significant loss, then the
total weight W t must drop substantially. For step t, we have
ℓtPW =

∑N
i=1 w

t
i ℓ

t
i /W

t , that is, ℓtPW is the expected loss at step t.

• The weight w t
i of every action i is multiplied by (1− ηℓt−1

i) at step t.

Thus, W t+1 = W t −
∑N

i=1 ηw
t
i ℓ

t
i = W t(1− ηℓtPW).

Analysis of the Polynomial weights algorithm II

• Using W 1 = N and 1− z ≤ e−z for every z ∈ R, we obtain

W T+1 = W 1
T∏
t=1

(1− ηℓtPW) ≤ N
T∏
t=1

e−ηℓtPW = Ne−η
∑T

t=1 ℓ
t
PW .

• Taking the logarithms, we obtain

lnW T+1 ≤ lnN − η
T∑
t=1

ℓtPW = lnN − ηLTPW.

• For the lower bound, we have W T+1 ≥ wT+1
k and thus, by taking

logarithms, using the recursive definition of weights and
ln (1− z) ≥ −z − z2 for z ≤ 1/2, we obtain

lnW T+1 ≥ lnwT+1
k =

T∑
t=1

ln (1− ηℓtk) ≥ −ηLTk − η2QT
k .

• Combining the lower and the upper bound, we have

− ηLTk − η2Qt
k ≤ lnN − ηLTPW.

Analysis of the Polynomial weights algorithm II

• Using W 1 = N and 1− z ≤ e−z for every z ∈ R, we obtain

W T+1

= W 1
T∏
t=1

(1− ηℓtPW) ≤ N
T∏
t=1

e−ηℓtPW = Ne−η
∑T

t=1 ℓ
t
PW .

• Taking the logarithms, we obtain

lnW T+1 ≤ lnN − η
T∑
t=1

ℓtPW = lnN − ηLTPW.

• For the lower bound, we have W T+1 ≥ wT+1
k and thus, by taking

logarithms, using the recursive definition of weights and
ln (1− z) ≥ −z − z2 for z ≤ 1/2, we obtain

lnW T+1 ≥ lnwT+1
k =

T∑
t=1

ln (1− ηℓtk) ≥ −ηLTk − η2QT
k .

• Combining the lower and the upper bound, we have

− ηLTk − η2Qt
k ≤ lnN − ηLTPW.

Analysis of the Polynomial weights algorithm II

• Using W 1 = N and 1− z ≤ e−z for every z ∈ R, we obtain

W T+1 = W 1
T∏
t=1

(1− ηℓtPW)

≤ N
T∏
t=1

e−ηℓtPW = Ne−η
∑T

t=1 ℓ
t
PW .

• Taking the logarithms, we obtain

lnW T+1 ≤ lnN − η
T∑
t=1

ℓtPW = lnN − ηLTPW.

• For the lower bound, we have W T+1 ≥ wT+1
k and thus, by taking

logarithms, using the recursive definition of weights and
ln (1− z) ≥ −z − z2 for z ≤ 1/2, we obtain

lnW T+1 ≥ lnwT+1
k =

T∑
t=1

ln (1− ηℓtk) ≥ −ηLTk − η2QT
k .

• Combining the lower and the upper bound, we have

− ηLTk − η2Qt
k ≤ lnN − ηLTPW.

Analysis of the Polynomial weights algorithm II

• Using W 1 = N and 1− z ≤ e−z for every z ∈ R, we obtain

W T+1 = W 1
T∏
t=1

(1− ηℓtPW) ≤ N
T∏
t=1

e−ηℓtPW

= Ne−η
∑T

t=1 ℓ
t
PW .

• Taking the logarithms, we obtain

lnW T+1 ≤ lnN − η
T∑
t=1

ℓtPW = lnN − ηLTPW.

• For the lower bound, we have W T+1 ≥ wT+1
k and thus, by taking

logarithms, using the recursive definition of weights and
ln (1− z) ≥ −z − z2 for z ≤ 1/2, we obtain

lnW T+1 ≥ lnwT+1
k =

T∑
t=1

ln (1− ηℓtk) ≥ −ηLTk − η2QT
k .

• Combining the lower and the upper bound, we have

− ηLTk − η2Qt
k ≤ lnN − ηLTPW.

Analysis of the Polynomial weights algorithm II

• Using W 1 = N and 1− z ≤ e−z for every z ∈ R, we obtain

W T+1 = W 1
T∏
t=1

(1− ηℓtPW) ≤ N
T∏
t=1

e−ηℓtPW = Ne−η
∑T

t=1 ℓ
t
PW .

• Taking the logarithms, we obtain

lnW T+1 ≤ lnN − η
T∑
t=1

ℓtPW = lnN − ηLTPW.

• For the lower bound, we have W T+1 ≥ wT+1
k and thus, by taking

logarithms, using the recursive definition of weights and
ln (1− z) ≥ −z − z2 for z ≤ 1/2, we obtain

lnW T+1 ≥ lnwT+1
k =

T∑
t=1

ln (1− ηℓtk) ≥ −ηLTk − η2QT
k .

• Combining the lower and the upper bound, we have

− ηLTk − η2Qt
k ≤ lnN − ηLTPW.

Analysis of the Polynomial weights algorithm II

• Using W 1 = N and 1− z ≤ e−z for every z ∈ R, we obtain

W T+1 = W 1
T∏
t=1

(1− ηℓtPW) ≤ N
T∏
t=1

e−ηℓtPW = Ne−η
∑T

t=1 ℓ
t
PW .

• Taking the logarithms, we obtain

lnW T+1

≤ lnN − η
T∑
t=1

ℓtPW = lnN − ηLTPW.

• For the lower bound, we have W T+1 ≥ wT+1
k and thus, by taking

logarithms, using the recursive definition of weights and
ln (1− z) ≥ −z − z2 for z ≤ 1/2, we obtain

lnW T+1 ≥ lnwT+1
k =

T∑
t=1

ln (1− ηℓtk) ≥ −ηLTk − η2QT
k .

• Combining the lower and the upper bound, we have

− ηLTk − η2Qt
k ≤ lnN − ηLTPW.

Analysis of the Polynomial weights algorithm II

• Using W 1 = N and 1− z ≤ e−z for every z ∈ R, we obtain

W T+1 = W 1
T∏
t=1

(1− ηℓtPW) ≤ N
T∏
t=1

e−ηℓtPW = Ne−η
∑T

t=1 ℓ
t
PW .

• Taking the logarithms, we obtain

lnW T+1 ≤ lnN − η
T∑
t=1

ℓtPW

= lnN − ηLTPW.

• For the lower bound, we have W T+1 ≥ wT+1
k and thus, by taking

logarithms, using the recursive definition of weights and
ln (1− z) ≥ −z − z2 for z ≤ 1/2, we obtain

lnW T+1 ≥ lnwT+1
k =

T∑
t=1

ln (1− ηℓtk) ≥ −ηLTk − η2QT
k .

• Combining the lower and the upper bound, we have

− ηLTk − η2Qt
k ≤ lnN − ηLTPW.

Analysis of the Polynomial weights algorithm II

• Using W 1 = N and 1− z ≤ e−z for every z ∈ R, we obtain

W T+1 = W 1
T∏
t=1

(1− ηℓtPW) ≤ N
T∏
t=1

e−ηℓtPW = Ne−η
∑T

t=1 ℓ
t
PW .

• Taking the logarithms, we obtain

lnW T+1 ≤ lnN − η
T∑
t=1

ℓtPW = lnN − ηLTPW.

• For the lower bound, we have W T+1 ≥ wT+1
k and thus, by taking

logarithms, using the recursive definition of weights and
ln (1− z) ≥ −z − z2 for z ≤ 1/2, we obtain

lnW T+1 ≥ lnwT+1
k =

T∑
t=1

ln (1− ηℓtk) ≥ −ηLTk − η2QT
k .

• Combining the lower and the upper bound, we have

− ηLTk − η2Qt
k ≤ lnN − ηLTPW.

Analysis of the Polynomial weights algorithm II

• Using W 1 = N and 1− z ≤ e−z for every z ∈ R, we obtain

W T+1 = W 1
T∏
t=1

(1− ηℓtPW) ≤ N
T∏
t=1

e−ηℓtPW = Ne−η
∑T

t=1 ℓ
t
PW .

• Taking the logarithms, we obtain

lnW T+1 ≤ lnN − η
T∑
t=1

ℓtPW = lnN − ηLTPW.

• For the lower bound, we have W T+1 ≥ wT+1
k

and thus, by taking
logarithms, using the recursive definition of weights and
ln (1− z) ≥ −z − z2 for z ≤ 1/2, we obtain

lnW T+1 ≥ lnwT+1
k =

T∑
t=1

ln (1− ηℓtk) ≥ −ηLTk − η2QT
k .

• Combining the lower and the upper bound, we have

− ηLTk − η2Qt
k ≤ lnN − ηLTPW.

Analysis of the Polynomial weights algorithm II

• Using W 1 = N and 1− z ≤ e−z for every z ∈ R, we obtain

W T+1 = W 1
T∏
t=1

(1− ηℓtPW) ≤ N
T∏
t=1

e−ηℓtPW = Ne−η
∑T

t=1 ℓ
t
PW .

• Taking the logarithms, we obtain

lnW T+1 ≤ lnN − η
T∑
t=1

ℓtPW = lnN − ηLTPW.

• For the lower bound, we have W T+1 ≥ wT+1
k and thus, by taking

logarithms, using the recursive definition of weights and
ln (1− z) ≥ −z − z2 for z ≤ 1/2, we obtain

lnW T+1

≥ lnwT+1
k =

T∑
t=1

ln (1− ηℓtk) ≥ −ηLTk − η2QT
k .

• Combining the lower and the upper bound, we have

− ηLTk − η2Qt
k ≤ lnN − ηLTPW.

Analysis of the Polynomial weights algorithm II

• Using W 1 = N and 1− z ≤ e−z for every z ∈ R, we obtain

W T+1 = W 1
T∏
t=1

(1− ηℓtPW) ≤ N
T∏
t=1

e−ηℓtPW = Ne−η
∑T

t=1 ℓ
t
PW .

• Taking the logarithms, we obtain

lnW T+1 ≤ lnN − η
T∑
t=1

ℓtPW = lnN − ηLTPW.

• For the lower bound, we have W T+1 ≥ wT+1
k and thus, by taking

logarithms, using the recursive definition of weights and
ln (1− z) ≥ −z − z2 for z ≤ 1/2, we obtain

lnW T+1 ≥ lnwT+1
k

=
T∑
t=1

ln (1− ηℓtk) ≥ −ηLTk − η2QT
k .

• Combining the lower and the upper bound, we have

− ηLTk − η2Qt
k ≤ lnN − ηLTPW.

Analysis of the Polynomial weights algorithm II

• Using W 1 = N and 1− z ≤ e−z for every z ∈ R, we obtain

W T+1 = W 1
T∏
t=1

(1− ηℓtPW) ≤ N
T∏
t=1

e−ηℓtPW = Ne−η
∑T

t=1 ℓ
t
PW .

• Taking the logarithms, we obtain

lnW T+1 ≤ lnN − η
T∑
t=1

ℓtPW = lnN − ηLTPW.

• For the lower bound, we have W T+1 ≥ wT+1
k and thus, by taking

logarithms, using the recursive definition of weights and
ln (1− z) ≥ −z − z2 for z ≤ 1/2, we obtain

lnW T+1 ≥ lnwT+1
k =

T∑
t=1

ln (1− ηℓtk)

≥ −ηLTk − η2QT
k .

• Combining the lower and the upper bound, we have

− ηLTk − η2Qt
k ≤ lnN − ηLTPW.

Analysis of the Polynomial weights algorithm II

• Using W 1 = N and 1− z ≤ e−z for every z ∈ R, we obtain

W T+1 = W 1
T∏
t=1

(1− ηℓtPW) ≤ N
T∏
t=1

e−ηℓtPW = Ne−η
∑T

t=1 ℓ
t
PW .

• Taking the logarithms, we obtain

lnW T+1 ≤ lnN − η
T∑
t=1

ℓtPW = lnN − ηLTPW.

• For the lower bound, we have W T+1 ≥ wT+1
k and thus, by taking

logarithms, using the recursive definition of weights and
ln (1− z) ≥ −z − z2 for z ≤ 1/2, we obtain

lnW T+1 ≥ lnwT+1
k =

T∑
t=1

ln (1− ηℓtk) ≥ −ηLTk − η2QT
k .

• Combining the lower and the upper bound, we have

− ηLTk − η2Qt
k ≤ lnN − ηLTPW.

Analysis of the Polynomial weights algorithm II

• Using W 1 = N and 1− z ≤ e−z for every z ∈ R, we obtain

W T+1 = W 1
T∏
t=1

(1− ηℓtPW) ≤ N
T∏
t=1

e−ηℓtPW = Ne−η
∑T

t=1 ℓ
t
PW .

• Taking the logarithms, we obtain

lnW T+1 ≤ lnN − η
T∑
t=1

ℓtPW = lnN − ηLTPW.

• For the lower bound, we have W T+1 ≥ wT+1
k and thus, by taking

logarithms, using the recursive definition of weights and
ln (1− z) ≥ −z − z2 for z ≤ 1/2, we obtain

lnW T+1 ≥ lnwT+1
k =

T∑
t=1

ln (1− ηℓtk) ≥ −ηLTk − η2QT
k .

• Combining the lower and the upper bound, we have

− ηLTk − η2Qt
k ≤ lnN − ηLTPW.

Analysis of the Polynomial weights algorithm II

• Using W 1 = N and 1− z ≤ e−z for every z ∈ R, we obtain

W T+1 = W 1
T∏
t=1

(1− ηℓtPW) ≤ N
T∏
t=1

e−ηℓtPW = Ne−η
∑T

t=1 ℓ
t
PW .

• Taking the logarithms, we obtain

lnW T+1 ≤ lnN − η
T∑
t=1

ℓtPW = lnN − ηLTPW.

• For the lower bound, we have W T+1 ≥ wT+1
k and thus, by taking

logarithms, using the recursive definition of weights and
ln (1− z) ≥ −z − z2 for z ≤ 1/2, we obtain

lnW T+1 ≥ lnwT+1
k =

T∑
t=1

ln (1− ηℓtk) ≥ −ηLTk − η2QT
k .

• Combining the lower and the upper bound, we have

− ηLTk − η2Qt
k ≤ lnN − ηLTPW.

Analysis of the Polynomial weights algorithm II

• Using W 1 = N and 1− z ≤ e−z for every z ∈ R, we obtain

W T+1 = W 1
T∏
t=1

(1− ηℓtPW) ≤ N
T∏
t=1

e−ηℓtPW = Ne−η
∑T

t=1 ℓ
t
PW .

• Taking the logarithms, we obtain

lnW T+1 ≤ lnN − η
T∑
t=1

ℓtPW = lnN − ηLTPW.

• For the lower bound, we have W T+1 ≥ wT+1
k and thus, by taking

logarithms, using the recursive definition of weights and
ln (1− z) ≥ −z − z2 for z ≤ 1/2, we obtain

lnW T+1 ≥ lnwT+1
k =

T∑
t=1

ln (1− ηℓtk) ≥ −ηLTk − η2QT
k .

• Combining the lower and the upper bound, we have

− ηLTk − η2Qt
k ≤ lnN − ηLTPW.

Polynomial weights algorithm: remarks

• This algorithm produces very good external regret. Time-averaged
external regret goes to zero.

• The bound LTPW ≤ LTmin + 2
√
T lnN is essentially optimal.

Proposition 2.50

For integers N and T with T < ⌊log2 N⌋, there exists a stochastic
generation of losses such that, for every online algorithm A, we have
E[LTA] ≥ T/2 and yet LTmin = 0.

Proposition 2.51

In the case of N = 2 actions, there exists a stochastic generation of losses
such that, for every online algorithm A, we have E[LTA − LTmin] ≥ Ω(

√
T).

• See lecture notes for the proofs.

• We do not need to know T in advance (Exercise).

Polynomial weights algorithm: remarks

• This algorithm produces very good external regret.

Time-averaged
external regret goes to zero.

• The bound LTPW ≤ LTmin + 2
√
T lnN is essentially optimal.

Proposition 2.50

For integers N and T with T < ⌊log2 N⌋, there exists a stochastic
generation of losses such that, for every online algorithm A, we have
E[LTA] ≥ T/2 and yet LTmin = 0.

Proposition 2.51

In the case of N = 2 actions, there exists a stochastic generation of losses
such that, for every online algorithm A, we have E[LTA − LTmin] ≥ Ω(

√
T).

• See lecture notes for the proofs.

• We do not need to know T in advance (Exercise).

Polynomial weights algorithm: remarks

• This algorithm produces very good external regret. Time-averaged
external regret goes to zero.

• The bound LTPW ≤ LTmin + 2
√
T lnN is essentially optimal.

Proposition 2.50

For integers N and T with T < ⌊log2 N⌋, there exists a stochastic
generation of losses such that, for every online algorithm A, we have
E[LTA] ≥ T/2 and yet LTmin = 0.

Proposition 2.51

In the case of N = 2 actions, there exists a stochastic generation of losses
such that, for every online algorithm A, we have E[LTA − LTmin] ≥ Ω(

√
T).

• See lecture notes for the proofs.

• We do not need to know T in advance (Exercise).

Polynomial weights algorithm: remarks

• This algorithm produces very good external regret. Time-averaged
external regret goes to zero.

• The bound LTPW ≤ LTmin + 2
√
T lnN is essentially optimal.

Proposition 2.50

For integers N and T with T < ⌊log2 N⌋, there exists a stochastic
generation of losses such that, for every online algorithm A, we have
E[LTA] ≥ T/2 and yet LTmin = 0.

Proposition 2.51

In the case of N = 2 actions, there exists a stochastic generation of losses
such that, for every online algorithm A, we have E[LTA − LTmin] ≥ Ω(

√
T).

• See lecture notes for the proofs.

• We do not need to know T in advance (Exercise).

Polynomial weights algorithm: remarks

• This algorithm produces very good external regret. Time-averaged
external regret goes to zero.

• The bound LTPW ≤ LTmin + 2
√
T lnN is essentially optimal.

Proposition 2.50

For integers N and T with T < ⌊log2 N⌋, there exists a stochastic
generation of losses such that, for every online algorithm A, we have
E[LTA] ≥ T/2 and yet LTmin = 0.

Proposition 2.51

In the case of N = 2 actions, there exists a stochastic generation of losses
such that, for every online algorithm A, we have E[LTA − LTmin] ≥ Ω(

√
T).

• See lecture notes for the proofs.

• We do not need to know T in advance (Exercise).

Polynomial weights algorithm: remarks

• This algorithm produces very good external regret. Time-averaged
external regret goes to zero.

• The bound LTPW ≤ LTmin + 2
√
T lnN is essentially optimal.

Proposition 2.50

For integers N and T with T < ⌊log2 N⌋, there exists a stochastic
generation of losses such that, for every online algorithm A, we have
E[LTA] ≥ T/2 and yet LTmin = 0.

Proposition 2.51

In the case of N = 2 actions, there exists a stochastic generation of losses
such that, for every online algorithm A, we have E[LTA − LTmin] ≥ Ω(

√
T).

• See lecture notes for the proofs.

• We do not need to know T in advance (Exercise).

Polynomial weights algorithm: remarks

• This algorithm produces very good external regret. Time-averaged
external regret goes to zero.

• The bound LTPW ≤ LTmin + 2
√
T lnN is essentially optimal.

Proposition 2.50

For integers N and T with T < ⌊log2 N⌋, there exists a stochastic
generation of losses such that, for every online algorithm A, we have
E[LTA] ≥ T/2 and yet LTmin = 0.

Proposition 2.51

In the case of N = 2 actions, there exists a stochastic generation of losses
such that, for every online algorithm A, we have E[LTA − LTmin] ≥ Ω(

√
T).

• See lecture notes for the proofs.

• We do not need to know T in advance (Exercise).

Polynomial weights algorithm: remarks

• This algorithm produces very good external regret. Time-averaged
external regret goes to zero.

• The bound LTPW ≤ LTmin + 2
√
T lnN is essentially optimal.

Proposition 2.50

For integers N and T with T < ⌊log2 N⌋, there exists a stochastic
generation of losses such that, for every online algorithm A, we have
E[LTA] ≥ T/2 and yet LTmin = 0.

Proposition 2.51

In the case of N = 2 actions, there exists a stochastic generation of losses
such that, for every online algorithm A, we have E[LTA − LTmin] ≥ Ω(

√
T).

• See lecture notes for the proofs.

• We do not need to know T in advance (Exercise).

• Besides game theory, the “multiplicative weight update method” has
many applications in various fields of science, for example in
optimization, theoretical computer science, and machine learning.

Sources: https://clubitc.ro

• See https://en.wikipedia.org/wiki/Multiplicative_weight_
update_method#Applications

• There are other algorithms producing small external regret, for example,
the Regret matching algorithm.

https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications
https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications

• Besides game theory, the “multiplicative weight update method” has
many applications in various fields of science, for example in
optimization, theoretical computer science, and machine learning.

Sources: https://clubitc.ro

• See https://en.wikipedia.org/wiki/Multiplicative_weight_
update_method#Applications

• There are other algorithms producing small external regret, for example,
the Regret matching algorithm.

https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications
https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications

• Besides game theory, the “multiplicative weight update method” has
many applications in various fields of science, for example in
optimization, theoretical computer science, and machine learning.

Sources: https://clubitc.ro

• See https://en.wikipedia.org/wiki/Multiplicative_weight_
update_method#Applications

• There are other algorithms producing small external regret, for example,
the Regret matching algorithm.

https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications
https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications

• Besides game theory, the “multiplicative weight update method” has
many applications in various fields of science, for example in
optimization, theoretical computer science, and machine learning.

Sources: https://clubitc.ro

• See https://en.wikipedia.org/wiki/Multiplicative_weight_
update_method#Applications

• There are other algorithms producing small external regret, for example,
the Regret matching algorithm.

https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications
https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications

The No-regret dynamics

• “Players in a normal-form game play against each other by selecting
actions according to the Polynomial-weights algorithm.”

Algorithm 0.38: No-regret dynamics(G ,T , ε)

Input : A normal-form game G = (P,A,C) of n players, T ∈ N, and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and t ∈ {1, . . . ,T}.
for every step t = 1, . . . ,T

do



Each player i ∈ P independently chooses a mixed strategy pti
using an algorithm with average regret at most ε, with actions
corresponding to pure strategies.
Each player i ∈ P receives a loss vector ℓti = (ℓti (ai))ai∈Ai

, where
ℓti (ai)← Eat−i∼pt−i

[Ci (ai ; a
t
−i)] for the product distribution

pt−i =
∏

j ̸=i p
t
j .

Output {pt : t ∈ {1, . . . ,T}}.

The No-regret dynamics

• “Players in a normal-form game play against each other by selecting
actions according to the Polynomial-weights algorithm.”

Algorithm 0.39: No-regret dynamics(G ,T , ε)

Input : A normal-form game G = (P,A,C) of n players, T ∈ N, and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and t ∈ {1, . . . ,T}.
for every step t = 1, . . . ,T

do



Each player i ∈ P independently chooses a mixed strategy pti
using an algorithm with average regret at most ε, with actions
corresponding to pure strategies.
Each player i ∈ P receives a loss vector ℓti = (ℓti (ai))ai∈Ai

, where
ℓti (ai)← Eat−i∼pt−i

[Ci (ai ; a
t
−i)] for the product distribution

pt−i =
∏

j ̸=i p
t
j .

Output {pt : t ∈ {1, . . . ,T}}.

The No-regret dynamics

• “Players in a normal-form game play against each other by selecting
actions according to the Polynomial-weights algorithm.”

Algorithm 0.40: No-regret dynamics(G ,T , ε)

Input : A normal-form game G = (P,A,C) of n players, T ∈ N, and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and t ∈ {1, . . . ,T}.
for every step t = 1, . . . ,T

do



Each player i ∈ P independently chooses a mixed strategy pti
using an algorithm with average regret at most ε, with actions
corresponding to pure strategies.
Each player i ∈ P receives a loss vector ℓti = (ℓti (ai))ai∈Ai

, where
ℓti (ai)← Eat−i∼pt−i

[Ci (ai ; a
t
−i)] for the product distribution

pt−i =
∏

j ̸=i p
t
j .

Output {pt : t ∈ {1, . . . ,T}}.

Sources: Students of MFF UK

Thank you for your attention.

Sources: Students of MFF UK

Thank you for your attention.

Sources: Students of MFF UK

Thank you for your attention.

