Algorithmic game theory

Martin Balko

5th lecture

November 1st 2024

Nash equilibria in bimatrix games

• We have seen three algorithms to find NE in bimatrix games:

- We have seen three algorithms to find NE in bimatrix games:
 - $\circ\,$ the brute-force algorithm with support enumeration,

- We have seen three algorithms to find NE in bimatrix games:
 - $\circ\,$ the brute-force algorithm with support enumeration,
 - the algorithm with vertex enumeration,

- We have seen three algorithms to find NE in bimatrix games:
 - $\circ\,$ the brute-force algorithm with support enumeration,
 - $\circ\,$ the algorithm with vertex enumeration,
 - $\circ\,$ the Lemke–Howson algorithm.

- We have seen three algorithms to find NE in bimatrix games:
 - $\circ\,$ the brute-force algorithm with support enumeration,
 - \circ the algorithm with vertex enumeration,
 - $\circ\,$ the Lemke–Howson algorithm.
- All these algorithms have exponential running time in the worst case.

- We have seen three algorithms to find NE in bimatrix games:
 - $\circ\,$ the brute-force algorithm with support enumeration,
 - \circ the algorithm with vertex enumeration,
 - $\circ\,$ the Lemke–Howson algorithm.
- All these algorithms have exponential running time in the worst case.

Source: https://www.shutterstock.com/

- We have seen three algorithms to find NE in bimatrix games:
 - $\circ\,$ the brute-force algorithm with support enumeration,
 - \circ the algorithm with vertex enumeration,
 - the Lemke–Howson algorithm.
- All these algorithms have exponential running time in the worst case.

Source: https://www.shutterstock.com/

• Is there a chance to get an efficient algorithm?

- We have seen three algorithms to find NE in bimatrix games:
 - $\circ\,$ the brute-force algorithm with support enumeration,
 - \circ the algorithm with vertex enumeration,
 - $\circ\,$ the Lemke–Howson algorithm.
- All these algorithms have exponential running time in the worst case.

Source: https://www.shutterstock.com/

- Is there a chance to get an efficient algorithm?
- NASH = the problem of finding NE in bimatrix games.

- We have seen three algorithms to find NE in bimatrix games:
 - $\circ\,$ the brute-force algorithm with support enumeration,
 - \circ the algorithm with vertex enumeration,
 - $\circ\,$ the Lemke–Howson algorithm.
- All these algorithms have exponential running time in the worst case.

Source: https://www.shutterstock.com/

- Is there a chance to get an efficient algorithm?
- NASH = the problem of finding NE in bimatrix games.
- Today, we discuss the computational complexity of NASH.

• Is NASH NP-complete?

- Is NASH NP-complete?
 - **No**.

- Is NASH NP-complete?
 - $\circ\,$ No. NP is a class of decision problems (yes/no answers)

- Is NASH NP-complete?
 - No. NP is a class of decision problems (yes/no answers) while NE always exist (so the answer is always yes).

- Is NASH NP-complete?
 - No. NP is a class of decision problems (yes/no answers) while NE always exist (so the answer is always yes).
- Another candidate is the complexity class FNP

- Is NASH NP-complete?
 - No. NP is a class of decision problems (yes/no answers) while NE always exist (so the answer is always yes).
- Another candidate is the complexity class FNP ("functional NP").

- Is NASH NP-complete?
 - No. NP is a class of decision problems (yes/no answers) while NE always exist (so the answer is always yes).
- Another candidate is the complexity class FNP ("functional NP").
 - $\circ~$ The input of FNP problem is an instance of a problem from NP.

- Is NASH NP-complete?
 - No. NP is a class of decision problems (yes/no answers) while NE always exist (so the answer is always yes).
- Another candidate is the complexity class FNP ("functional NP").
 - $\circ~$ The input of FNP problem is an instance of a problem from NP. The algorithm outputs a solution if one exists.

- Is NASH NP-complete?
 - No. NP is a class of decision problems (yes/no answers) while NE always exist (so the answer is always yes).
- Another candidate is the complexity class FNP ("functional NP").
 - The input of FNP problem is an instance of a problem from NP. The algorithm outputs a solution if one exists. If there is no solution, the algorithm outputs 'no'.

- Is NASH NP-complete?
 - No. NP is a class of decision problems (yes/no answers) while NE always exist (so the answer is always yes).
- Another candidate is the complexity class FNP ("functional NP").
 - The input of FNP problem is an instance of a problem from NP. The algorithm outputs a solution if one exists. If there is no solution, the algorithm outputs 'no'.
 - $\circ~$ That is, we demand a solution for 'yes' instances.

- Is NASH NP-complete?
 - No. NP is a class of decision problems (yes/no answers) while NE always exist (so the answer is always yes).
- Another candidate is the complexity class FNP ("functional NP").
 - The input of FNP problem is an instance of a problem from NP. The algorithm outputs a solution if one exists. If there is no solution, the algorithm outputs 'no'.
 - $\circ~$ That is, we demand a solution for 'yes' instances.
 - NASH belongs to FNP,

- Is NASH NP-complete?
 - No. NP is a class of decision problems (yes/no answers) while NE always exist (so the answer is always yes).
- Another candidate is the complexity class FNP ("functional NP").
 - The input of FNP problem is an instance of a problem from NP. The algorithm outputs a solution if one exists. If there is no solution, the algorithm outputs 'no'.
 - $\circ~$ That is, we demand a solution for 'yes' instances.
 - NASH belongs to FNP, as checking whether a strategy profile is NE can be done using the Best Response Condition.

- Is NASH NP-complete?
 - No. NP is a class of decision problems (yes/no answers) while NE always exist (so the answer is always yes).
- Another candidate is the complexity class FNP ("functional NP").
 - The input of FNP problem is an instance of a problem from NP. The algorithm outputs a solution if one exists. If there is no solution, the algorithm outputs 'no'.
 - $\circ~$ That is, we demand a solution for 'yes' instances.
 - NASH belongs to FNP, as checking whether a strategy profile is NE can be done using the Best Response Condition.
 - Is NASH FNP-complete?

- Is NASH NP-complete?
 - No. NP is a class of decision problems (yes/no answers) while NE always exist (so the answer is always yes).
- Another candidate is the complexity class FNP ("functional NP").
 - The input of FNP problem is an instance of a problem from NP. The algorithm outputs a solution if one exists. If there is no solution, the algorithm outputs 'no'.
 - $\circ~$ That is, we demand a solution for 'yes' instances.
 - NASH belongs to FNP, as checking whether a strategy profile is NE can be done using the Best Response Condition.
 - Is NASH FNP-complete? Unlikely, because of the following result.

- Is NASH NP-complete?
 - No. NP is a class of decision problems (yes/no answers) while NE always exist (so the answer is always yes).
- Another candidate is the complexity class FNP ("functional NP").
 - The input of FNP problem is an instance of a problem from NP. The algorithm outputs a solution if one exists. If there is no solution, the algorithm outputs 'no'.
 - $\circ~$ That is, we demand a solution for 'yes' instances.
 - NASH belongs to FNP, as checking whether a strategy profile is NE can be done using the Best Response Condition.
 - Is NASH FNP-complete? Unlikely, because of the following result.

Theorem 2.34 (Megiddo and Papadimitriou, 1991)

If the problem NASH is FNP-complete, then NP = coNP.

- Is NASH NP-complete?
 - No. NP is a class of decision problems (yes/no answers) while NE always exist (so the answer is always yes).
- Another candidate is the complexity class FNP ("functional NP").
 - The input of FNP problem is an instance of a problem from NP. The algorithm outputs a solution if one exists. If there is no solution, the algorithm outputs 'no'.
 - $\circ~$ That is, we demand a solution for 'yes' instances.
 - NASH belongs to FNP, as checking whether a strategy profile is NE can be done using the Best Response Condition.
 - Is NASH FNP-complete? Unlikely, because of the following result.

Theorem 2.34 (Megiddo and Papadimitriou, 1991)

If the problem NASH is FNP-complete, then NP = coNP.

• Without proof (but you can find it in the lecture notes).

• The proof of the correctness of the Lemke–Howson algorithm reveals the structure of NASH

• The proof of the correctness of the Lemke–Howson algorithm reveals the structure of NASH (finding another endpoint of a path in graph of maximum degree 2).

- The proof of the correctness of the Lemke–Howson algorithm reveals the structure of NASH (finding another endpoint of a path in graph of maximum degree 2).
- Let us capture this abstract structure.

- The proof of the correctness of the Lemke–Howson algorithm reveals the structure of NASH (finding another endpoint of a path in graph of maximum degree 2).
- Let us capture this abstract structure.
- The END-OF-THE-LINE problem:

- The proof of the correctness of the Lemke–Howson algorithm reveals the structure of NASH (finding another endpoint of a path in graph of maximum degree 2).
- Let us capture this abstract structure.
- The END-OF-THE-LINE problem: for a directed graph G with every vertex having at most one predecessor and one successor, given a vertex s of G with no predecessor, find a vertex t ≠ s with no predecessor or no successor.

- The proof of the correctness of the Lemke–Howson algorithm reveals the structure of NASH (finding another endpoint of a path in graph of maximum degree 2).
- Let us capture this abstract structure.
- The END-OF-THE-LINE problem: for a directed graph G with every vertex having at most one predecessor and one successor, given a vertex s of G with no predecessor, find a vertex t ≠ s with no predecessor or no successor. The graph G is not given on the input, but it is specified by some polynomial-time computable function f(v) that returns the predecessor and successor (if they exist) of v.

New complexity class

- The proof of the correctness of the Lemke–Howson algorithm reveals the structure of NASH (finding another endpoint of a path in graph of maximum degree 2).
- Let us capture this abstract structure.
- The END-OF-THE-LINE problem: for a directed graph G with every vertex having at most one predecessor and one successor, given a vertex s of G with no predecessor, find a vertex t ≠ s with no predecessor or no successor. The graph G is not given on the input, but it is specified by some polynomial-time computable function f(v) that returns the predecessor and successor (if they exist) of v.
 - \circ Thus, G can be exponentially large with respect to the input.

New complexity class

- The proof of the correctness of the Lemke–Howson algorithm reveals the structure of NASH (finding another endpoint of a path in graph of maximum degree 2).
- Let us capture this abstract structure.
- The END-OF-THE-LINE problem: for a directed graph G with every vertex having at most one predecessor and one successor, given a vertex s of G with no predecessor, find a vertex t ≠ s with no predecessor or no successor. The graph G is not given on the input, but it is specified by some polynomial-time computable function f(v) that returns the predecessor and successor (if they exist) of v.

 \circ Thus, G can be exponentially large with respect to the input.

• Let PPAD be a complexity class consisting of problems that admit a polynomial-time reduction to END-OF-THE-LINE.

• The class PPAD was introduced in 1994 by Papadimitrou.

• The class PPAD was introduced in 1994 by Papadimitrou.

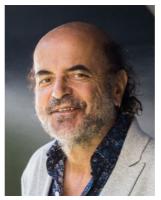


Figure: Christos Papadimitriou (born 1949).

Source: https://cs.columbia.edu

• The class PPAD was introduced in 1994 by Papadimitrou.

Figure: Christos Papadimitriou (born 1949).

Source: https://cs.columbia.edu

• Abbreviation for "Polynomial Parity Arguments on Directed graphs".

• The class PPAD was introduced in 1994 by Papadimitrou.

Figure: Christos Papadimitriou (born 1949).

Source: https://cs.columbia.edu

- Abbreviation for "Polynomial Parity Arguments on Directed graphs".
- This complexity class contains a lot of well-known problems.

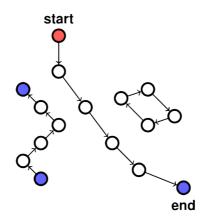
Problems from PPAD: End-of-the-line

Problems from PPAD: End-of-the-line

For an oriented graph G with max. indegree and outdegree 1 and a source in G, find a target in G. The graph is given by a polynomial-time computable function f(v) that returns predecessor and successor of v.

Problems from PPAD: End-of-the-line

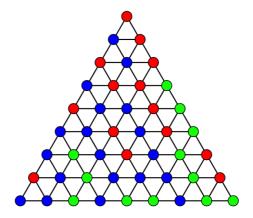
For an oriented graph G with max. indegree and outdegree 1 and a source in G, find a target in G. The graph is given by a polynomial-time computable function f(v) that returns predecessor and successor of v.



Source: R. Savani "Polymatrix Games" Tutorial at WINE 2015

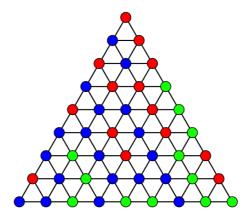
• Given a legal 3-coloring of a triangulated triangle, find a triangle with vertices colored by all 3 colors.

• Given a legal 3-coloring of a triangulated triangle, find a triangle with vertices colored by all 3 colors.



Source: https://lesswrong.com

• Given a legal 3-coloring of a triangulated triangle, find a triangle with vertices colored by all 3 colors.



Source: https://lesswrong.com

• Discrete version of the Brouwer's fixed point theorem.

Problems from PPAD: Brouwer's fixed point theorem

Problems from PPAD: Brouwer's fixed point theorem

An approximate version of the following theorem is in PPAD: For each d ∈ N, a non-empty compact convex set K in R^d, and a continuous mapping f: K → K, there exists x₀ ∈ K such that f(x₀) = x₀.

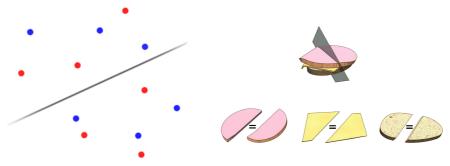
Figure: L. E. J. Brouwer (1881–1966).

Source: https://arxiv.org/pdf/1612.06820.pdf

Source: https://www.seekpng.com/

 Given n sets of 2n points in ℝⁿ, find a hyperplane H that contains exactly n points from each of the sets in each open halfspace determined by H.

 Given n sets of 2n points in ℝⁿ, find a hyperplane H that contains exactly n points from each of the sets in each open halfspace determined by H.



Sources: https://ejarzo.github.io and https://curiosamathematica.tumblr.com

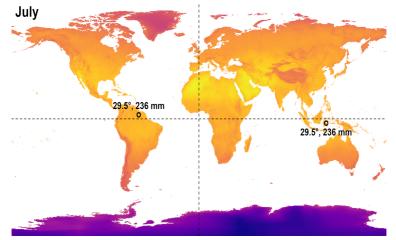
Problems from PPAD: The Borsuk–Ulam theorem

Problems from PPAD: The Borsuk–Ulam theorem

• An approximate version of the following theorem is in PPAD: For every continuous $f: S^n \to \mathbb{R}^n$ there is $x \in S^n$ with f(x) = f(-x).

Problems from PPAD: The Borsuk–Ulam theorem

• An approximate version of the following theorem is in PPAD: For every continuous $f: S^n \to \mathbb{R}^n$ there is $x \in S^n$ with f(x) = f(-x).



Source: https://scientificgems.wordpress.com/

• The proof of the correctness of the Lemke–Howson algorithm shows that NASH belongs to PPAD (for nondegenerate games).

- The proof of the correctness of the Lemke–Howson algorithm shows that NASH belongs to PPAD (for nondegenerate games).
- Is NASH PPAD-complete?

- The proof of the correctness of the Lemke–Howson algorithm shows that NASH belongs to PPAD (for nondegenerate games).
- Is NASH PPAD-complete?
 - $\circ~$ That is, is it among the most difficult problems in this class?

- The proof of the correctness of the Lemke–Howson algorithm shows that NASH belongs to PPAD (for nondegenerate games).
- Is NASH PPAD-complete?
 - $\circ~$ That is, is it among the most difficult problems in this class?
 - PPAD-completeness gives some evidence of computational intractability, although somehow weaker than NP-completeness.

- The proof of the correctness of the Lemke–Howson algorithm shows that NASH belongs to PPAD (for nondegenerate games).
- Is NASH PPAD-complete?
 - $\circ~$ That is, is it among the most difficult problems in this class?
 - PPAD-completeness gives some evidence of computational intractability, although somehow weaker than NP-completeness.
 - $\circ~$ Open for a long time.

- The proof of the correctness of the Lemke–Howson algorithm shows that NASH belongs to PPAD (for nondegenerate games).
- Is NASH PPAD-complete?
 - $\circ~$ That is, is it among the most difficult problems in this class?
 - PPAD-completeness gives some evidence of computational intractability, although somehow weaker than NP-completeness.
 - $\circ~$ Open for a long time.

Theorem 2.35 (Chen, Deng, and Teng and Daskalakis, Goldberg, and Papadimitriou, 2009)

The problem NASH is PPAD-complete.

- The proof of the correctness of the Lemke–Howson algorithm shows that NASH belongs to PPAD (for nondegenerate games).
- Is NASH PPAD-complete?
 - $\circ~$ That is, is it among the most difficult problems in this class?
 - PPAD-completeness gives some evidence of computational intractability, although somehow weaker than NP-completeness.
 - $\circ~$ Open for a long time.

Theorem 2.35 (Chen, Deng, and Teng and Daskalakis, Goldberg, and Papadimitriou, 2009)

The problem NASH is PPAD-complete.

• One of the main breakthroughs in algorithmic game theory.

- The proof of the correctness of the Lemke–Howson algorithm shows that NASH belongs to PPAD (for nondegenerate games).
- Is NASH PPAD-complete?
 - $\circ~$ That is, is it among the most difficult problems in this class?
 - PPAD-completeness gives some evidence of computational intractability, although somehow weaker than NP-completeness.
 - $\circ~$ Open for a long time.

Theorem 2.35 (Chen, Deng, and Teng and Daskalakis, Goldberg, and Papadimitriou, 2009)

The problem NASH is PPAD-complete.

- One of the main breakthroughs in algorithmic game theory.
- We omit the proof, as it is complicated (the papers have over 50 and 70 pages).

• So it is likely that there is no polynomial-time algorithm for NASH.

• So it is likely that there is no polynomial-time algorithm for NASH.

• Finding approximate NE in games with at least three players lies in PPAD, but the problem appears to be strictly harder than PPAD.

• So it is likely that there is no polynomial-time algorithm for NASH.

- Finding approximate NE in games with at least three players lies in PPAD, but the problem appears to be strictly harder than PPAD.
- If we modify NASH so that the existence is not always guaranteed, then the resulting problem often becomes NP-complete.

What now?

• So it is likely that there is no polynomial-time algorithm for NASH.

- Finding approximate NE in games with at least three players lies in PPAD, but the problem appears to be strictly harder than PPAD.
- If we modify NASH so that the existence is not always guaranteed, then the resulting problem often becomes NP-complete.
- This seems to be a problem with the concept of NE.

What now?

• So it is likely that there is no polynomial-time algorithm for NASH.

- Finding approximate NE in games with at least three players lies in PPAD, but the problem appears to be strictly harder than PPAD.
- If we modify NASH so that the existence is not always guaranteed, then the resulting problem often becomes NP-complete.
- This seems to be a problem with the concept of NE. "How can we expect the players to find a Nash equilibrium, if our computers cannot?"

What now?

• So it is likely that there is no polynomial-time algorithm for NASH.

- Finding approximate NE in games with at least three players lies in PPAD, but the problem appears to be strictly harder than PPAD.
- If we modify NASH so that the existence is not always guaranteed, then the resulting problem often becomes NP-complete.
- This seems to be a problem with the concept of NE. "How can we expect the players to find a Nash equilibrium, if our computers cannot?"
- We introduce other solution concepts that possess some qualities of NE and yet are easier to compute.

Other notions of equilibria

• Since finding NE is computationally difficult unless *PPAD* ⊆ *FP*, we look for different solution concepts that are computationally tractable.

- Since finding NE is computationally difficult unless *PPAD* ⊆ *FP*, we look for different solution concepts that are computationally tractable.
- We introduce two such solution concepts:

- Since finding NE is computationally difficult unless *PPAD* ⊆ *FP*, we look for different solution concepts that are computationally tractable.
- We introduce two such solution concepts: ε-Nash equilibria

- Since finding NE is computationally difficult unless *PPAD* ⊆ *FP*, we look for different solution concepts that are computationally tractable.
- We introduce two such solution concepts: ε-Nash equilibria and correlated equilibria.

- Since finding NE is computationally difficult unless *PPAD* ⊆ *FP*, we look for different solution concepts that are computationally tractable.
- We introduce two such solution concepts: ε-Nash equilibria and correlated equilibria.
 - $\circ~$ The first one will seem natural with an easy-to-understand definition,

- Since finding NE is computationally difficult unless *PPAD* ⊆ *FP*, we look for different solution concepts that are computationally tractable.
- We introduce two such solution concepts: *ε*-Nash equilibria and correlated equilibria.
 - The first one will seem natural with an easy-to-understand definition, but we will later notice some of its drawbacks.

- Since finding NE is computationally difficult unless *PPAD* ⊆ *FP*, we look for different solution concepts that are computationally tractable.
- We introduce two such solution concepts: ε-Nash equilibria and correlated equilibria.
 - The first one will seem natural with an easy-to-understand definition, but we will later notice some of its drawbacks.
 - The second one will have a rather complicated definition at first sight,

- Since finding NE is computationally difficult unless *PPAD* ⊆ *FP*, we look for different solution concepts that are computationally tractable.
- We introduce two such solution concepts: ε-Nash equilibria and correlated equilibria.
 - The first one will seem natural with an easy-to-understand definition, but we will later notice some of its drawbacks.
 - The second one will have a rather complicated definition at first sight, but we will later laern to appreciate it and see that it might be even more natural than NE!

For ε > 0, a strategy profile s = (s₁,..., s_n) in a normal-form game
 G = (P, A, u) is an ε-Nash equilibrium (ε-NE) if, for every player i ∈ P and every s'_i ∈ S_i, we have u_i(s_i; s_{-i}) ≥ u_i(s'_i; s_{-i})-ε.

- For ε > 0, a strategy profile s = (s₁,..., s_n) in a normal-form game
 G = (P, A, u) is an ε-Nash equilibrium (ε-NE) if, for every player i ∈ P and every s'_i ∈ S_i, we have u_i(s_i; s_{-i}) ≥ u_i(s'_i; s_{-i})-ε.
 - That is, no other strategy can improve the payoff by more than ε .

- For ε > 0, a strategy profile s = (s₁,..., s_n) in a normal-form game
 G = (P, A, u) is an ε-Nash equilibrium (ε-NE) if, for every player i ∈ P and every s'_i ∈ S_i, we have u_i(s_i; s_{-i}) ≥ u_i(s'_i; s_{-i})-ε.
 - That is, no other strategy can improve the payoff by more than ε .
 - $\circ\,$ If we allowed $\varepsilon=$ 0, we would get the standard NE.

- For ε > 0, a strategy profile s = (s₁,..., s_n) in a normal-form game
 G = (P, A, u) is an ε-Nash equilibrium (ε-NE) if, for every player i ∈ P and every s'_i ∈ S_i, we have u_i(s_i; s_{-i}) ≥ u_i(s'_i; s_{-i})-ε.
 - That is, no other strategy can improve the payoff by more than ε .
 - $\circ\,$ If we allowed $\varepsilon=$ 0, we would get the standard NE.
- Advantages:

- For ε > 0, a strategy profile s = (s₁,..., s_n) in a normal-form game
 G = (P, A, u) is an ε-Nash equilibrium (ε-NE) if, for every player i ∈ P and every s'_i ∈ S_i, we have u_i(s_i; s_{-i}) ≥ u_i(s'_i; s_{-i})-ε.
 - That is, no other strategy can improve the payoff by more than ε .
 - $\circ\,$ If we allowed $\varepsilon=$ 0, we would get the standard NE.
- Advantages:
 - Easy-to-understand definition

- For ε > 0, a strategy profile s = (s₁,..., s_n) in a normal-form game
 G = (P, A, u) is an ε-Nash equilibrium (ε-NE) if, for every player i ∈ P and every s'_i ∈ S_i, we have u_i(s_i; s_{-i}) ≥ u_i(s'_i; s_{-i})-ε.
 - That is, no other strategy can improve the payoff by more than ε .
 - $\circ\,$ If we allowed $\varepsilon=$ 0, we would get the standard NE.
- Advantages:
 - Easy-to-understand definition
 - $\circ \ \varepsilon\text{-NE}$ always exist by Nash's theorem

- For ε > 0, a strategy profile s = (s₁,..., s_n) in a normal-form game
 G = (P, A, u) is an ε-Nash equilibrium (ε-NE) if, for every player i ∈ P and every s'_i ∈ S_i, we have u_i(s_i; s_{-i}) ≥ u_i(s'_i; s_{-i})-ε.
 - That is, no other strategy can improve the payoff by more than ε .
 - $\circ\,$ If we allowed $\varepsilon=$ 0, we would get the standard NE.
- Advantages:
 - $\circ~$ Easy-to-understand definition
 - ε -NE always exist by Nash's theorem (every NE is ε -NE).

- For ε > 0, a strategy profile s = (s₁,..., s_n) in a normal-form game
 G = (P, A, u) is an ε-Nash equilibrium (ε-NE) if, for every player i ∈ P and every s'_i ∈ S_i, we have u_i(s_i; s_{-i}) ≥ u_i(s'_i; s_{-i})-ε.
 - That is, no other strategy can improve the payoff by more than ε .
 - $\circ\,$ If we allowed $\varepsilon=$ 0, we would get the standard NE.
- Advantages:
 - $\circ~$ Easy-to-understand definition
 - ε -NE always exist by Nash's theorem (every NE is ε -NE).
 - $\circ~$ Using ε as the "machine precision" we do not have to work with irrational numbers.

- For ε > 0, a strategy profile s = (s₁,..., s_n) in a normal-form game
 G = (P, A, u) is an ε-Nash equilibrium (ε-NE) if, for every player i ∈ P and every s'_i ∈ S_i, we have u_i(s_i; s_{-i}) ≥ u_i(s'_i; s_{-i})-ε.
 - That is, no other strategy can improve the payoff by more than ε .
 - $\circ\,$ If we allowed $\varepsilon=$ 0, we would get the standard NE.
- Advantages:
 - $\circ~$ Easy-to-understand definition
 - ε -NE always exist by Nash's theorem (every NE is ε -NE).
 - $\circ~$ Using ε as the "machine precision" we do not have to work with irrational numbers.
- Disadvantages:

- For ε > 0, a strategy profile s = (s₁,..., s_n) in a normal-form game
 G = (P, A, u) is an ε-Nash equilibrium (ε-NE) if, for every player i ∈ P and every s'_i ∈ S_i, we have u_i(s_i; s_{-i}) ≥ u_i(s'_i; s_{-i})-ε.
 - That is, no other strategy can improve the payoff by more than ε .
 - $\circ\,$ If we allowed $\varepsilon=$ 0, we would get the standard NE.
- Advantages:
 - $\circ~$ Easy-to-understand definition
 - ε -NE always exist by Nash's theorem (every NE is ε -NE).
 - $\circ~$ Using ε as the "machine precision" we do not have to work with irrational numbers.
- Disadvantages:
 - $\circ~$ There are $\varepsilon\text{-NE}$ that are not close to any NE

- For ε > 0, a strategy profile s = (s₁,..., s_n) in a normal-form game
 G = (P, A, u) is an ε-Nash equilibrium (ε-NE) if, for every player i ∈ P and every s'_i ∈ S_i, we have u_i(s_i; s_{-i}) ≥ u_i(s'_i; s_{-i})-ε.
 - That is, no other strategy can improve the payoff by more than ε .
 - $\circ\,$ If we allowed $\varepsilon=$ 0, we would get the standard NE.
- Advantages:
 - $\circ~$ Easy-to-understand definition
 - ε -NE always exist by Nash's theorem (every NE is ε -NE).
 - $\circ~$ Using ε as the "machine precision" we do not have to work with irrational numbers.
- Disadvantages:
 - There are ε -NE that are not close to any NE (so ε -NE are not exactly approximations of NE).

- For ε > 0, a strategy profile s = (s₁,..., s_n) in a normal-form game
 G = (P, A, u) is an ε-Nash equilibrium (ε-NE) if, for every player i ∈ P and every s'_i ∈ S_i, we have u_i(s_i; s_{-i}) ≥ u_i(s'_i; s_{-i})-ε.
 - That is, no other strategy can improve the payoff by more than ε .
 - $\circ\,$ If we allowed $\varepsilon=$ 0, we would get the standard NE.
- Advantages:
 - $\circ~$ Easy-to-understand definition
 - ε -NE always exist by Nash's theorem (every NE is ε -NE).
 - $\circ~$ Using ε as the "machine precision" we do not have to work with irrational numbers.
- Disadvantages:
 - $\circ~$ There are $\varepsilon\text{-NE}$ that are not close to any NE (so $\varepsilon\text{-NE}$ are not exactly approximations of NE).
 - $\circ\,$ We will see that his concept is also somehow computationally difficult.

An optimization problem *P* with input of size *n* and a parameter ε > 0 has a PTAS if there is an algorithm that computes an ε-approximate solution of *P* in time O(n^{f(1/ε)}) for some function *f*.

- An optimization problem *P* with input of size *n* and a parameter ε > 0 has a PTAS if there is an algorithm that computes an ε-approximate solution of *P* in time O(n^{f(1/ε)}) for some function *f*.
- The problem P has FPTAS if there is such an algorithm that runs in time O((1/ε)^cn^d) for some constants c and d.

- An optimization problem *P* with input of size *n* and a parameter ε > 0 has a PTAS if there is an algorithm that computes an ε-approximate solution of *P* in time O(n^{f(1/ε)}) for some function *f*.
- The problem P has FPTAS if there is such an algorithm that runs in time O((1/ε)^cn^d) for some constants c and d.
- Do we have FPTAS for ε -NE?

- An optimization problem *P* with input of size *n* and a parameter ε > 0 has a PTAS if there is an algorithm that computes an ε-approximate solution of *P* in time O(n^{f(1/ε)}) for some function *f*.
- The problem P has FPTAS if there is such an algorithm that runs in time O((1/ε)^cn^d) for some constants c and d.
- Do we have FPTAS for ε -NE?
 - No, unless $PPAD \subseteq FP$ (Chen, Deng, and Teng, 2006).

- An optimization problem *P* with input of size *n* and a parameter ε > 0 has a PTAS if there is an algorithm that computes an ε-approximate solution of *P* in time O(n^{f(1/ε)}) for some function *f*.
- The problem P has FPTAS if there is such an algorithm that runs in time O((1/ε)^cn^d) for some constants c and d.
- Do we have FPTAS for ε -NE?
 - No, unless $PPAD \subseteq FP$ (Chen, Deng, and Teng, 2006).
- Do we have PTAS for ε-NE?

- An optimization problem *P* with input of size *n* and a parameter ε > 0 has a PTAS if there is an algorithm that computes an ε-approximate solution of *P* in time O(n^{f(1/ε)}) for some function *f*.
- The problem P has FPTAS if there is such an algorithm that runs in time O((1/ε)^cn^d) for some constants c and d.
- Do we have FPTAS for ε -NE?
 - No, unless $PPAD \subseteq FP$ (Chen, Deng, and Teng, 2006).
- Do we have PTAS for ε-NE?
 - Open problem!

- An optimization problem *P* with input of size *n* and a parameter ε > 0 has a PTAS if there is an algorithm that computes an ε-approximate solution of *P* in time O(n^{f(1/ε)}) for some function *f*.
- The problem P has FPTAS if there is such an algorithm that runs in time O((1/ε)^cn^d) for some constants c and d.
- Do we have FPTAS for ε -NE?
 - No, unless $PPAD \subseteq FP$ (Chen, Deng, and Teng, 2006).
- Do we have PTAS for ε-NE?
 - Open problem!
- So what do we have?

- An optimization problem *P* with input of size *n* and a parameter ε > 0 has a PTAS if there is an algorithm that computes an ε-approximate solution of *P* in time O(n^{f(1/ε)}) for some function *f*.
- The problem P has FPTAS if there is such an algorithm that runs in time O((1/ε)^cn^d) for some constants c and d.
- Do we have FPTAS for ε -NE?
 - No, unless $PPAD \subseteq FP$ (Chen, Deng, and Teng, 2006).
- Do we have PTAS for ε-NE?
 - Open problem!
- So what do we have? A quasi-polynomial-time algorithm.

- An optimization problem *P* with input of size *n* and a parameter ε > 0 has a PTAS if there is an algorithm that computes an ε-approximate solution of *P* in time O(n^{f(1/ε)}) for some function *f*.
- The problem P has FPTAS if there is such an algorithm that runs in time O((1/ε)^cn^d) for some constants c and d.
- Do we have FPTAS for ε -NE?
 - No, unless $PPAD \subseteq FP$ (Chen, Deng, and Teng, 2006).
- Do we have PTAS for ε -NE?
 - Open problem!
- So what do we have? A quasi-polynomial-time algorithm.

Theorem 2.37 (Lipton, Markakis, and Mehta, 2003)

Let G = (P, A, u) be a normal-form game of two players, each having m actions, such that the payoff matrices have entries in [0, 1]. For every $\varepsilon > 0$, there is an algorithm for computing ε -NE of G in time $m^{O(\log m/\varepsilon^2)}$.

Algorithmic aspects of ε -Nash equilibria

- An optimization problem *P* with input of size *n* and a parameter ε > 0 has a PTAS if there is an algorithm that computes an ε-approximate solution of *P* in time O(n^{f(1/ε)}) for some function *f*.
- The problem P has FPTAS if there is such an algorithm that runs in time O((1/ε)^cn^d) for some constants c and d.
- Do we have FPTAS for ε-NE?
 - No, unless $PPAD \subseteq FP$ (Chen, Deng, and Teng, 2006).
- Do we have PTAS for ε-NE?
 - Open problem!
- So what do we have? A quasi-polynomial-time algorithm.

Theorem 2.37 (Lipton, Markakis, and Mehta, 2003)

Let G = (P, A, u) be a normal-form game of two players, each having m actions, such that the payoff matrices have entries in [0, 1]. For every $\varepsilon > 0$, there is an algorithm for computing ε -NE of G in time $m^{O(\log m/\varepsilon^2)}$.

• I no longer present the proof (see the lecture notes).

• The most fundamental solution concept according to several people.

- The most fundamental solution concept according to several people.
- "If there is intelligent life on other planets, in majority of them, they would have discovered correlated equilibrium before NE." (Myerson)

- The most fundamental solution concept according to several people.
- "If there is intelligent life on other planets, in majority of them, they would have discovered correlated equilibrium before NE." (Myerson)
- In G = (P, A, u), let p be a probability distribution on A,

- The most fundamental solution concept according to several people.
- "If there is intelligent life on other planets, in majority of them, they would have discovered correlated equilibrium before NE." (Myerson)
- In G = (P, A, u), let p be a probability distribution on A, that is, $p(a) \ge 0$ for every $a \in A$ and $\sum_{a \in A} p(a) = 1$.

- The most fundamental solution concept according to several people.
- "If there is intelligent life on other planets, in majority of them, they would have discovered correlated equilibrium before NE." (Myerson)
- In G = (P, A, u), let p be a probability distribution on A, that is, p(a) ≥ 0 for every a ∈ A and ∑_{a∈A} p(a) = 1. The distribution p is a correlated equilibrium (CE) in G if

$$\sum_{a_{-i} \in A_{-i}} u_i(a_i; a_{-i}) p(a_i; a_{-i}) \geq \sum_{a_{-i} \in A_{-i}} u_i(a_i'; a_{-i}) p(a_i; a_{-i})$$

for every player $i \in P$ and all pure strategies $a_i, a'_i \in A_i$.

ł

- The most fundamental solution concept according to several people.
- "If there is intelligent life on other planets, in majority of them, they would have discovered correlated equilibrium before NE." (Myerson)
- In G = (P, A, u), let p be a probability distribution on A, that is, p(a) ≥ 0 for every a ∈ A and ∑_{a∈A} p(a) = 1. The distribution p is a correlated equilibrium (CE) in G if

$$\sum_{a_{-i} \in A_{-i}} u_i(a_i; a_{-i}) p(a_i; a_{-i}) \geq \sum_{a_{-i} \in A_{-i}} u_i(a'_i; a_{-i}) p(a_i; a_{-i})$$

for every player $i \in P$ and all pure strategies $a_i, a'_i \in A_i$.

• Imagine a trusted third party with the distribution *p* being publicly known.

- The most fundamental solution concept according to several people.
- "If there is intelligent life on other planets, in majority of them, they would have discovered correlated equilibrium before NE." (Myerson)
- In G = (P, A, u), let p be a probability distribution on A, that is, p(a) ≥ 0 for every a ∈ A and ∑_{a∈A} p(a) = 1. The distribution p is a correlated equilibrium (CE) in G if

$$\sum_{a_{-i} \in A_{-i}} u_i(a_i; a_{-i}) p(a_i; a_{-i}) \geq \sum_{a_{-i} \in A_{-i}} u_i(a'_i; a_{-i}) p(a_i; a_{-i})$$

for every player $i \in P$ and all pure strategies $a_i, a'_i \in A_i$.

• Imagine a trusted third party with the distribution p being publicly known. The trusted third party samples $a \in A$ according to p and privately suggests the strategy a_i to i, but does not reveal a_{-i} to i.

- The most fundamental solution concept according to several people.
- "If there is intelligent life on other planets, in majority of them, they would have discovered correlated equilibrium before NE." (Myerson)
- In G = (P, A, u), let p be a probability distribution on A, that is, p(a) ≥ 0 for every a ∈ A and ∑_{a∈A} p(a) = 1. The distribution p is a correlated equilibrium (CE) in G if

$$\sum_{a_{-i} \in A_{-i}} u_i(a_i; a_{-i}) p(a_i; a_{-i}) \geq \sum_{a_{-i} \in A_{-i}} u_i(a'_i; a_{-i}) p(a_i; a_{-i})$$

for every player $i \in P$ and all pure strategies $a_i, a'_i \in A_i$.

Imagine a trusted third party with the distribution p being publicly known. The trusted third party samples a ∈ A according to p and privately suggests the strategy a_i to i, but does not reveal a_{-i} to i. The player i can follow this suggestion, or not.

- The most fundamental solution concept according to several people.
- "If there is intelligent life on other planets, in majority of them, they would have discovered correlated equilibrium before NE." (Myerson)
- In G = (P, A, u), let p be a probability distribution on A, that is, p(a) ≥ 0 for every a ∈ A and ∑_{a∈A} p(a) = 1. The distribution p is a correlated equilibrium (CE) in G if

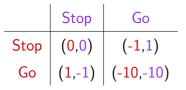
$$\sum_{a_{-i} \in A_{-i}} u_i(a_i; a_{-i}) p(a_i; a_{-i}) \geq \sum_{a_{-i} \in A_{-i}} u_i(a'_i; a_{-i}) p(a_i; a_{-i})$$

for every player $i \in P$ and all pure strategies $a_i, a'_i \in A_i$.

Imagine a trusted third party with the distribution p being publicly known. The trusted third party samples a ∈ A according to p and privately suggests the strategy a_i to i, but does not reveal a_{-i} to i. The player i can follow this suggestion, or not. Then, p is CE if every player maximizes his expected utility by playing the suggested strategy a_i.

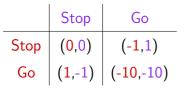
	Stop	Go
Stop	(<mark>0</mark> ,0)	(-1,1)
Go	(1,-1)	(-10,-10)

Sources: https://peakd.com/



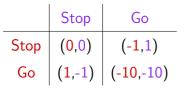
Sources: https://peakd.com/

• There are two pure NE with $(s_1(S), s_2(S)) = (1, 0)$ and $(s_1(S), s_2(S)) = (0, 1)$, and one mixed NE with $(s_1(S), s_2(S)) = (9/10, 9/10)$.



Sources: https://peakd.com/

- There are two pure NE with $(s_1(S), s_2(S)) = (1, 0)$ and $(s_1(S), s_2(S)) = (0, 1)$, and one mixed NE with $(s_1(S), s_2(S)) = (9/10, 9/10)$.
- Consider a trusted third party, a traffic light.



Sources: https://peakd.com/

- There are two pure NE with $(s_1(S), s_2(S)) = (1, 0)$ and $(s_1(S), s_2(S)) = (0, 1)$, and one mixed NE with $(s_1(S), s_2(S)) = (9/10, 9/10)$.
- Consider a trusted third party, a traffic light. The traffic light chooses (S, S), (S, G), and (G, S) independently at random with probability 1/3.

	Stop	Go
Stop	(<mark>0</mark> ,0)	(-1,1)
Go	(1,-1)	(-10,-10)

Sources: https://peakd.com/

- There are two pure NE with $(s_1(S), s_2(S)) = (1, 0)$ and $(s_1(S), s_2(S)) = (0, 1)$, and one mixed NE with $(s_1(S), s_2(S)) = (9/10, 9/10)$.
- Consider a trusted third party, a traffic light. The traffic light chooses (S, S), (S, G), and (G, S) independently at random with probability 1/3. The traffic light gives CE.

	Stop	Go
Stop	(<mark>0</mark> ,0)	(-1,1)
Go	(1 ,-1)	(-10,-10)

Sources: https://peakd.com/

- There are two pure NE with $(s_1(S), s_2(S)) = (1, 0)$ and $(s_1(S), s_2(S)) = (0, 1)$, and one mixed NE with $(s_1(S), s_2(S)) = (9/10, 9/10)$.
- Consider a trusted third party, a traffic light. The traffic light chooses (S, S), (S, G), and (G, S) independently at random with probability 1/3. The traffic light gives CE.
 - $\circ\,$ If 1 follows the suggestion "go", then he gets 1 while deviating gives him 0.

	Stop	Go
Stop	(<mark>0</mark> ,0)	(-1,1)
Go	(1,-1)	(-10,-10)

Sources: https://peakd.com/

- There are two pure NE with $(s_1(S), s_2(S)) = (1, 0)$ and $(s_1(S), s_2(S)) = (0, 1)$, and one mixed NE with $(s_1(S), s_2(S)) = (9/10, 9/10)$.
- Consider a trusted third party, a traffic light. The traffic light chooses (S, S), (S, G), and (G, S) independently at random with probability 1/3. The traffic light gives CE.
 - $\circ\,$ If 1 follows the suggestion "go", then he gets 1 while deviating gives him 0.
 - $\circ\,$ If 1 follows the suggestion "stop", then he gets -1/2 while deviating gives him -9/2.

	Stop	Go
Stop	(<mark>0</mark> ,0)	(-1,1)
Go	(1,-1)	(-10,-10)

Sources: https://peakd.com/

- There are two pure NE with $(s_1(S), s_2(S)) = (1, 0)$ and $(s_1(S), s_2(S)) = (0, 1)$, and one mixed NE with $(s_1(S), s_2(S)) = (9/10, 9/10)$.
- Consider a trusted third party, a traffic light. The traffic light chooses (S, S), (S, G), and (G, S) independently at random with probability 1/3. The traffic light gives CE.
 - $\circ\,$ If 1 follows the suggestion "go", then he gets 1 while deviating gives him 0.
 - $\circ\,$ If 1 follows the suggestion "stop", then he gets -1/2 while deviating gives him -9/2.
 - By symmetry, driver 2 does not deviate as well.

Source: Students of MFF UK

	Football	Opera
Football	(2,1)	(<mark>0</mark> ,0)
Opera	(<mark>0</mark> ,0)	(1,2)

Sources: https://media.istockphoto.com/

	Football	Opera
Football	(2,1)	(<mark>0</mark> ,0)
Opera	(<mark>0,0</mark>)	(<mark>1</mark> ,2)

Sources: https://media.istockphoto.com/

• There are two pure NE with $(s_1(F), s_2(F)) = (1, 1)$ and $(s_1(F), s_2(F)) = (0, 0)$, and one mixed NE with $(s_1(F), s_2(O)) = (2/3, 2/3)$.

	Football	Opera
Football	(2,1)	(<mark>0</mark> ,0)
Opera	(<mark>0,0</mark>)	(<mark>1</mark> ,2)

Sources: https://media.istockphoto.com/

- There are two pure NE with $(s_1(F), s_2(F)) = (1, 1)$ and $(s_1(F), s_2(F)) = (0, 0)$, and one mixed NE with $(s_1(F), s_2(O)) = (2/3, 2/3)$.
- Consider a trusted third party, a mother-in-law.

	Football	Opera
Football	(2,1)	(<mark>0</mark> ,0)
Opera	(<mark>0</mark> ,0)	(1,2)

Sources: https://media.istockphoto.com/

- There are two pure NE with $(s_1(F), s_2(F)) = (1, 1)$ and $(s_1(F), s_2(F)) = (0, 0)$, and one mixed NE with $(s_1(F), s_2(O)) = (2/3, 2/3)$.
- Consider a trusted third party, a mother-in-law. The mother-in-law flips a coin and chooses (*F*, *F*) or (*O*, *O*) independently at random with probability 1/2.

	Football	Opera
Football	(2,1)	(<mark>0</mark> ,0)
Opera	(<mark>0</mark> ,0)	(1,2)

Sources: https://media.istockphoto.com/

- There are two pure NE with $(s_1(F), s_2(F)) = (1, 1)$ and $(s_1(F), s_2(F)) = (0, 0)$, and one mixed NE with $(s_1(F), s_2(O)) = (2/3, 2/3)$.
- Consider a trusted third party, a mother-in-law. The mother-in-law flips a coin and chooses (F, F) or (O, O) independently at random with probability 1/2. The mother-in-law gives CE.

	Football	Opera
Football	(2,1)	(<mark>0</mark> ,0)
Opera	(<mark>0</mark> ,0)	(1,2)

Sources: https://media.istockphoto.com/

- There are two pure NE with $(s_1(F), s_2(F)) = (1, 1)$ and $(s_1(F), s_2(F)) = (0, 0)$, and one mixed NE with $(s_1(F), s_2(O)) = (2/3, 2/3)$.
- Consider a trusted third party, a mother-in-law. The mother-in-law flips a coin and chooses (*F*, *F*) or (*O*, *O*) independently at random with probability 1/2. The mother-in-law gives CE.
 - If the husband follows the suggestion "football", then he gets 2 while deviating gives him 0.

	Football	Opera
Football	(2,1)	(<mark>0</mark> ,0)
Opera	(<mark>0</mark> ,0)	(1,2)

Sources: https://media.istockphoto.com/

- There are two pure NE with $(s_1(F), s_2(F)) = (1, 1)$ and $(s_1(F), s_2(F)) = (0, 0)$, and one mixed NE with $(s_1(F), s_2(O)) = (2/3, 2/3)$.
- Consider a trusted third party, a mother-in-law. The mother-in-law flips a coin and chooses (*F*, *F*) or (*O*, *O*) independently at random with probability 1/2. The mother-in-law gives CE.
 - $\circ\,$ If the husband follows the suggestion "football", then he gets 2 while deviating gives him 0.
 - $\circ\,$ If the husband follows the suggestion "opera", then he gets 1 while deviating gives him 0.

	Football	Opera
Football	(2,1)	(<mark>0</mark> ,0)
Opera	(<mark>0</mark> ,0)	(1,2)

Sources: https://media.istockphoto.com/

- There are two pure NE with $(s_1(F), s_2(F)) = (1, 1)$ and $(s_1(F), s_2(F)) = (0, 0)$, and one mixed NE with $(s_1(F), s_2(O)) = (2/3, 2/3)$.
- Consider a trusted third party, a mother-in-law. The mother-in-law flips a coin and chooses (*F*, *F*) or (*O*, *O*) independently at random with probability 1/2. The mother-in-law gives CE.
 - $\circ\,$ If the husband follows the suggestion "football", then he gets 2 while deviating gives him 0.
 - $\circ\,$ If the husband follows the suggestion "opera", then he gets 1 while deviating gives him 0.
 - $\circ\,$ By symmetry, the wife does not deviate as well.

• Disadvantages:

- Disadvantages:
 - $\circ\,$ The definition of CE takes some getting used to.

- Disadvantages:
 - $\circ\,$ The definition of CE takes some getting used to.
- Advantages:

- Disadvantages:
 - $\circ\,$ The definition of CE takes some getting used to.
- Advantages:
 - Every NE is CE (Exercise).

- Disadvantages:
 - $\circ\,$ The definition of CE takes some getting used to.
- Advantages:
 - Every NE is CE (Exercise). So CE always exist by Nash's theorem.

- Disadvantages:
 - $\circ\,$ The definition of CE takes some getting used to.
- Advantages:
 - Every NE is CE (Exercise). So CE always exist by Nash's theorem.
 - Each NE s is CE with the product distribution $p = \prod_{i=1}^{n} s_i$.

- Disadvantages:
 - $\circ\,$ The definition of CE takes some getting used to.
- Advantages:
 - Every NE is CE (Exercise). So CE always exist by Nash's theorem.
 - Each NE *s* is CE with the product distribution $p = \prod_{i=1}^{n} s_i$. So CE can give better payoffs than NE.

- Disadvantages:
 - $\circ\,$ The definition of CE takes some getting used to.
- Advantages:
 - Every NE is CE (Exercise). So CE always exist by Nash's theorem.
 - Each NE *s* is CE with the product distribution $p = \prod_{i=1}^{n} s_i$. So CE can give better payoffs than NE.
 - Can be computed in polynomial time using LP!

- Disadvantages:
 - $\circ\,$ The definition of CE takes some getting used to.
- Advantages:
 - Every NE is CE (Exercise). So CE always exist by Nash's theorem.
 - Each NE *s* is CE with the product distribution $p = \prod_{i=1}^{n} s_i$. So CE can give better payoffs than NE.
 - Can be computed in polynomial time using LP! Consider the following LP with variables (p(a))_{a∈A}:

• Disadvantages:

 $\circ\,$ The definition of CE takes some getting used to.

- Advantages:
 - Every NE is CE (Exercise). So CE always exist by Nash's theorem.
 - Each NE *s* is CE with the product distribution $p = \prod_{i=1}^{n} s_i$. So CE can give better payoffs than NE.
 - Can be computed in polynomial time using LP! Consider the following LP with variables (p(a))_{a∈A}:

$$\max \left\{ \sum_{i \in P} \left(\sum_{a \in A} u_i(a) p(a) \right) \right\} \text{ subject to, for all } i \in P, a_i, a'_i \in A_i,$$
$$\sum_{a_{-i} \in A_{-i}} u_i(a_i; a_{-i}) p(a_i; a_{-i}) \ge \sum_{a_{-i} \in A_{-i}} u_i(a'_i; a_{-i}) p(a_i; a_{-i})$$
$$\sum_{a \in A} p(a) = 1, p(a) \ge 0 \text{ for every } a \in A.$$

• The concept of correlated equilibria was introduced by Robert Aumann, who received a Nobel prize in economics for his work in game theory.

Figure: Robert Aumann (born 1930).

Sources: https://en.wikipedia.org and https://slideslive.com/38910863/strategic-information-theory

• The concept of correlated equilibria was introduced by Robert Aumann, who received a Nobel prize in economics for his work in game theory.

Figure: Robert Aumann (born 1930).

Sources: https://en.wikipedia.org and https://slideslive.com/38910863/strategic-information-theory

 In 2018, Robert Aumann visited Prague and gave a lecture at Prague mathematical colloquium. You can see the lecture here: https: //slideslive.com/38910863/strategic-information-theory. • The concept of correlated equilibria was introduced by Robert Aumann, who received a Nobel prize in economics for his work in game theory.

Figure: Robert Aumann (born 1930).

Sources: https://en.wikipedia.org and https://slideslive.com/38910863/strategic-information-theory

 In 2018, Robert Aumann visited Prague and gave a lecture at Prague mathematical colloquium. You can see the lecture here: https: //slideslive.com/38910863/strategic-information-theory.

Thank you for your attention.