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e We have seen three algorithms to find NE in bimatrix games:
o the brute-force algorithm with support enumeration,
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o the Lemke—Howson algorithm.
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e Is there a chance to get an efficient algorithm?
e NASH = the problem of finding NE in bimatrix games.
e Today, we discuss the computational complexity of NASH.
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e Is NASH NP-complete?

o No. NP is a class of decision problems (yes/no answers) while NE
always exist (so the answer is always yes).

e Another candidate is the complexity class FNP (“functional NP").

o The input of FNP problem is an instance of a problem from NP.
The algorithm outputs a solution if one exists. If there is no
solution, the algorithm outputs ‘no’.

o That is, we demand a solution for ‘yes’ instances.

o NASH belongs to FNP, as checking whether a strategy profile is
NE can be done using the Best Response Condition.

o Is NASH FNP-complete? Unlikely, because of the following result.

Theorem 2.34 (Megiddo and Papadimitriou, 1991)
If the problem NASH is FNP-complete, then NP = coNP.

e Without proof (but you can find it in the lecture notes).
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New complexity class

e The proof of the correctness of the Lemke—Howson algorithm reveals
the structure of NASH (finding another endpoint of a path in graph of
maximum degree 2).

e Let us capture this abstract structure.

e The END-OF-THE-LINE problem: for a directed graph G with every
vertex having at most one predecessor and one successor, given a vertex
s of G with no predecessor, find a vertex t # s with no predecessor or
no successor. The graph G is not given on the input, but it is specified
by some polynomial-time computable function f(v) that returns the
predecessor and successor (if they exist) of v.

o Thus, G can be exponentially large with respect to the input.

e Let PPAD be a complexity class consisting of problems that admit a
polynomial-time reduction to END-OF-THE-LINE.
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The class PPAD

e The class PPAD was introduced in 1994 by Papadimitrou.

Figure: Christos Papadimitriou (born 1949).

Source: https://cs.columbia.edu

”

e Abbreviation for “Polynomial Parity Arguments on Directed graphs”.

e This complexity class contains a lot of well-known problems.
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start

o

end

Source: R. Savani “Polymatrix Games” Tutorial at WINE 2015
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Problems from PPAD: Brouwer's fixed point theorem

e An approximate version of the following theorem is in PPAD: For each
d € N, a non-empty compact convex set K in R9, and a continuous
mapping f: K — K, there exists x, € K such that f(xg) = xo.

Figure: L. E. J. Brouwer (1881-1966).

Source: https://arxiv.org/pdf/1612.06820.pdf
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e Given n sets of 2n points in R”, find a hyperplane H that contains
exactly n points from each of the sets in each open halfspace
determined by H.

e X

Sources: https://ejarzo.github.io and https://curiosamathematica.tumblr.com
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e An approximate version of the following theorem is in PPAD: For every
continuous f: §" — R" there is x € S" with f(x) = f(—x).
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NASH and PPAD

e The proof of the correctness of the Lemke—Howson algorithm shows
that NASH belongs to PPAD (for nondegenerate games).

e Is NASH PPAD-complete?
o That is, is it among the most difficult problems in this class?
o PPAD-completeness gives some evidence of computational

intractability, although somehow weaker than NP-completeness.
o Open for a long time.

Theorem 2.35 (Chen, Deng, and Teng and Daskalakis, Goldberg, and
Papadimitriou, 2009)

The problem NASH is PPAD-complete.

e One of the main breakthroughs in algorithmic game theory.

e We omit the proof, as it is complicated (the papers have over 50 and
70 pages).
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e So it is likely that there is no polynomial-time algorithm for NASH.
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e Finding approximate NE in games with at least three players lies in
PPAD, but the problem appears to be strictly harder than PPAD.

e If we modify NASH so that the existence is not always guaranteed, then
the resulting problem often becomes NP-complete.

e This seems to be a problem with the concept of NE. “How can we
expect the players to find a Nash equilibrium, if our computers cannot?”

e We introduce other solution concepts that possess some qualities of NE
and yet are easier to compute.



Other notions of equilibria
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Two new solution concepts

e Since finding NE is computationally difficult unless PPAD C FP, we
look for different solution concepts that are computationally tractable.

e We introduce two such solution concepts: c-Nash equilibria and
correlated equilibria.
o The first one will seem natural with an easy-to-understand
definition, but we will later notice some of its drawbacks.
o The second one will have a rather complicated definition at first
sight, but we will later laern to appreciate it and see that it might
be even more natural than NE!
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o Easy-to-understand definition

o e-NE always exist by Nash's theorem (every NE is e-NE).

o Using ¢ as the “machine precision” we do not have to work with
irrational numbers.

e Disadvantages:
o There are e-NE that are not close to any NE (so e-NE are not

exactly approximations of NE).
o We will see that his concept is also somehow computationally

difficult.
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e An optimization problem P with input of size n and a parameter ¢ > 0
has a PTAS if there is an algorithm that computes an e-approximate
solution of P in time O(nf(*/4)) for some function f.

e The problem P has FPTAS if there is such an algorithm that runs in
time O((1/¢)°n9) for some constants c and d.

e Do we have FPTAS for e-NE?

o No, unless PPAD C FP (Chen, Deng, and Teng, 2006).

e Do we have PTAS for e-NE?

o Open problem!
e So what do we have? A quasi-polynomial-time algorithm.

Theorem 2.37 (Lipton, Markakis, and Mehta, 2003)

Let G = (P, A, u) be a normal-form game of two players, each having m
actions, such that the payoff matrices have entries in [0, 1]. For every ¢ > 0,
there is an algorithm for computing e-NE of G in time m©(iegm/<*)

e | no longer present the proof (see the lecture notes).
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Correlated equilibria

The most fundamental solution concept according to several people.

“If there is intelligent life on other planets, in majority of them, they
would have discovered correlated equilibrium before NE.” (Myerson)
In G = (P,A,u), let p be a probability distribution on A, that is,
p(a) > 0 for every ac€ Aand ) _, p(a) = 1. The distribution p is a
correlated equilibrium (CE) in G if

Z ui(aj; a—i)p(aj; a—i) > Z ui(a; a—i)p(ai; a—;)

a_;€A_; a_;€A_;

for every player i € P and all pure strategies a;, a; € A;.

Imagine a trusted third party with the distribution p being publicly
known. The trusted third party samples a € A according to p and
privately suggests the strategy a; to /, but does not reveal a_; to i. The
player i can follow this suggestion, or not. Then, p is CE if every player
maximizes his expected utility by playing the suggested strategy a;.
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o If 1 follows the suggestion “go”, then he gets 1 while deviating

gives him 0.

o If 1 follows the suggestion “stop”, then he gets —1/2 while
deviating gives him —9/2.

o By symmetry, driver 2 does not deviate as well.
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e There are two pure NE with (s1(F), s2(F)) = (1,1) and (s1(F),
s2(F)) = (0,0), and one mixed NE with (s1(F), s2(0)) = (2/3,2/3).

e Consider a trusted third party, a mother-in-law. The mother-in-law flips
a coin and chooses (F, F) or (O, O) independently at random with
probability 1/2. The mother-in-law gives CE.

o If the husband follows the suggestion “football”, then he gets 2
while deviating gives him 0.

o If the husband follows the suggestion “opera”, then he gets 1
while deviating gives him 0.

o By symmetry, the wife does not deviate as well.
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e Disadvantages:
o The definition of CE takes some getting used to.
e Advantages:
o Every NE is CE (Exercise). So CE always exist by Nash's theorem.
o Each NE s is CE with the product distribution p = []_; si.
So CE can give better payoffs than NE.
o Can be computed in polynomial time using LP! Consider the
following LP with variables (p(a)).ca:

max {Z (Z u;(a)p(a)) } subject to, for all / € P, a;, a: € A;,

ieP acA

> ulana)p(anas) > > wiaha)p(aias)

a_j€A_; a_j€A_;

Zp =1,p(a) > 0 for every a € A.

acA
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e The concept of correlated equilibria was introduced by Robert Aumann,
who received a Nobel prize in economics for his work in game theory.
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e In 2018, Robert Aumann visited Prague and gave a lecture at Prague
mathematical colloquium. You can see the lecture here: https:
//slideslive.com/38910863/strategic-information-theory.
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e In 2018, Robert Aumann visited Prague and gave a lecture at Prague
mathematical colloquium. You can see the lecture here: https:
//slideslive.com/38910863/strategic-information-theory.

Thank you for your attention.
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