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Nash equilibria in bimatrix games



What have we learned so far

• We have seen three algorithms to find NE in bimatrix games:

◦ the brute-force algorithm with support enumeration,
◦ the algorithm with vertex enumeration,
◦ the Lemke–Howson algorithm.

• All these algorithms have exponential running time in the worst case.

Source: https://www.shutterstock.com/

• Is there a chance to get an efficient algorithm?

• NASH = the problem of finding NE in bimatrix games.

• Today, we discuss the computational complexity of NASH.
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Where does NASH belong to?

• Is NASH NP-complete?

◦ No. NP is a class of decision problems (yes/no answers) while NE
always exist (so the answer is always yes).

• Another candidate is the complexity class FNP (“functional NP”).

◦ The input of FNP problem is an instance of a problem from NP.
The algorithm outputs a solution if one exists. If there is no
solution, the algorithm outputs ‘no’.

◦ That is, we demand a solution for ‘yes’ instances.
◦ NASH belongs to FNP, as checking whether a strategy profile is
NE can be done using the Best Response Condition.

◦ Is NASH FNP-complete? Unlikely, because of the following result.

Theorem 2.34 (Megiddo and Papadimitriou, 1991)

If the problem NASH is FNP-complete, then NP = coNP.

• Without proof (but you can find it in the lecture notes).
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New complexity class

• The proof of the correctness of the Lemke–Howson algorithm reveals
the structure of NASH (finding another endpoint of a path in graph of
maximum degree 2).

• Let us capture this abstract structure.

• The END-OF-THE-LINE problem: for a directed graph G with every
vertex having at most one predecessor and one successor, given a vertex
s of G with no predecessor, find a vertex t ̸= s with no predecessor or
no successor. The graph G is not given on the input, but it is specified
by some polynomial-time computable function f (v) that returns the
predecessor and successor (if they exist) of v .

◦ Thus, G can be exponentially large with respect to the input.

• Let PPAD be a complexity class consisting of problems that admit a
polynomial-time reduction to END-OF-THE-LINE.
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The class PPAD

• The class PPAD was introduced in 1994 by Papadimitrou.

Figure: Christos Papadimitriou (born 1949).

Source: https://cs.columbia.edu

• Abbreviation for “Polynomial Parity Arguments on Directed graphs”.

• This complexity class contains a lot of well-known problems.
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Problems from PPAD: End-of-the-line

• For an oriented graph G with max. indegree and outdegree 1 and a
source in G , find a target in G . The graph is given by a polynomial-time
computable function f (v) that returns predecessor and successor of v .

Source: R. Savani “Polymatrix Games” Tutorial at WINE 2015
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Problems from PPAD: Sperner’s lemma

• Given a legal 3-coloring of a triangulated triangle, find a triangle with
vertices colored by all 3 colors.

Source: https://lesswrong.com

• Discrete version of the Brouwer’s fixed point theorem.
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Problems from PPAD: Brouwer’s fixed point theorem

• An approximate version of the following theorem is in PPAD: For each
d ∈ N, a non-empty compact convex set K in Rd , and a continuous
mapping f : K → K , there exists x0 ∈ K such that f (x0) = x0.
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NASH and PPAD

• The proof of the correctness of the Lemke–Howson algorithm shows
that NASH belongs to PPAD (for nondegenerate games).

• Is NASH PPAD-complete?

◦ That is, is it among the most difficult problems in this class?
◦ PPAD-completeness gives some evidence of computational
intractability, although somehow weaker than NP-completeness.

◦ Open for a long time.

Theorem 2.35 (Chen, Deng, and Teng and Daskalakis, Goldberg, and
Papadimitriou, 2009)

The problem NASH is PPAD-complete.

• One of the main breakthroughs in algorithmic game theory.

• We omit the proof, as it is complicated (the papers have over 50 and
70 pages).
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What now?

• So it is likely that there is no polynomial-time algorithm for NASH.

• Finding approximate NE in games with at least three players lies in
PPAD, but the problem appears to be strictly harder than PPAD.

• If we modify NASH so that the existence is not always guaranteed, then
the resulting problem often becomes NP-complete.

• This seems to be a problem with the concept of NE. “How can we
expect the players to find a Nash equilibrium, if our computers cannot?”

• We introduce other solution concepts that possess some qualities of NE
and yet are easier to compute.
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Other notions of equilibria



Two new solution concepts

• Since finding NE is computationally difficult unless PPAD ⊆ FP , we
look for different solution concepts that are computationally tractable.

• We introduce two such solution concepts: ε-Nash equilibria and
correlated equilibria.

◦ The first one will seem natural with an easy-to-understand
definition, but we will later notice some of its drawbacks.

◦ The second one will have a rather complicated definition at first
sight, but we will later laern to appreciate it and see that it might
be even more natural than NE!
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ε-Nash equilibria

• For ε > 0, a strategy profile s = (s1, . . . , sn) in a normal-form game
G = (P ,A, u) is an ε-Nash equilibrium (ε-NE) if, for every player i ∈ P
and every s ′i ∈ Si , we have ui(si ; s−i) ≥ ui(s

′
i ; s−i)−ε.

◦ That is, no other strategy can improve the payoff by more than ε.
◦ If we allowed ε = 0, we would get the standard NE.

• Advantages:

◦ Easy-to-understand definition
◦ ε-NE always exist by Nash’s theorem (every NE is ε-NE).
◦ Using ε as the “machine precision” we do not have to work with
irrational numbers.

• Disadvantages:

◦ There are ε-NE that are not close to any NE (so ε-NE are not
exactly approximations of NE).

◦ We will see that his concept is also somehow computationally
difficult.
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Algorithmic aspects of ε-Nash equilibria
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has a PTAS if there is an algorithm that computes an ε-approximate
solution of P in time O(nf (1/ε)) for some function f .

• The problem P has FPTAS if there is such an algorithm that runs in
time O((1/ε)cnd) for some constants c and d .

• Do we have FPTAS for ε-NE?
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Correlated equilibria

• The most fundamental solution concept according to several people.

• “If there is intelligent life on other planets, in majority of them, they
would have discovered correlated equilibrium before NE.” (Myerson)

• In G = (P ,A, u), let p be a probability distribution on A, that is,
p(a) ≥ 0 for every a ∈ A and

∑
a∈A p(a) = 1. The distribution p is a

correlated equilibrium (CE) in G if∑
a−i∈A−i

ui(ai ; a−i)p(ai ; a−i) ≥
∑

a−i∈A−i

ui(a
′
i ; a−i)p(ai ; a−i)

for every player i ∈ P and all pure strategies ai , a
′
i ∈ Ai .

• Imagine a trusted third party with the distribution p being publicly
known. The trusted third party samples a ∈ A according to p and
privately suggests the strategy ai to i , but does not reveal a−i to i . The
player i can follow this suggestion, or not. Then, p is CE if every player
maximizes his expected utility by playing the suggested strategy ai .
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Example of correlated equilibria: Game of Chicken

Stop Go

Stop (0,0) (-1,1)

Go (1,-1) (-10,-10)

Sources: https://peakd.com/

• There are two pure NE with (s1(S), s2(S)) = (1, 0) and (s1(S),
s2(S)) = (0, 1), and one mixed NE with (s1(S), s2(S)) = (9/10, 9/10).

• Consider a trusted third party, a traffic light. The traffic light chooses
(S , S), (S ,G ), and (G , S) independently at random with probability
1/3. The traffic light gives CE.
◦ If 1 follows the suggestion “go”, then he gets 1 while deviating
gives him 0.

◦ If 1 follows the suggestion “stop”, then he gets −1/2 while
deviating gives him −9/2.

◦ By symmetry, driver 2 does not deviate as well.
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(S , S), (S ,G ), and (G , S) independently at random with probability
1/3. The traffic light gives CE.
◦ If 1 follows the suggestion “go”, then he gets 1 while deviating
gives him 0.

◦ If 1 follows the suggestion “stop”, then he gets −1/2 while
deviating gives him −9/2.

◦ By symmetry, driver 2 does not deviate as well.
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Example of correlated equilibria: Battle of sexes

Football Opera

Football (2,1) (0,0)

Opera (0,0) (1,2)

Sources: https://media.istockphoto.com/

• There are two pure NE with (s1(F ), s2(F )) = (1, 1) and (s1(F ),
s2(F )) = (0, 0), and one mixed NE with (s1(F ), s2(O)) = (2/3, 2/3).

• Consider a trusted third party, a mother-in-law. The mother-in-law flips
a coin and chooses (F ,F ) or (O,O) independently at random with
probability 1/2. The mother-in-law gives CE.
◦ If the husband follows the suggestion “football”, then he gets 2
while deviating gives him 0.

◦ If the husband follows the suggestion “opera”, then he gets 1
while deviating gives him 0.

◦ By symmetry, the wife does not deviate as well.
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Advantages and disadvantages of correlated equilibria

• Disadvantages:

◦ The definition of CE takes some getting used to.

• Advantages:

◦ Every NE is CE (Exercise). So CE always exist by Nash’s theorem.
◦ Each NE s is CE with the product distribution p =

∏n
i=1 si .

So CE can give better payoffs than NE.
◦ Can be computed in polynomial time using LP! Consider the
following LP with variables (p(a))a∈A:

max

{∑
i∈P

(∑
a∈A

ui(a)p(a)

)}
subject to, for all i ∈ P , ai , a

′
i ∈ Ai ,∑

a−i∈A−i

ui(ai ; a−i)p(ai ; a−i) ≥
∑

a−i∈A−i

ui(a
′
i ; a−i)p(ai ; a−i)∑

a∈A

p(a) = 1, p(a) ≥ 0 for every a ∈ A.
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• The concept of correlated equilibria was introduced by Robert Aumann,
who received a Nobel prize in economics for his work in game theory.

Figure: Robert Aumann (born 1930).
Sources: https://en.wikipedia.org and https://slideslive.com/38910863/strategic-information-theory

• In 2018, Robert Aumann visited Prague and gave a lecture at Prague
mathematical colloquium. You can see the lecture here: https:
//slideslive.com/38910863/strategic-information-theory.

Thank you for your attention.
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