Algorithmic game theory

Martin Balko

4th lecture

October 25th 2024

Nash equilibria in bimatrix games

BN
What we learned last time

What we learned last time

e Last lecture we introduced a brute-force algorithm to find all Nash
equilibria in bimatrix games.

What we learned last time

e Last lecture we introduced a brute-force algorithm to find all Nash
equilibria in bimatrix games.

e Recall that we have payoff matrices M and N with M; ; = u(i, /) and
Nij = ua(i,).

What we learned last time

e Last lecture we introduced a brute-force algorithm to find all Nash
equilibria in bimatrix games.

e Recall that we have payoff matrices M and N with M; ; = u(i, /) and
Nij = ua (1, f).-

e The best response condition: If x and y are mixed strategy vectors of
players 1 and 2, respectively, then x is a best response to y iff

VieA :x>0= M,y =max{M.y: k € A}
Analogously, vy is a best response to x iff

VjeA yy>0= NJT*x: max{N,I*x: k € Ay}

What we learned last time

e Last lecture we introduced a brute-force algorithm to find all Nash
equilibria in bimatrix games.

e Recall that we have payoff matrices M and N with M; ; = u(i, /) and
Nij = ua (1, f).-

e The best response condition: If x and y are mixed strategy vectors of
players 1 and 2, respectively, then x is a best response to y iff

VieA :x>0= M,y =max{M.y: k € A}
Analogously, vy is a best response to x iff
VjeA yy>0= NJT*X = max{N,I*x: k € Ay}

e Today, we reveal a geometric structure behind finding NE in bimatrix
games and show one of the fastest known algorithms for this task.

IS
Best response polyhedra

Best response polyhedra

e To reveal the geometric structure, we define labeled polyhedra for a
bimatrix game G.

Best response polyhedra

e To reveal the geometric structure, we define labeled polyhedra for a
bimatrix game G.
e The best response polyhedron for player 1 in G is a polyhedron

ﬁ:{(x,v)ERmXR:XEO,lTXZI,NTxglv}_

Best response polyhedra

e To reveal the geometric structure, we define labeled polyhedra for a
bimatrix game G.
e The best response polyhedron for player 1 in G is a polyhedron

P={(x,v)ER"xR: x>0,1"x=1N"x < 1v}.
Similarly, we define the best response polyhedron for player 2 in G as

Q={(y,u1) eER"xR: y>0,1"y =1, My < 1u}.

Best response polyhedra

e To reveal the geometric structure, we define labeled polyhedra for a
bimatrix game G.

e The best response polyhedron for player 1 in G is a polyhedron

P={(xv)ER"xR:x>0,1"x=1,N"x <1v}.
Similarly, we define the best response polyhedron for player 2 in G as
Q={(y,u) ER"xR:y>0,1"y =1, My < 1u}.

S

o Let (x,v)€P, (y,u)€Q

Best response polyhedra

e To reveal the geometric structure, we define labeled polyhedra for a
bimatrix game G.

e The best response polyhedron for player 1 in G is a polyhedron
P={(x,v) eR™" xR: x > 0,1'x=1,N"x< 1v}.
Similarly, we define the best response polyhedron for player 2 in G as
Q={(y,u) ER"xR:y>0,1"y =1, My < 1u}.

o Let (x,v) € P, (y,u) € Q and let s = (51, 5,) be a strategy profile with
mixed strategy vectors x and y.

Best response polyhedra

e To reveal the geometric structure, we define labeled polyhedra for a
bimatrix game G.

e The best response polyhedron for player 1 in G is a polyhedron
P={(x,v) eR™" xR: x > 0,1'x=1,N"x< 1v}.
Similarly, we define the best response polyhedron for player 2 in G as
Q={(y,u) ER"xR:y>0,1"y =1, My < 1u}.

o Let (x,v) € P, (y,u) € Q and let s = (51, 5,) be a strategy profile with
mixed strategy vectors x and y.
e Then, My < 1u says that u(s) < u,

Best response polyhedra

e To reveal the geometric structure, we define labeled polyhedra for a
bimatrix game G.

e The best response polyhedron for player 1 in G is a polyhedron
P={(x,v) eR™" xR: x > 0,1'x=1,N"x< 1v}.
Similarly, we define the best response polyhedron for player 2 in G as
Q={(y,u) ER"xR:y>0,1"y =1, My < 1u}.

o Let (x,v) € P, (y,u) € Q and let s = (51, 5,) be a strategy profile with
mixed strategy vectors x and y.
e Then, My < 1u says that u;(s) < u, as the expected payoff is always

Best response polyhedra

e To reveal the geometric structure, we define labeled polyhedra for a
bimatrix game G.

e The best response polyhedron for player 1 in G is a polyhedron
P={(x,v) eR™" xR: x > 0,1'x=1,N"x< 1v}.
Similarly, we define the best response polyhedron for player 2 in G as
Q={(y,u) ER"xR:y>0,1"y =1, My < 1u}.

o Let (x,v) € P, (y,u) € Q and let s = (51, 5,) be a strategy profile with
mixed strategy vectors x and y.
e Then, My < 1u says that u;(s) < u, as the expected payoff is always

Ul(S)

Best response polyhedra

e To reveal the geometric structure, we define labeled polyhedra for a
bimatrix game G.

e The best response polyhedron for player 1 in G is a polyhedron
P={(x,v) eR™" xR: x > 0,1'x=1,N"x< 1v}.
Similarly, we define the best response polyhedron for player 2 in G as
Q={(y,u) ER"xR:y>0,1"y =1, My < 1u}.

o Let (x,v) € P, (y,u) € Q and let s = (51, 5,) be a strategy profile with
mixed strategy vectors x and y.
e Then, My < 1u says that u;(s) < u, as the expected payoff is always

ui(s) = x" My

Best response polyhedra

e To reveal the geometric structure, we define labeled polyhedra for a
bimatrix game G.

e The best response polyhedron for player 1 in G is a polyhedron
P={(x,v) eR™" xR: x > 0,1'x=1,N"x< 1v}.
Similarly, we define the best response polyhedron for player 2 in G as
Q={(y,u) ER"xR:y>0,1"y =1, My < 1u}.

o Let (x,v) € P, (y,u) € Q and let s = (51, 5,) be a strategy profile with
mixed strategy vectors x and y.
e Then, My < 1u says that u;(s) < u, as the expected payoff is always

u(s) =x"My < x"1lu

Best response polyhedra

e To reveal the geometric structure, we define labeled polyhedra for a
bimatrix game G.

e The best response polyhedron for player 1 in G is a polyhedron
P={(x,v) eR™" xR: x > 0,1'x=1,N"x< 1v}.
Similarly, we define the best response polyhedron for player 2 in G as
Q={(y,u) ER"xR:y>0,1"y =1, My < 1u}.

o Let (x,v) € P, (y,u) € Q and let s = (51, 5,) be a strategy profile with
mixed strategy vectors x and y.
e Then, My < 1u says that u;(s) < u, as the expected payoff is always

un(s)=x My < x"lu= uZx,-

i€EA;

Best response polyhedra

e To reveal the geometric structure, we define labeled polyhedra for a
bimatrix game G.

e The best response polyhedron for player 1 in G is a polyhedron
P={(x,v) eR™" xR: x > 0,1'x=1,N"x< 1v}.
Similarly, we define the best response polyhedron for player 2 in G as
Q={(y,u) ER"xR:y>0,1"y =1, My < 1u}.

o Let (x,v) € P, (y,u) € Q and let s = (51, 5,) be a strategy profile with
mixed strategy vectors x and y.
e Then, My < 1u says that u;(s) < u, as the expected payoff is always

un(s)=x My < x"lu= uZx,- =u.

i€EA;

Best response polyhedra

To reveal the geometric structure, we define labeled polyhedra for a
bimatrix game G.
The best response polyhedron for player 1 in G is a polyhedron

P={(x,v) eR™" xR: x > 0,1'x=1,N"x< 1v}.
Similarly, we define the best response polyhedron for player 2 in G as
Q={(y,u) eER"xR: y>0,1"y =1, My < 1u}.

Let (x,v) € P, (y,u) € Q and let s = (51, 5,) be a strategy profile with
mixed strategy vectors x and y.
Then, My < 1u says that u;(s) < u, as the expected payoff is always

un(s)=x My < x"lu= UZX,' =u.

i€EA;

Analogously, the condition NTx < 1v says that u,(s) < v.

Best response polyhedra

To reveal the geometric structure, we define labeled polyhedra for a

bimatrix game G.

The best response polyhedron for player 1 in G is a polyhedron
P={(xv)ER"xR:x>0,1"x=1,N"x <1v}.

Similarly, we define the best response polyhedron for player 2 in G as
Q={(y,u)eR"xR: y>0,1Ty =1, My < 1u}.

Let (x,v) € P, (y,u) € Q and let s = (51, 5,) be a strategy profile with
mixed strategy vectors x and y.
Then, My < 1u says that u;(s) < u, as the expected payoff is always

un(s)=x My < x"lu= UZX,' =u.

i€EA;

Analogously, the condition NTx < 1v says that u,(s) < v.
Thus, points of P and @ are the mixed strategies with the "upper
envelope” of expected payoffs of the other player.

BN
Labelings of the Best response polyhedra

Labelings of the Best response polyhedra

e Now, we define the labels of points from the best response polyhedra

P={(x,v)ER"xR: x>0,1"x=1N"x < 1v}.

and

Q={(r,u) eR"xR:y>0,1"y =1, My < 1u}.

Labelings of the Best response polyhedra

e Now, we define the labels of points from the best response polyhedra

P={(x,v)ER"xR: x>0,1"x=1N"x < 1v}.

and

Q={(r,u) eR"xR:y>0,1"y =1, My < 1u}.

e We say that a point (x,v) € P has label i € A; U A, if either i € A4
and x; =0 orif i € Ay and N x = v.

Labelings of the Best response polyhedra

e Now, we define the labels of points from the best response polyhedra

P={(x,v)ER"xR: x>0,1"x=1N"x < 1v}.

and

Q={(r,u) eR"xR:y>0,1"y =1, My < 1u}.

e We say that a point (x,v) € P has label i € A; U A, if either i € A4
and x; =0 orif i € Ay and N x = v.

o That is, if the inequality in the definition of P is binding

Labelings of the Best response polyhedra

e Now, we define the labels of points from the best response polyhedra

P={(x,v)ER"xR: x>0,1"x=1N"x < 1v}.

and

Q={(r,u) eR"xR:y>0,1"y =1, My < 1u}.

e We say that a point (x,v) € P has label i € A; U A, if either i € A4
and x; =0 orif i € Ay and N x = v.
o That is, if the inequality in the definition of P is binding (i € A; is
not in the support or i € A is a best response to x).

Labelings of the Best response polyhedra

e Now, we define the labels of points from the best response polyhedra

P={(x,v)ER"xR: x>0,1"x=1N"x < 1v}.

and

Q={(r,u) eR"xR:y>0,1"y =1, My < 1u}.

e We say that a point (x,v) € P has label i € A; U A, if either i € A4
and x; =0 orif i € Ay and N x = v.
o That is, if the inequality in the definition of P is binding (i € A; is
not in the support or i € A is a best response to x).
e Similarly, a point (y, 1) € Q has a label i € A; U A, if either i € A; and
M.y = u, orif i € Ay and y; = 0.

Labelings of the Best response polyhedra

e Now, we define the labels of points from the best response polyhedra

P={(x,v)ER"xR: x>0,1"x=1N"x < 1v}.

and

Q={(r,u) eR"xR:y>0,1"y =1, My < 1u}.

e We say that a point (x,v) € P has label i € A; U A, if either i € A4
and x; =0 orif i € Ay and N x = v.

o That is, if the inequality in the definition of P is binding (i € A; is
not in the support or i € A is a best response to x).

e Similarly, a point (y, 1) € Q has a label i € A; U A, if either i € A; and
M,'7*_)/ = u, or if i € A2 and Yi = 0.

e Each point from P or @ may have more labels.

Best response polyhedra P and Q for the Battle of sexes

Best response polyhedra P and Q for the Battle of sexes

P={(x,x,vV) ER*XR:x3,% >0,x +% =1,x < v,2x < v}

Q={(ys,ya,u) ER*XR: ys,y4 > 0,y5+ys = 1,2y < u, ys < u}.

BN
NE and Best response polyhedra

NE and Best response polyhedra

e What are the labels (and Best response polyhedra) for?

NE and Best response polyhedra

e What are the labels (and Best response polyhedra) for?
e They help us identify NE in G!

NE and Best response polyhedra

e What are the labels (and Best response polyhedra) for?
e They help us identify NE in G!

Proposition 2.27

A strategy profile s is NE of G iff the pair ((x,v),(y,u)) € P x Q is
completely labeled, that is, every label i/ € A; U A, appears as a label of
either (x, v) or (y, u).

NE and Best response polyhedra

e What are the labels (and Best response polyhedra) for?
e They help us identify NE in G!

Proposition 2.27

A strategy profile s is NE of G iff the pair ((x,v),(y,u)) € P x Q is
completely labeled, that is, every label i/ € A; U A, appears as a label of
either (x, v) or (y, u).

e Proof:

NE and Best response polyhedra

e What are the labels (and Best response polyhedra) for?
e They help us identify NE in G!

Proposition 2.27

A strategy profile s is NE of G iff the pair ((x, v),(y,u)) € P x Q is
completely labeled, that is, every label i/ € A; U A, appears as a label of
either (x, v) or (y, u).

e Proof: By the Best response condition, for every player i € P, a mixed
strategy s; is a best response to s_; if and only if all pure strategies in
the support of s; are best responses to s_;.

NE and Best response polyhedra

e What are the labels (and Best response polyhedra) for?
e They help us identify NE in G!

Proposition 2.27

A strategy profile s is NE of G iff the pair ((x, v),(y,u)) € P x Q is
completely labeled, that is, every label i/ € A; U A, appears as a label of
either (x, v) or (y, u).

e Proof: By the Best response condition, for every player i € P, a mixed
strategy s; is a best response to s_; if and only if all pure strategies in
the support of s; are best responses to s_;.

e A missing label i € A; means that a pure strategy i € Supp(s;)

(x; > 0) was not a best response (M; .y < u).

NE and Best response polyhedra

e What are the labels (and Best response polyhedra) for?
e They help us identify NE in G!

Proposition 2.27

A strategy profile s is NE of G iff the pair ((x, v),(y,u)) € P x Q is
completely labeled, that is, every label i/ € A; U A, appears as a label of
either (x, v) or (y, u).

e Proof: By the Best response condition, for every player i € P, a mixed
strategy s; is a best response to s_; if and only if all pure strategies in
the support of s; are best responses to s_;.

e A missing label i € A; means that a pure strategy i € Supp(s;)

(x; > 0) was not a best response (M; .y < u). Analogously for i € As.

NE and Best response polyhedra

e What are the labels (and Best response polyhedra) for?
e They help us identify NE in G!

Proposition 2.27

A strategy profile s is NE of G iff the pair ((x, v),(y,u)) € P x Q is
completely labeled, that is, every label i/ € A; U A, appears as a label of
either (x, v) or (y, u).

e Proof: By the Best response condition, for every player i € P, a mixed
strategy s; is a best response to s_; if and only if all pure strategies in
the support of s; are best responses to s_;.

e A missing label i € A; means that a pure strategy i € Supp(s;)

(x; > 0) was not a best response (M; .y < u). Analogously for i € As.
Then, s is not NE.

NE and Best response polyhedra

e What are the labels (and Best response polyhedra) for?
e They help us identify NE in G!

Proposition 2.27

A strategy profile s is NE of G iff the pair ((x, v),(y,u)) € P x Q is
completely labeled, that is, every label i/ € A; U A, appears as a label of
either (x, v) or (y, u).

e Proof: By the Best response condition, for every player i € P, a mixed
strategy s; is a best response to s_; if and only if all pure strategies in
the support of s; are best responses to s_;.

e A missing label i € A; means that a pure strategy i € Supp(s;)

(x; > 0) was not a best response (M; .y < u). Analogously for i € As.
Then, s is not NE.

e If all labels appear, then s; and s, are mutually best responses, as each

pure strategy is a best response or is not in the support.

NE and Best response polyhedra

e What are the labels (and Best response polyhedra) for?
e They help us identify NE in G!

Proposition 2.27

A strategy profile s is NE of G iff the pair ((x, v),(y,u)) € P x Q is
completely labeled, that is, every label i/ € A; U A, appears as a label of
either (x, v) or (y, u).

e Proof: By the Best response condition, for every player i € P, a mixed
strategy s; is a best response to s_; if and only if all pure strategies in
the support of s; are best responses to s_;.

e A missing label i € A; means that a pure strategy i € Supp(s;)
(x; > 0) was not a best response (M; .y < u). Analogously for i € As.
Then, s is not NE.

e If all labels appear, then s; and s, are mutually best responses, as each

pure strategy is a best response or is not in the support.
Then, s is NE.

NE and Best response polyhedra

e What are the labels (and Best response polyhedra) for?
e They help us identify NE in G!

Proposition 2.27

A strategy profile s is NE of G iff the pair ((x, v),(y,u)) € P x Q is
completely labeled, that is, every label i/ € A; U A, appears as a label of
either (x, v) or (y, u).

e Proof: By the Best response condition, for every player i € P, a mixed
strategy s; is a best response to s_; if and only if all pure strategies in
the support of s; are best responses to s_;.

e A missing label i € A; means that a pure strategy i € Supp(s;)
(x; > 0) was not a best response (M; .y < u). Analogously for i € As.
Then, s is not NE.

e If all labels appear, then s; and s, are mutually best responses, as each
pure strategy is a best response or is not in the support.
Then, s is NE.]

BN
Best response polytopes

BN
Best response polytopes

e That is nice.

Best response polytopes

e That is nice. But we will make it even nicer!

Best response polytopes

e That is nice. But we will make it even nicer!

e The best response polyhedra have some unnecessary complications
(they are unbounded and have u and v in their coordinates).

Best response polytopes

e That is nice. But we will make it even nicer!

e The best response polyhedra have some unnecessary complications
(they are unbounded and have u and v in their coordinates). We get
rid of these under certain mild assumptions.

Best response polytopes

e That is nice. But we will make it even nicer!

e The best response polyhedra have some unnecessary complications
(they are unbounded and have u and v in their coordinates). We get
rid of these under certain mild assumptions.

e We assume that M and N are non-negative and have no zero column.

Best response polytopes

e That is nice. But we will make it even nicer!

e The best response polyhedra have some unnecessary complications
(they are unbounded and have u and v in their coordinates). We get
rid of these under certain mild assumptions.

e We assume that M and N are non-negative and have no zero column.
(simply add a large constant to the payoffs)

Best response polytopes

e That is nice. But we will make it even nicer!

e The best response polyhedra have some unnecessary complications
(they are unbounded and have u and v in their coordinates). We get
rid of these under certain mild assumptions.

e We assume that M and N are non-negative and have no zero column.
(simply add a large constant to the payoffs)

e Then, we can divide each inequality N/, x < v with v, treating x;/v as
a new variable, and do the same for Q.

Best response polytopes

e That is nice. But we will make it even nicer!

e The best response polyhedra have some unnecessary complications
(they are unbounded and have u and v in their coordinates). We get
rid of these under certain mild assumptions.

e We assume that M and N are non-negative and have no zero column.
(simply add a large constant to the payoffs)

e Then, we can divide each inequality N,-T*x < v with v, treating x;/v as
a new variable, and do the same for Q. This normalizes the payoffs to 1
and we get the following polytopes.

Best response polytopes

e That is nice. But we will make it even nicer!

e The best response polyhedra have some unnecessary complications
(they are unbounded and have u and v in their coordinates). We get
rid of these under certain mild assumptions.

e We assume that M and N are non-negative and have no zero column.
(simply add a large constant to the payoffs)

e Then, we can divide each inequality N/, x < v with v, treating x;/v as

a new variable, and do the same for Q. This normalizes the payoffs to 1
and we get the following polytopes.

e The (normalized) best response polytope for player 1 in G is a polytope

P={xecR™ x>0 N"x<1}.

Best response polytopes

e That is nice. But we will make it even nicer!

e The best response polyhedra have some unnecessary complications
(they are unbounded and have u and v in their coordinates). We get
rid of these under certain mild assumptions.

e We assume that M and N are non-negative and have no zero column.
(simply add a large constant to the payoffs)

e Then, we can divide each inequality N/, x < v with v, treating x;/v as

a new variable, and do the same for Q. This normalizes the payoffs to 1
and we get the following polytopes.

e The (normalized) best response polytope for player 1 in G is a polytope
P={xeR™: x>0,N"x <1}
Similarly, the best response polytope for player 2 in G is a polytope

Q={yeR"y>0My <1}

Best response polytopes P and for the Battle of sexes

Best response polytopes P and for the Battle of sexes

(0,1) (3,1)
(0,1) gumme (1, 1) 31Q 1
1 3
(0,0)-2(1,0) (0,0) p (3,0)

P={(x1,x%) €ER?* x1,x0 >0,x <1,2x <1}

Q = {(y37.y4) € Rz: Y3, Ya Z 072)’3 S 1,)/4 S 1}

IS
What did we get?

What did we get?

e The inequalities have the same meaning: if x; > 0 is binding, then
i € Ay is not in the support

What did we get?

e The inequalities have the same meaning: if x; > 0 is binding, then
i € Aq is not in the support and if /VJT*X < 1 is binding, then j € Ay is a
best response to s;.

What did we get?

e The inequalities have the same meaning: if x; > 0 is binding, then
i € Ay is not in the support and if /VJT*X < 1 is binding, then j € A is a
best response to s;. Analogously for Q.

What did we get?

e The inequalities have the same meaning: if x; > 0 is binding, then
i € Aq is not in the support and if /VJT*X < 1 is binding, then j € Ay is a
best response to s;. Analogously for Q.

e From the assumption on M and N, the polyhedra P and Q are
bounded (are polytopes) and have dimensions m and n.

What did we get?

e The inequalities have the same meaning: if x; > 0 is binding, then
i € Aq is not in the support and if /VJT*X < 1 is binding, then j € Ay is a
best response to s;. Analogously for Q.

e From the assumption on M and N, the polyhedra P and Q are
bounded (are polytopes) and have dimensions m and n.

e Disadvantage: coordinates of x and y do not sum up to 1.

What did we get?

e The inequalities have the same meaning: if x; > 0 is binding, then
i € Aq is not in the support and if /VJT*X < 1 is binding, then j € Ay is a
best response to s;. Analogously for Q.

e From the assumption on M and N, the polyhedra P and Q are
bounded (are polytopes) and have dimensions m and n.

e Disadvantage: coordinates of x and y do not sum up to 1. We can
rescale to x/(17x) and y/(1"y).

What did we get?

e The inequalities have the same meaning: if x; > 0 is binding, then
i € Aq is not in the support and if /VJT*X < 1 is binding, then j € Ay is a
best response to s;. Analogously for Q.

e From the assumption on M and N, the polyhedra P and Q are
bounded (are polytopes) and have dimensions m and n.

e Disadvantage: coordinates of x and y do not sum up to 1. We can
rescale to x/(17x) and y/(1"y).

e The polytope P is in a one-to-one correspondence with P\ {0} under
the projective transformation (x, v) — x/v.

What did we get?

e The inequalities have the same meaning: if x; > 0 is binding, then
i € Aq is not in the support and if /VJT*X < 1 is binding, then j € Ay is a
best response to s;. Analogously for Q.

e From the assumption on M and N, the polyhedra P and Q are
bounded (are polytopes) and have dimensions m and n.

e Disadvantage: coordinates of x and y do not sum up to 1. We can
rescale to x/(17x) and y/(1"y).

e The polytope P is in a one-to-one correspondence with P\ {0} under
the projective transformation (x, v) — x/v. Similarly Q and @ \ {0}.

What did we get?

e The inequalities have the same meaning: if x; > 0 is binding, then
i € Aq is not in the support and if /VJT*X < 1 is binding, then j € Ay is a
best response to s;. Analogously for Q.

e From the assumption on M and N, the polyhedra P and Q are
bounded (are polytopes) and have dimensions m and n.

e Disadvantage: coordinates of x and y do not sum up to 1. We can
rescale to x/(17x) and y/(1"y).

e The polytope P is in a one-to-one correspondence with P\ {0} under
the projective transformation (x, v) — x/v. Similarly Q and @ \ {0}.

o Projective transformations preserve incidences, so the labels stay
the same.

What did we get?

The inequalities have the same meaning: if x; > 0 is binding, then

i € Aq is not in the support and if NJT*X < 1 is binding, then j € Ay is a
best response to s;. Analogously for Q.

From the assumption on M and N, the polyhedra P and Q are
bounded (are polytopes) and have dimensions m and n.

Disadvantage: coordinates of x and y do not sum up to 1. We can
rescale to x/(17x) and y/(1"y).

The polytope P is in a one-to-one correspondence with P\ {0} under
the projective transformation (x, v) — x/v. Similarly @ and Q \ {0}.
o Projective transformations preserve incidences, so the labels stay
the same.

Corollary 2.30

A strategy profile (s, s;) with mixed strategy vectors x and y is NE of G if
and only if the point (x/ux(s),y/ui(s)) € P x Q\ {(0,0)} is completely
labeled. O]

BN
NE in nondegenerate games

NE in nondegenerate games

e Recall that a bimatrix game is nondegenerate if there are at most k
pure best responses to every mixed strategy with support of size k.

NE in nondegenerate games

e Recall that a bimatrix game is nondegenerate if there are at most k
pure best responses to every mixed strategy with support of size k.

e In these games NE correspond to pairs of completely labeled vertices.

NE in nondegenerate games

e Recall that a bimatrix game is nondegenerate if there are at most k
pure best responses to every mixed strategy with support of size k.

e In these games NE correspond to pairs of completely labeled vertices.
o Since G is nondegenerate, each point of P has at most m labels.

NE in nondegenerate games

e Recall that a bimatrix game is nondegenerate if there are at most k
pure best responses to every mixed strategy with support of size k.

e In these games NE correspond to pairs of completely labeled vertices.

o Since G is nondegenerate, each point of P has at most m labels.
This is because if x has support of size k, then x has at most
m — k labels in A;

NE in nondegenerate games

e Recall that a bimatrix game is nondegenerate if there are at most k
pure best responses to every mixed strategy with support of size k.

e In these games NE correspond to pairs of completely labeled vertices.
o Since G is nondegenerate, each point of P has at most m labels.
This is because if x has support of size k, then x has at most
m — k labels in A; and so if x had more than m labels, then x
would have more than k best responses in As.

NE in nondegenerate games

e Recall that a bimatrix game is nondegenerate if there are at most k
pure best responses to every mixed strategy with support of size k.

e In these games NE correspond to pairs of completely labeled vertices.

o Since G is nondegenerate, each point of P has at most m labels.
This is because if x has support of size k, then x has at most
m — k labels in A; and so if x had more than m labels, then x
would have more than k best responses in A,. Analogously, each
point of @ has at most n labels.

NE in nondegenerate games

e Recall that a bimatrix game is nondegenerate if there are at most k
pure best responses to every mixed strategy with support of size k.

e In these games NE correspond to pairs of completely labeled vertices.

o Since G is nondegenerate, each point of P has at most m labels.
This is because if x has support of size k, then x has at most
m — k labels in A; and so if x had more than m labels, then x
would have more than k best responses in A,. Analogously, each
point of @ has at most n labels.

o Thus, P and @ are both simple polytopes

NE in nondegenerate games

e Recall that a bimatrix game is nondegenerate if there are at most k
pure best responses to every mixed strategy with support of size k.

e In these games NE correspond to pairs of completely labeled vertices.

o Since G is nondegenerate, each point of P has at most m labels.
This is because if x has support of size k, then x has at most
m — k labels in A; and so if x had more than m labels, then x
would have more than k best responses in A,. Analogously, each
point of @ has at most n labels.

o Thus, P and @ are both simple polytopes (each point of P or Q
contained in more than m or n facets has more than m or n labels).

NE in nondegenerate games

e Recall that a bimatrix game is nondegenerate if there are at most k
pure best responses to every mixed strategy with support of size k.

e In these games NE correspond to pairs of completely labeled vertices.

o Since G is nondegenerate, each point of P has at most m labels.
This is because if x has support of size k, then x has at most
m — k labels in A; and so if x had more than m labels, then x
would have more than k best responses in A,. Analogously, each
point of @ has at most n labels.

o Thus, P and @ are both simple polytopes (each point of P or Q
contained in more than m or n facets has more than m or n labels).

o Since dim(P) = m and dim(Q) = n, only vertices of P and Q can
have m and n labels.

NE in nondegenerate games

e Recall that a bimatrix game is nondegenerate if there are at most k
pure best responses to every mixed strategy with support of size k.

e In these games NE correspond to pairs of completely labeled vertices.

o Since G is nondegenerate, each point of P has at most m labels.
This is because if x has support of size k, then x has at most
m — k labels in A; and so if x had more than m labels, then x
would have more than k best responses in A,. Analogously, each
point of @ has at most n labels.

o Thus, P and @ are both simple polytopes (each point of P or Q
contained in more than m or n facets has more than m or n labels).

o Since dim(P) = m and dim(Q) = n, only vertices of P and Q can
have m and n labels.

o By Corollary 2.30, only vertices of P and @ can be NE.

NE in nondegenerate games

e Recall that a bimatrix game is nondegenerate if there are at most k
pure best responses to every mixed strategy with support of size k.

e In these games NE correspond to pairs of completely labeled vertices.

o Since G is nondegenerate, each point of P has at most m labels.
This is because if x has support of size k, then x has at most
m — k labels in A; and so if x had more than m labels, then x
would have more than k best responses in A,. Analogously, each
point of @ has at most n labels.

o Thus, P and @ are both simple polytopes (each point of P or Q
contained in more than m or n facets has more than m or n labels).

o Since dim(P) = m and dim(Q) = n, only vertices of P and Q can
have m and n labels.

o By Corollary 2.30, only vertices of P and @ can be NE.

e = Algorithm for finding NE: check all pairs of vertices and their labels!

Algorithm for finding NE with vertex enumeration

Algorithm for finding NE with vertex enumeration

Algorithm 0.2: VERTEX ENUMERATION(G)

Input : A nondegenerate bimatrix game G.

Output : All Nash equilibria of G.

for each pair (x, y) of vertices from (P \ {0}) x (Q \ {0})
if (x,y) is completely labeled,

{ then return (x/(1"x),y/(17y)) as a Nash equilibrium

Algorithm for finding NE with vertex enumeration

Algorithm 0.3: VERTEX ENUMERATION(G)

Input : A nondegenerate bimatrix game G.

Output : All Nash equilibria of G.

for each pair (x, y) of vertices from (P \ {0}) x (Q \ {0})
if (x,y) is completely labeled,

{ then return (x/(1"x),y/(17y)) as a Nash equilibrium

e All vertices of a simple polytope in R with v vertices and N defining
inequalities can be found in time O(dNv) (Avis and Fukuda).

Algorithm for finding NE with vertex enumeration

Algorithm 0.4: VERTEX ENUMERATION(G)

Input : A nondegenerate bimatrix game G.
Output : All Nash equilibria of G.

for each pair (x,y) of vertices from (P \ {0}) x (Q \ {0})
{ if (x,y) is completely labeled,

then return (x/(1"x),y/(1"y)) as a Nash equilibrium

e All vertices of a simple polytope in R with v vertices and N defining
inequalities can be found in time O(dNv) (Avis and Fukuda).

e However, if m = n, the best response polytopes can have c¢” vertices for
some constant ¢ with 1 < ¢ < 2.9.

Polytopes can be weird and complex!

Figure: Schlegel diagram for the 120-cell.

Source: https://en.wikipedia.org/

Algorithm for finding NE with vertex enumeration

Algorithm 0.5: VERTEX ENUMERATION(G)

Input : A nondegenerate bimatrix game G.
Output : All Nash equilibria of G.

for each pair (x,y) of vertices from (P \ {0}) x (Q \ {0})
{ if (x,y) is completely labeled,

then return (x/(17x),y/(17y)) as a Nash equilibrium

e All vertices of a simple polytope in R with v vertices and N defining
inequalities can be found in time O(dNv) (Avis and Fukuda).

e However, if m = n, the best response polytopes can have c¢” vertices for
some constant ¢ with 1 < ¢ < 2.9.

Algorithm for finding NE with vertex enumeration

Algorithm 0.6: VERTEX ENUMERATION(G)

Input : A nondegenerate bimatrix game G.

Output : All Nash equilibria of G.

for each pair (x,y) of vertices from (P \ {0}) x (Q \ {0})
if (x,y) is completely labeled,

{ then return (x/(17x),y/(1"y)) as a Nash equilibrium

e All vertices of a simple polytope in R with v vertices and N defining
inequalities can be found in time O(dNv) (Avis and Fukuda).

e However, if m = n, the best response polytopes can have c¢” vertices for
some constant ¢ with 1 < ¢ < 2.9.

e We can speed up the search by performing a walk on

(P\ {0}) x (Q\ {0}) guided by the labels.

BN
The Lemke—Howson algorithm

The Lemke—Howson algorithm

e One of the best algorithms for finding NE in bimatrix games.

The Lemke—Howson algorithm

e One of the best algorithms for finding NE in bimatrix games.
e Discovered by Lemke and Howson in 1964.

The Lemke—Howson algorithm

e One of the best algorithms for finding NE in bimatrix games.
e Discovered by Lemke and Howson in 1964.

5L NN ‘\

Figure: Carlton E. Lemke (1920-2004) and J. T. Howson (1937-2022).

Source: https://oldurls.inf.ethz.ch

BN
The Lemke—Howson algorithm explained

The Lemke—Howson algorithm explained

e Since P is simple and dim(P) = m, its vertices are incident to exactly
m facets and m edges.

The Lemke—Howson algorithm explained

e Since P is simple and dim(P) = m, its vertices are incident to exactly
m facets and m edges. So each vertex of P has m labels and each edge
of P has m — 1 labels.

The Lemke—Howson algorithm explained

e Since P is simple and dim(P) = m, its vertices are incident to exactly
m facets and m edges. So each vertex of P has m labels and each edge
of P has m — 1 labels. Similarly for @ and n.

The Lemke—Howson algorithm explained

e Since P is simple and dim(P) = m, its vertices are incident to exactly
m facets and m edges. So each vertex of P has m labels and each edge
of P has m — 1 labels. Similarly for @ and n.

e Dropping a label / € A; U A; in a vertex x of P means traversing the
unique edge of P that is incident to x and has all m labels that x has
besides /.

The Lemke—Howson algorithm explained

e Since P is simple and dim(P) = m, its vertices are incident to exactly
m facets and m edges. So each vertex of P has m labels and each edge
of P has m — 1 labels. Similarly for @ and n.

e Dropping a label / € A; U A; in a vertex x of P means traversing the
unique edge of P that is incident to x and has all m labels that x has
besides /. The other endpoint of this edge has the same labels as x,
only / is replaced with a new label, which is said to be picked up.

The Lemke—Howson algorithm explained

e Since P is simple and dim(P) = m, its vertices are incident to exactly
m facets and m edges. So each vertex of P has m labels and each edge
of P has m — 1 labels. Similarly for @ and n.

e Dropping a label I € A; U A, in a vertex x of P means traversing the
unique edge of P that is incident to x and has all m labels that x has
besides /. The other endpoint of this edge has the same labels as x,
only / is replaced with a new label, which is said to be picked up.
Dropping and picking up a label in vertices of Q is defined analogously.

The Lemke—Howson algorithm explained

e Since P is simple and dim(P) = m, its vertices are incident to exactly
m facets and m edges. So each vertex of P has m labels and each edge
of P has m — 1 labels. Similarly for @ and n.

e Dropping a label I € A; U A, in a vertex x of P means traversing the
unique edge of P that is incident to x and has all m labels that x has
besides /. The other endpoint of this edge has the same labels as x,
only / is replaced with a new label, which is said to be picked up.
Dropping and picking up a label in vertices of Q is defined analogously.

e The algorithm starts at (0,0)

The Lemke—Howson algorithm explained

e Since P is simple and dim(P) = m, its vertices are incident to exactly
m facets and m edges. So each vertex of P has m labels and each edge
of P has m — 1 labels. Similarly for @ and n.

e Dropping a label I € A; U A, in a vertex x of P means traversing the
unique edge of P that is incident to x and has all m labels that x has
besides /. The other endpoint of this edge has the same labels as x,
only / is replaced with a new label, which is said to be picked up.
Dropping and picking up a label in vertices of Q is defined analogously.

e The algorithm starts at (0,0) and alternately follows edges of P and Q.

The Lemke—Howson algorithm explained

e Since P is simple and dim(P) = m, its vertices are incident to exactly
m facets and m edges. So each vertex of P has m labels and each edge
of P has m — 1 labels. Similarly for @ and n.

e Dropping a label I € A; U A, in a vertex x of P means traversing the
unique edge of P that is incident to x and has all m labels that x has
besides /. The other endpoint of this edge has the same labels as x,
only / is replaced with a new label, which is said to be picked up.
Dropping and picking up a label in vertices of Q is defined analogously.

e The algorithm starts at (0,0) and alternately follows edges of P and Q.

e At the first step, it chooses a label k € A; U A, and drops it.

The Lemke—Howson algorithm explained

e Since P is simple and dim(P) = m, its vertices are incident to exactly
m facets and m edges. So each vertex of P has m labels and each edge
of P has m — 1 labels. Similarly for @ and n.

e Dropping a label I € A; U A, in a vertex x of P means traversing the
unique edge of P that is incident to x and has all m labels that x has
besides /. The other endpoint of this edge has the same labels as x,
only / is replaced with a new label, which is said to be picked up.
Dropping and picking up a label in vertices of Q is defined analogously.

e The algorithm starts at (0,0) and alternately follows edges of P and Q.

e At the first step, it chooses a label kK € A; U A, and drops it. Then, a
new label / is picked up.

The Lemke—Howson algorithm explained

e Since P is simple and dim(P) = m, its vertices are incident to exactly
m facets and m edges. So each vertex of P has m labels and each edge
of P has m — 1 labels. Similarly for @ and n.

e Dropping a label I € A; U A, in a vertex x of P means traversing the
unique edge of P that is incident to x and has all m labels that x has
besides /. The other endpoint of this edge has the same labels as x,
only / is replaced with a new label, which is said to be picked up.
Dropping and picking up a label in vertices of Q is defined analogously.

e The algorithm starts at (0,0) and alternately follows edges of P and Q.

e At the first step, it chooses a label kK € A; U A, and drops it. Then, a
new label / is picked up. This label / has a duplicate in the other
polytope.

The Lemke—Howson algorithm explained

e Since P is simple and dim(P) = m, its vertices are incident to exactly
m facets and m edges. So each vertex of P has m labels and each edge
of P has m — 1 labels. Similarly for @ and n.

e Dropping a label I € A; U A, in a vertex x of P means traversing the
unique edge of P that is incident to x and has all m labels that x has
besides /. The other endpoint of this edge has the same labels as x,
only / is replaced with a new label, which is said to be picked up.
Dropping and picking up a label in vertices of Q is defined analogously.

e The algorithm starts at (0,0) and alternately follows edges of P and Q.

e At the first step, it chooses a label kK € A; U A, and drops it. Then, a
new label / is picked up. This label / has a duplicate in the other
polytope. We drop the duplicate of / in the other polytope in the next
step,

The Lemke—Howson algorithm explained

e Since P is simple and dim(P) = m, its vertices are incident to exactly
m facets and m edges. So each vertex of P has m labels and each edge
of P has m — 1 labels. Similarly for @ and n.

e Dropping a label I € A; U A, in a vertex x of P means traversing the
unique edge of P that is incident to x and has all m labels that x has
besides /. The other endpoint of this edge has the same labels as x,
only / is replaced with a new label, which is said to be picked up.
Dropping and picking up a label in vertices of Q is defined analogously.

e The algorithm starts at (0,0) and alternately follows edges of P and Q.

e At the first step, it chooses a label kK € A; U A, and drops it. Then, a
new label / is picked up. This label / has a duplicate in the other
polytope. We drop the duplicate of / in the other polytope in the next
step, which leads to picking up a new label /’.

The Lemke—Howson algorithm explained

e Since P is simple and dim(P) = m, its vertices are incident to exactly
m facets and m edges. So each vertex of P has m labels and each edge
of P has m — 1 labels. Similarly for @ and n.

e Dropping a label I € A; U A, in a vertex x of P means traversing the
unique edge of P that is incident to x and has all m labels that x has
besides /. The other endpoint of this edge has the same labels as x,
only / is replaced with a new label, which is said to be picked up.
Dropping and picking up a label in vertices of Q is defined analogously.

e The algorithm starts at (0,0) and alternately follows edges of P and Q.

e At the first step, it chooses a label kK € A; U A, and drops it. Then, a
new label / is picked up. This label / has a duplicate in the other
polytope. We drop the duplicate of / in the other polytope in the next
step, which leads to picking up a new label /. We iterate and stop
when /" = k.

The Lemke—Howson algorithm explained

Since P is simple and dim(P) = m, its vertices are incident to exactly
m facets and m edges. So each vertex of P has m labels and each edge
of P has m — 1 labels. Similarly for @ and n.

Dropping a label / € A; U A; in a vertex x of P means traversing the
unique edge of P that is incident to x and has all m labels that x has
besides /. The other endpoint of this edge has the same labels as x,
only / is replaced with a new label, which is said to be picked up.
Dropping and picking up a label in vertices of Q is defined analogously.

e The algorithm starts at (0,0) and alternately follows edges of P and Q.
e At the first step, it chooses a label kK € A; U A, and drops it. Then, a

new label / is picked up. This label / has a duplicate in the other
polytope. We drop the duplicate of / in the other polytope in the next
step, which leads to picking up a new label /". We iterate and stop
when /' = k.

Duplicate label is either a new best response, which gets a positive
probability, or a pure strategy whose probability became 0 and we move
away from its best response facet.

IS
The Lemke—Howson algorithm: pseudocode

The Lemke—Howson algorithm: pseudocode

Algorithm 0.8: LEMKE-HOWSON(G)

Input : A nondegenerate bimatrix game G.

Output : One Nash equilibrium of G.

(x,¥) < (0,0) e R” x R",

k < arbitrary label from A; U Ay, | + Kk,

while (true)

(In P, drop / from x and redefine x as the new vertex,
redefine / as the newly picked up label. Switch to Q.
If I = k, stop looping.

do
In Q, drop / from y and redefine y as the new vertex,
redefine / as the newly picked up label. Switch to P.
| If / = k, stop looping.

Output (x/(1"x),y/(1"y)).

BN
Lemke—Howson on the Battle of sexes (k = 3)

Lemke—Howson on the Battle of sexes (k = 3)

—_

o O

O NI

~——

~W—

— —

O NI

~— =

—~

o

o

~— w
L)

—~ =

o

~

Lemke—Howson on the Battle of sexes (k = 3)

0.1) s s (11)
(0,) s (1,) 3E1
(0,0)1- %1, 0) (0,0) > (%, 0)

Lemke—Howson on the Battle of sexes (k = 3)

—~
o o
O NI

——
l-P

~WW—
= =
O NI

N— ~—

—~ —~
o o
o =

~— w ~—

ILI

N=

N

Lemke—Howson on the Battle of sexes (k = 3)

—_
o O
O NI

——
l-,>

—~—

—_ \'I—‘
O NI

~— N—"

—~ —~
o o
o =

~— w ~—
ILI

N=

N

NN
Correctness of the Lemke—Howson algorithm |

NN
Correctness of the Lemke—Howson algorithm |

The Lemke—Howson algorithm stops after a finite number of steps and
outputs mixed strategy vectors of NE in G.

NN
Correctness of the Lemke—Howson algorithm |

The Lemke—Howson algorithm stops after a finite number of steps and
outputs mixed strategy vectors of NE in G.

e Proof:

Correctness of the Lemke—Howson algorithm |

Proposition 2.31

The Lemke—Howson algorithm stops after a finite number of steps and
outputs mixed strategy vectors of NE in G.

e Proof: Let k be the label chosen in the first step.

Correctness of the Lemke—Howson algorithm |

Proposition 2.31

The Lemke—Howson algorithm stops after a finite number of steps and
outputs mixed strategy vectors of NE in G.

e Proof: Let k be the label chosen in the first step.

e We define a configuration graph G with the vertices formed by pairs
(x,y) of vertices from P x @ that are k-almost completely labeled
(every label from A; U Ay \ {k} is a label of x or y).

Correctness of the Lemke—Howson algorithm |

Proposition 2.31

The Lemke—Howson algorithm stops after a finite number of steps and
outputs mixed strategy vectors of NE in G.

e Proof: Let k be the label chosen in the first step.

e We define a configuration graph G with the vertices formed by pairs
(x,y) of vertices from P x @ that are k-almost completely labeled
(every label from A; U Ay \ {k} is a label of x or y). A pair
{(x,y),(x',y")} is an edge of G if (x = x" & yy' € E(Q)) or
(xx" € E(P) & y =y').

Correctness of the Lemke—Howson algorithm |

Proposition 2.31

The Lemke—Howson algorithm stops after a finite number of steps and
outputs mixed strategy vectors of NE in G.

e Proof: Let k be the label chosen in the first step.

e We define a configuration graph G with the vertices formed by pairs
(x,y) of vertices from P x @ that are k-almost completely labeled
(every label from A; U Ay \ {k} is a label of x or y). A pair
{(x,y),(x',y")} is an edge of G if (x = x" & yy' € E(Q)) or
(xx" € E(P) & y = y’). Clearly, G is finite.

Correctness of the Lemke—Howson algorithm |

Proposition 2.31

The Lemke—Howson algorithm stops after a finite number of steps and
outputs mixed strategy vectors of NE in G.

e Proof: Let k be the label chosen in the first step.

e We define a configuration graph G with the vertices formed by pairs
(x,y) of vertices from P x @ that are k-almost completely labeled
(every label from A; U Ay \ {k} is a label of x or y). A pair
{(x,y),(x',y")} is an edge of G if (x = x" & yy' € E(Q)) or
(xx" € E(P) & y = y’). Clearly, G is finite.

e G has degrees only 1 or 2

Correctness of the Lemke—Howson algorithm |

Proposition 2.31

The Lemke—Howson algorithm stops after a finite number of steps and
outputs mixed strategy vectors of NE in G.

e Proof: Let k be the label chosen in the first step.

e We define a configuration graph G with the vertices formed by pairs
(x,y) of vertices from P x @ that are k-almost completely labeled
(every label from A; U Ay \ {k} is a label of x or y). A pair
{(x,y),(x',y")} is an edge of G if (x = x" & yy' € E(Q)) or
(xx" € E(P) & y = y’). Clearly, G is finite.

e G has degrees only 1 or 2 (G is a disjoint union of paths and cycles).

Correctness of the Lemke—Howson algorithm |

Proposition 2.31

The Lemke—Howson algorithm stops after a finite number of steps and
outputs mixed strategy vectors of NE in G.

e Proof: Let k be the label chosen in the first step.

e We define a configuration graph G with the vertices formed by pairs
(x,y) of vertices from P x @ that are k-almost completely labeled
(every label from A; U Ay \ {k} is a label of x or y). A pair
{(x,y),(x',y")} is an edge of G if (x = x" & yy' € E(Q)) or
(xx" € E(P) & y = y’). Clearly, G is finite.

e G has degrees only 1 or 2 (G is a disjoint union of paths and cycles).

o If (x,y) has all labels from A; U Ay, then (x, y) is connected to
exactly one other vertex,

Correctness of the Lemke—Howson algorithm |

Proposition 2.31

The Lemke—Howson algorithm stops after a finite number of steps and
outputs mixed strategy vectors of NE in G.

e Proof: Let k be the label chosen in the first step.

e We define a configuration graph G with the vertices formed by pairs
(x,y) of vertices from P x @ that are k-almost completely labeled
(every label from A; U Ay \ {k} is a label of x or y). A pair
{(x,y),(x',y")} is an edge of G if (x = x" & yy' € E(Q)) or
(xx" € E(P) & y = y’). Clearly, G is finite.

e G has degrees only 1 or 2 (G is a disjoint union of paths and cycles).

o If (x,y) has all labels from A; U Ay, then (x, y) is connected to
exactly one other vertex, as exactly one of x and y has the label k
and we can drop k only from this one vertex.

Correctness of the Lemke—Howson algorithm |

Proposition 2.31

The Lemke—Howson algorithm stops after a finite number of steps and
outputs mixed strategy vectors of NE in G.

e Proof: Let k be the label chosen in the first step.

e We define a configuration graph G with the vertices formed by pairs
(x,y) of vertices from P x @ that are k-almost completely labeled
(every label from A; U Ay \ {k} is a label of x or y). A pair
{(x,y),(x',y")} is an edge of G if (x = x" & yy' € E(Q)) or
(xx" € E(P) & y = y’). Clearly, G is finite.

e G has degrees only 1 or 2 (G is a disjoint union of paths and cycles).

o If (x,y) has all labels from A; U Ay, then (x, y) is connected to
exactly one other vertex, as exactly one of x and y has the label k
and we can drop k only from this one vertex.

o Otherwise, (x, y) has all labels from A; U A \ {k} and there is a
unique label shared by x and y.

Correctness of the Lemke—Howson algorithm |

Proposition 2.31

The Lemke—Howson algorithm stops after a finite number of steps and
outputs mixed strategy vectors of NE in G.

e Proof: Let k be the label chosen in the first step.

e We define a configuration graph G with the vertices formed by pairs
(x,y) of vertices from P x @ that are k-almost completely labeled
(every label from A; U Ay \ {k} is a label of x or y). A pair
{(x,y),(x',y")} is an edge of G if (x = x" & yy' € E(Q)) or
(xx" € E(P) & y = y’). Clearly, G is finite.

e G has degrees only 1 or 2 (G is a disjoint union of paths and cycles).

o If (x,y) has all labels from A; U Ay, then (x, y) is connected to
exactly one other vertex, as exactly one of x and y has the label k
and we can drop k only from this one vertex.

o Otherwise, (x, y) has all labels from A; U A \ {k} and there is a
unique label shared by x and y. Then (x, y) is adjacent to two
vertices, as we can drop the duplicate label from x in P or y in Q.

NN
Correctness of the Lemke—Howson algorithm |1

Correctness of the Lemke—Howson algorithm |l

e The Lemke—Howson algorithm starts at the leaf (0,0) of a path in G.

Correctness of the Lemke—Howson algorithm ||

e The Lemke—Howson algorithm starts at the leaf (0,0) of a path in G.

e Then it walks along this path and does not visit any vertex of the
configuration graph twice.

Correctness of the Lemke—Howson algorithm ||

e The Lemke—Howson algorithm starts at the leaf (0,0) of a path in G.

e Then it walks along this path and does not visit any vertex of the
configuration graph twice.

o The next vertex pair on the path is always unique

Correctness of the Lemke—Howson algorithm ||

e The Lemke—Howson algorithm starts at the leaf (0,0) of a path in G.
e Then it walks along this path and does not visit any vertex of the
configuration graph twice.
o The next vertex pair on the path is always unique (we move to the
other endpoint of the unique edge that contains the current vertex
and corresponds to the dropped label).

Correctness of the Lemke—Howson algorithm ||

e The Lemke—Howson algorithm starts at the leaf (0,0) of a path in G.

e Then it walks along this path and does not visit any vertex of the
configuration graph twice.

o The next vertex pair on the path is always unique (we move to the
other endpoint of the unique edge that contains the current vertex
and corresponds to the dropped label).

o Visiting the same vertex twice would give a vertex of degree larger
than 2 in G since we started at a leaf.

Correctness of the Lemke—Howson algorithm ||

e The Lemke—Howson algorithm starts at the leaf (0,0) of a path in G.

e Then it walks along this path and does not visit any vertex of the
configuration graph twice.

o The next vertex pair on the path is always unique (we move to the
other endpoint of the unique edge that contains the current vertex
and corresponds to the dropped label).

o Visiting the same vertex twice would give a vertex of degree larger
than 2 in G since we started at a leaf.

e Thus, the algorithm terminates after a finite number of steps in the
other leaf (x*, y*) of the path.

Correctness of the Lemke—Howson algorithm ||

e The Lemke—Howson algorithm starts at the leaf (0,0) of a path in G.

e Then it walks along this path and does not visit any vertex of the
configuration graph twice.

o The next vertex pair on the path is always unique (we move to the
other endpoint of the unique edge that contains the current vertex
and corresponds to the dropped label).

o Visiting the same vertex twice would give a vertex of degree larger
than 2 in G since we started at a leaf.

e Thus, the algorithm terminates after a finite number of steps in the
other leaf (x*, y*) of the path. Since (x*,y*) is a leaf in the
configuration graph, it is completely labeled.

Correctness of the Lemke—Howson algorithm ||

e The Lemke—Howson algorithm starts at the leaf (0,0) of a path in G.

e Then it walks along this path and does not visit any vertex of the
configuration graph twice.

o The next vertex pair on the path is always unique (we move to the
other endpoint of the unique edge that contains the current vertex
and corresponds to the dropped label).

o Visiting the same vertex twice would give a vertex of degree larger
than 2 in G since we started at a leaf.

e Thus, the algorithm terminates after a finite number of steps in the
other leaf (x*, y*) of the path. Since (x*,y*) is a leaf in the
configuration graph, it is completely labeled.

e This endpoint is not of the form (x,0) or (0,y) (Exercise).

Correctness of the Lemke—Howson algorithm ||

e The Lemke—Howson algorithm starts at the leaf (0,0) of a path in G.

e Then it walks along this path and does not visit any vertex of the
configuration graph twice.

o The next vertex pair on the path is always unique (we move to the
other endpoint of the unique edge that contains the current vertex
and corresponds to the dropped label).

o Visiting the same vertex twice would give a vertex of degree larger
than 2 in G since we started at a leaf.

e Thus, the algorithm terminates after a finite number of steps in the
other leaf (x*, y*) of the path. Since (x*,y*) is a leaf in the
configuration graph, it is completely labeled.

e This endpoint is not of the form (x,0) or (0,y) (Exercise).
e By Corollary 2.30, (x*, y*) corresponds to NE after rescaling.

Correctness of the Lemke—Howson algorithm ||

e The Lemke—Howson algorithm starts at the leaf (0,0) of a path in G.

e Then it walks along this path and does not visit any vertex of the
configuration graph twice.

o The next vertex pair on the path is always unique (we move to the
other endpoint of the unique edge that contains the current vertex
and corresponds to the dropped label).

o Visiting the same vertex twice would give a vertex of degree larger
than 2 in G since we started at a leaf.

e Thus, the algorithm terminates after a finite number of steps in the
other leaf (x*, y*) of the path. Since (x*,y*) is a leaf in the
configuration graph, it is completely labeled.

e This endpoint is not of the form (x,0) or (0,y) (Exercise).

e By Corollary 2.30, (x*, y*) corresponds to NE after rescaling. O

BN
The Lemke—Howson algorithm: remarks

The Lemke—Howson algorithm: remarks

e By the Degree sum formula, the number of vertices of degree 1 is even.

The Lemke—Howson algorithm: remarks

e By the Degree sum formula, the number of vertices of degree 1 is even.

A nondegenerate bimatrix game has an odd number of NE. |

The Lemke—Howson algorithm: remarks

e By the Degree sum formula, the number of vertices of degree 1 is even.

Corollary 2.32
A nondegenerate bimatrix game has an odd number of NE. J

e Degenerate games can have infinite number of NE.

The Lemke—Howson algorithm: remarks

e By the Degree sum formula, the number of vertices of degree 1 is even.

Corollary 2.32
A nondegenerate bimatrix game has an odd number of NE. J

e Degenerate games can have infinite number of NE.

e The Lemke—Howson algorithm finds only a single NE.

The Lemke—Howson algorithm: remarks

e By the Degree sum formula, the number of vertices of degree 1 is even.

Corollary 2.32
A nondegenerate bimatrix game has an odd number of NE. J

e Degenerate games can have infinite number of NE.
e The Lemke—Howson algorithm finds only a single NE.

e The algorithm can be implemented using so-called complementary
pivoting (we will see it at the tutorials).

The Lemke—Howson algorithm: remarks

e By the Degree sum formula, the number of vertices of degree 1 is even.

Corollary 2.32
A nondegenerate bimatrix game has an odd number of NE. J

e Degenerate games can have infinite number of NE.
e The Lemke—Howson algorithm finds only a single NE.

The algorithm can be implemented using so-called complementary
pivoting (we will see it at the tutorials).

e The running time can still be exponential (O(2") steps for n = m)!

The Lemke—Howson algorithm: remarks

e By the Degree sum formula, the number of vertices of degree 1 is even.

Corollary 2.32
A nondegenerate bimatrix game has an odd number of NE. J

e Degenerate games can have infinite number of NE.
e The Lemke—Howson algorithm finds only a single NE.

The algorithm can be implemented using so-called complementary
pivoting (we will see it at the tutorials).

e The running time can still be exponential (O(2") steps for n = m)! It
performs well in practise (polynomial on uniformly random games).

The Lemke—Howson algorithm: remarks

e By the Degree sum formula, the number of vertices of degree 1 is even.

Corollary 2.32
A nondegenerate bimatrix game has an odd number of NE. J

e Degenerate games can have infinite number of NE.
e The Lemke—Howson algorithm finds only a single NE.

e The algorithm can be implemented using so-called complementary
pivoting (we will see it at the tutorials).

e The running time can still be exponential (O(2") steps for n = m)! It
performs well in practise (polynomial on uniformly random games).

e |s there an efficient algorithm to find NE?

https://www.win.tue.nl/~gwoegi/P-versus-NP.htm

Figure: A view on the complexity classes classification.

Source: https://complexityzoo.uwaterloo.ca/Complexity_-Zoo

e “P=NP"” is one of the most important problems in computer science.
The website https://www.win.tue.nl/~gwoegi/P-versus-NP.htm
contains a collection of over 100 attempts to solve it.

https://www.win.tue.nl/~gwoegi/P-versus-NP.htm

Figure: A view on the complexity classes classification.

Source: https://complexityzoo.uwaterloo.ca/Complexity_-Zoo

e “P=NP"” is one of the most important problems in computer science.
The website https://www.win.tue.nl/~gwoegi/P-versus-NP.htm
contains a collection of over 100 attempts to solve it.

Thank you for your attention.

https://www.win.tue.nl/~gwoegi/P-versus-NP.htm

