
Algorithmic game theory

Martin Balko

3rd lecture

October 18th 2024

Proof of the Minimax Theorem

The Minimax Theorem

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players
exist and can be efficiently computed. There is a number v such that, for
any worst-case optimal strategies x∗ and y ∗, the strategy profile (x∗, y ∗) is a
Nash equilibrium and β(x∗) = (x∗)⊤My ∗ = α(y ∗) = v .

Figure: John von Neumann (1903–1957) and Oskar Morgenstern (1902–1977).
Sources: https://en.wikiquote.org and https://austriainusa.org

The Minimax Theorem

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players
exist and can be efficiently computed. There is a number v such that, for
any worst-case optimal strategies x∗ and y ∗, the strategy profile (x∗, y ∗) is a
Nash equilibrium and β(x∗) = (x∗)⊤My ∗ = α(y ∗) = v .

Figure: John von Neumann (1903–1957) and Oskar Morgenstern (1902–1977).
Sources: https://en.wikiquote.org and https://austriainusa.org

The Minimax Theorem

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players
exist and can be efficiently computed. There is a number v such that, for
any worst-case optimal strategies x∗ and y ∗, the strategy profile (x∗, y ∗) is a
Nash equilibrium and β(x∗) = (x∗)⊤My ∗ = α(y ∗) = v .

• Recall that β(x) = miny∈S2 x
⊤My and α(y) = maxx∈S1 x

⊤My are the
best possible payoffs of player 2 to x and of player 1 to y , respectively.

• Also, the worst-case optimal strategy x for player 1, satisfies

β(x) = max
x∈S1

β(x).

• The worst-case optimal strategy y for player 2, satisfies

α(y) = min
y∈S2

α(y).

• We prove the theorem using linear programming.

The Minimax Theorem

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players
exist and can be efficiently computed. There is a number v such that, for
any worst-case optimal strategies x∗ and y ∗, the strategy profile (x∗, y ∗) is a
Nash equilibrium and β(x∗) = (x∗)⊤My ∗ = α(y ∗) = v .

• Recall that β(x) = miny∈S2 x
⊤My and α(y) = maxx∈S1 x

⊤My are the
best possible payoffs of player 2 to x and of player 1 to y , respectively.

• Also, the worst-case optimal strategy x for player 1, satisfies

β(x) = max
x∈S1

β(x).

• The worst-case optimal strategy y for player 2, satisfies

α(y) = min
y∈S2

α(y).

• We prove the theorem using linear programming.

The Minimax Theorem

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players
exist and can be efficiently computed. There is a number v such that, for
any worst-case optimal strategies x∗ and y ∗, the strategy profile (x∗, y ∗) is a
Nash equilibrium and β(x∗) = (x∗)⊤My ∗ = α(y ∗) = v .

• Recall that β(x) = miny∈S2 x
⊤My and α(y) = maxx∈S1 x

⊤My are the
best possible payoffs of player 2 to x and of player 1 to y , respectively.

• Also, the worst-case optimal strategy x for player 1, satisfies

β(x) = max
x∈S1

β(x).

• The worst-case optimal strategy y for player 2, satisfies

α(y) = min
y∈S2

α(y).

• We prove the theorem using linear programming.

The Minimax Theorem

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players
exist and can be efficiently computed. There is a number v such that, for
any worst-case optimal strategies x∗ and y ∗, the strategy profile (x∗, y ∗) is a
Nash equilibrium and β(x∗) = (x∗)⊤My ∗ = α(y ∗) = v .

• Recall that β(x) = miny∈S2 x
⊤My and α(y) = maxx∈S1 x

⊤My are the
best possible payoffs of player 2 to x and of player 1 to y , respectively.

• Also, the worst-case optimal strategy x for player 1, satisfies

β(x) = max
x∈S1

β(x).

• The worst-case optimal strategy y for player 2, satisfies

α(y) = min
y∈S2

α(y).

• We prove the theorem using linear programming.

The Minimax Theorem

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players
exist and can be efficiently computed. There is a number v such that, for
any worst-case optimal strategies x∗ and y ∗, the strategy profile (x∗, y ∗) is a
Nash equilibrium and β(x∗) = (x∗)⊤My ∗ = α(y ∗) = v .

• Recall that β(x) = miny∈S2 x
⊤My and α(y) = maxx∈S1 x

⊤My are the
best possible payoffs of player 2 to x and of player 1 to y , respectively.

• Also, the worst-case optimal strategy x for player 1, satisfies

β(x) = max
x∈S1

β(x).

• The worst-case optimal strategy y for player 2, satisfies

α(y) = min
y∈S2

α(y).

• We prove the theorem using linear programming.

Preliminaries from geometry

• A hyperplane in Rd is a set {x ∈ Rd : v⊤x = w} for some v ∈ Rd and
w ∈ R.

• A halfspace in Rd is a set {x ∈ Rd : v⊤x ≤ w}.

Preliminaries from geometry

• A hyperplane in Rd is a set {x ∈ Rd : v⊤x = w} for some v ∈ Rd and
w ∈ R.

• A halfspace in Rd is a set {x ∈ Rd : v⊤x ≤ w}.

Preliminaries from geometry

• A hyperplane in Rd is a set {x ∈ Rd : v⊤x = w} for some v ∈ Rd and
w ∈ R.

• A halfspace in Rd is a set {x ∈ Rd : v⊤x ≤ w}.

Preliminaries from geometry

• A hyperplane in Rd is a set {x ∈ Rd : v⊤x = w} for some v ∈ Rd and
w ∈ R.

• A halfspace in Rd is a set {x ∈ Rd : v⊤x ≤ w}.

x+ y
2 = 1

Preliminaries from geometry

• A hyperplane in Rd is a set {x ∈ Rd : v⊤x = w} for some v ∈ Rd and
w ∈ R.

• A halfspace in Rd is a set {x ∈ Rd : v⊤x ≤ w}.

x+ y
2 = 1 x+ y

2 ≤ 1

Preliminaries from geometry

• A (convex) polyhedron P in Rd is an intersection of finitely many
halfspaces in Rd . That is, P = {x ∈ Rd : Vx ≤ u} for some V ∈ Rn×d

and u ∈ Rn, where n is the number of halfspaces determining P .
• A bounded polyhedron is called polytope. A d-dimensional polytope is
simple if all its vertices are adjacent to exactly d edges.

Preliminaries from geometry

• A (convex) polyhedron P in Rd is an intersection of finitely many
halfspaces in Rd .

That is, P = {x ∈ Rd : Vx ≤ u} for some V ∈ Rn×d

and u ∈ Rn, where n is the number of halfspaces determining P .
• A bounded polyhedron is called polytope. A d-dimensional polytope is
simple if all its vertices are adjacent to exactly d edges.

Preliminaries from geometry

• A (convex) polyhedron P in Rd is an intersection of finitely many
halfspaces in Rd . That is, P = {x ∈ Rd : Vx ≤ u} for some V ∈ Rn×d

and u ∈ Rn, where n is the number of halfspaces determining P .

• A bounded polyhedron is called polytope. A d-dimensional polytope is
simple if all its vertices are adjacent to exactly d edges.

Preliminaries from geometry

• A (convex) polyhedron P in Rd is an intersection of finitely many
halfspaces in Rd . That is, P = {x ∈ Rd : Vx ≤ u} for some V ∈ Rn×d

and u ∈ Rn, where n is the number of halfspaces determining P .
• A bounded polyhedron is called polytope.

A d-dimensional polytope is
simple if all its vertices are adjacent to exactly d edges.

Preliminaries from geometry

• A (convex) polyhedron P in Rd is an intersection of finitely many
halfspaces in Rd . That is, P = {x ∈ Rd : Vx ≤ u} for some V ∈ Rn×d

and u ∈ Rn, where n is the number of halfspaces determining P .
• A bounded polyhedron is called polytope. A d-dimensional polytope is
simple if all its vertices are adjacent to exactly d edges.

Preliminaries from geometry

• A (convex) polyhedron P in Rd is an intersection of finitely many
halfspaces in Rd . That is, P = {x ∈ Rd : Vx ≤ u} for some V ∈ Rn×d

and u ∈ Rn, where n is the number of halfspaces determining P .
• A bounded polyhedron is called polytope. A d-dimensional polytope is
simple if all its vertices are adjacent to exactly d edges.

x+ y
2 ≤ 1

Preliminaries from geometry

• A (convex) polyhedron P in Rd is an intersection of finitely many
halfspaces in Rd . That is, P = {x ∈ Rd : Vx ≤ u} for some V ∈ Rn×d

and u ∈ Rn, where n is the number of halfspaces determining P .
• A bounded polyhedron is called polytope. A d-dimensional polytope is
simple if all its vertices are adjacent to exactly d edges.

x+ y
2 ≤ 1

x
3 + y ≤ 1

Preliminaries from geometry

• A (convex) polyhedron P in Rd is an intersection of finitely many
halfspaces in Rd . That is, P = {x ∈ Rd : Vx ≤ u} for some V ∈ Rn×d

and u ∈ Rn, where n is the number of halfspaces determining P .
• A bounded polyhedron is called polytope. A d-dimensional polytope is
simple if all its vertices are adjacent to exactly d edges.

x+ y
2 ≤ 1

x
3 + y ≤ 1

−x
2 − y

2 ≤ 1

Preliminaries from geometry

• A (convex) polyhedron P in Rd is an intersection of finitely many
halfspaces in Rd . That is, P = {x ∈ Rd : Vx ≤ u} for some V ∈ Rn×d

and u ∈ Rn, where n is the number of halfspaces determining P .
• A bounded polyhedron is called polytope. A d-dimensional polytope is
simple if all its vertices are adjacent to exactly d edges.

V =

 1 1
2

1
3 1

− 1
2 − 1

2

x+ y
2 ≤ 1

x
3 + y ≤ 1

−x
2 − y

2 ≤ 1

P

Preliminaries from geometry

• A (convex) polyhedron P in Rd is an intersection of finitely many
halfspaces in Rd . That is, P = {x ∈ Rd : Vx ≤ u} for some V ∈ Rn×d

and u ∈ Rn, where n is the number of halfspaces determining P .
• A bounded polyhedron is called polytope. A d-dimensional polytope is
simple if all its vertices are adjacent to exactly d edges.

V =

 1 1
2

1
3 1

− 1
2 − 1

2

P

Examples of polytopes in R3

Source: https://commons.wikimedia.org

Examples of polytopes in R3

Source: https://commons.wikimedia.org

Linear programming

• A linear program is an optimization problem with a linear objective
function and linear constraints.

• Every linear program P can be expressed in the canonical form: given
c ∈ Rm, b ∈ Rn, and An×m, we want to maximize c⊤x subject to the
constraints Ax ≤ b and x ≥ 0.

• Can be solved in polynomial time. In practice, the Simplex method
works, although it does not have a polynomial worst-case running time.
The Ellipsoid method runs in polynomial time even in the worst-case.

• Solving linear programs graphically:

Sources: https://ua.pressbooks.pub/

Linear programming

• A linear program is an optimization problem with a linear objective
function and linear constraints.

• Every linear program P can be expressed in the canonical form: given
c ∈ Rm, b ∈ Rn, and An×m, we want to maximize c⊤x subject to the
constraints Ax ≤ b and x ≥ 0.

• Can be solved in polynomial time. In practice, the Simplex method
works, although it does not have a polynomial worst-case running time.
The Ellipsoid method runs in polynomial time even in the worst-case.

• Solving linear programs graphically:

Sources: https://ua.pressbooks.pub/

Linear programming

• A linear program is an optimization problem with a linear objective
function and linear constraints.

• Every linear program P can be expressed in the canonical form: given
c ∈ Rm, b ∈ Rn, and An×m, we want to maximize c⊤x subject to the
constraints Ax ≤ b and x ≥ 0.

• Can be solved in polynomial time. In practice, the Simplex method
works, although it does not have a polynomial worst-case running time.
The Ellipsoid method runs in polynomial time even in the worst-case.

• Solving linear programs graphically:

Sources: https://ua.pressbooks.pub/

Linear programming

• A linear program is an optimization problem with a linear objective
function and linear constraints.

• Every linear program P can be expressed in the canonical form: given
c ∈ Rm, b ∈ Rn, and An×m, we want to maximize c⊤x subject to the
constraints Ax ≤ b and x ≥ 0.

• Can be solved in polynomial time.

In practice, the Simplex method
works, although it does not have a polynomial worst-case running time.
The Ellipsoid method runs in polynomial time even in the worst-case.

• Solving linear programs graphically:

Sources: https://ua.pressbooks.pub/

Linear programming

• A linear program is an optimization problem with a linear objective
function and linear constraints.

• Every linear program P can be expressed in the canonical form: given
c ∈ Rm, b ∈ Rn, and An×m, we want to maximize c⊤x subject to the
constraints Ax ≤ b and x ≥ 0.

• Can be solved in polynomial time. In practice, the Simplex method
works, although it does not have a polynomial worst-case running time.

The Ellipsoid method runs in polynomial time even in the worst-case.

• Solving linear programs graphically:

Sources: https://ua.pressbooks.pub/

Linear programming

• A linear program is an optimization problem with a linear objective
function and linear constraints.

• Every linear program P can be expressed in the canonical form: given
c ∈ Rm, b ∈ Rn, and An×m, we want to maximize c⊤x subject to the
constraints Ax ≤ b and x ≥ 0.

• Can be solved in polynomial time. In practice, the Simplex method
works, although it does not have a polynomial worst-case running time.
The Ellipsoid method runs in polynomial time even in the worst-case.

• Solving linear programs graphically:

Sources: https://ua.pressbooks.pub/

Linear programming

• A linear program is an optimization problem with a linear objective
function and linear constraints.

• Every linear program P can be expressed in the canonical form: given
c ∈ Rm, b ∈ Rn, and An×m, we want to maximize c⊤x subject to the
constraints Ax ≤ b and x ≥ 0.

• Can be solved in polynomial time. In practice, the Simplex method
works, although it does not have a polynomial worst-case running time.
The Ellipsoid method runs in polynomial time even in the worst-case.

• Solving linear programs graphically:

Sources: https://ua.pressbooks.pub/

Linear programming

• A linear program is an optimization problem with a linear objective
function and linear constraints.

• Every linear program P can be expressed in the canonical form: given
c ∈ Rm, b ∈ Rn, and An×m, we want to maximize c⊤x subject to the
constraints Ax ≤ b and x ≥ 0.

• Can be solved in polynomial time. In practice, the Simplex method
works, although it does not have a polynomial worst-case running time.
The Ellipsoid method runs in polynomial time even in the worst-case.

• Solving linear programs graphically:

Sources: https://ua.pressbooks.pub/

Linear programming

• A linear program (LP) is an optimization problem with a linear
objective function and linear constraints.

• Every linear program P can be expressed in the canonical form: given
c ∈ Rm, b ∈ Rn, and An×m, we want to maximize c⊤x subject to the
constraints Ax ≤ b and x ≥ 0.

• LP can be solved in polynomial time. In practice, the Simplex method
works, although it does not have a polynomial worst-case running time.
The Ellipsoid method runs in polynomial time even in the worst-case.

• Solving linear programs graphically:

Sources: https://ua.pressbooks.pub/

Duality of linear programming

• The linear program P where we want to

maximize c⊤x subject to the constraints Ax ≤ b and x ≥ 0

is called the primal linear program.
• The associated dual linear program D is to

minimize b⊤y subject to constraints A⊤y ≥ c and y ≥ 0.

◦ “Solving a system of linear equalities from the rows-perspective
instead of the columns-perspective”.

• The following Duality Theorem has several important consequences.

The Duality Theorem (Theorem 2.22)

If both linear programs P and D have feasible solutions, then they both have
optimal solutions. Moreover, if x∗ and y ∗ are optimal solutions of P and D,
respectively, then c⊤x∗ = b⊤y ∗. That is, the maximum of P equals the
minimum of D.

• Dual programs can be constructed for any linear program.

Duality of linear programming

• The linear program P where we want to

maximize c⊤x subject to the constraints Ax ≤ b and x ≥ 0

is called the primal linear program.

• The associated dual linear program D is to

minimize b⊤y subject to constraints A⊤y ≥ c and y ≥ 0.

◦ “Solving a system of linear equalities from the rows-perspective
instead of the columns-perspective”.

• The following Duality Theorem has several important consequences.

The Duality Theorem (Theorem 2.22)

If both linear programs P and D have feasible solutions, then they both have
optimal solutions. Moreover, if x∗ and y ∗ are optimal solutions of P and D,
respectively, then c⊤x∗ = b⊤y ∗. That is, the maximum of P equals the
minimum of D.

• Dual programs can be constructed for any linear program.

Duality of linear programming

• The linear program P where we want to

maximize c⊤x subject to the constraints Ax ≤ b and x ≥ 0

is called the primal linear program.
• The associated dual linear program D is to

minimize b⊤y subject to constraints A⊤y ≥ c and y ≥ 0.

◦ “Solving a system of linear equalities from the rows-perspective
instead of the columns-perspective”.

• The following Duality Theorem has several important consequences.

The Duality Theorem (Theorem 2.22)

If both linear programs P and D have feasible solutions, then they both have
optimal solutions. Moreover, if x∗ and y ∗ are optimal solutions of P and D,
respectively, then c⊤x∗ = b⊤y ∗. That is, the maximum of P equals the
minimum of D.

• Dual programs can be constructed for any linear program.

Duality of linear programming

• The linear program P where we want to

maximize c⊤x subject to the constraints Ax ≤ b and x ≥ 0

is called the primal linear program.
• The associated dual linear program D is to

minimize b⊤y subject to constraints A⊤y ≥ c and y ≥ 0.

◦ “Solving a system of linear equalities from the rows-perspective
instead of the columns-perspective”.

• The following Duality Theorem has several important consequences.

The Duality Theorem (Theorem 2.22)

If both linear programs P and D have feasible solutions, then they both have
optimal solutions. Moreover, if x∗ and y ∗ are optimal solutions of P and D,
respectively, then c⊤x∗ = b⊤y ∗. That is, the maximum of P equals the
minimum of D.

• Dual programs can be constructed for any linear program.

Duality of linear programming

• The linear program P where we want to

maximize c⊤x subject to the constraints Ax ≤ b and x ≥ 0

is called the primal linear program.
• The associated dual linear program D is to

minimize b⊤y subject to constraints A⊤y ≥ c and y ≥ 0.

◦ “Solving a system of linear equalities from the rows-perspective
instead of the columns-perspective”.

• The following Duality Theorem has several important consequences.

The Duality Theorem (Theorem 2.22)

If both linear programs P and D have feasible solutions, then they both have
optimal solutions.

Moreover, if x∗ and y ∗ are optimal solutions of P and D,
respectively, then c⊤x∗ = b⊤y ∗. That is, the maximum of P equals the
minimum of D.

• Dual programs can be constructed for any linear program.

Duality of linear programming

• The linear program P where we want to

maximize c⊤x subject to the constraints Ax ≤ b and x ≥ 0

is called the primal linear program.
• The associated dual linear program D is to

minimize b⊤y subject to constraints A⊤y ≥ c and y ≥ 0.

◦ “Solving a system of linear equalities from the rows-perspective
instead of the columns-perspective”.

• The following Duality Theorem has several important consequences.

The Duality Theorem (Theorem 2.22)

If both linear programs P and D have feasible solutions, then they both have
optimal solutions. Moreover, if x∗ and y ∗ are optimal solutions of P and D,
respectively, then c⊤x∗ = b⊤y ∗.

That is, the maximum of P equals the
minimum of D.

• Dual programs can be constructed for any linear program.

Duality of linear programming

• The linear program P where we want to

maximize c⊤x subject to the constraints Ax ≤ b and x ≥ 0

is called the primal linear program.
• The associated dual linear program D is to

minimize b⊤y subject to constraints A⊤y ≥ c and y ≥ 0.

◦ “Solving a system of linear equalities from the rows-perspective
instead of the columns-perspective”.

• The following Duality Theorem has several important consequences.

The Duality Theorem (Theorem 2.22)

If both linear programs P and D have feasible solutions, then they both have
optimal solutions. Moreover, if x∗ and y ∗ are optimal solutions of P and D,
respectively, then c⊤x∗ = b⊤y ∗. That is, the maximum of P equals the
minimum of D.

• Dual programs can be constructed for any linear program.

Duality of linear programming

• The linear program P where we want to

maximize c⊤x subject to the constraints Ax ≤ b and x ≥ 0

is called the primal linear program.
• The associated dual linear program D is to

minimize b⊤y subject to constraints A⊤y ≥ c and y ≥ 0.

◦ “Solving a system of linear equalities from the rows-perspective
instead of the columns-perspective”.

• The following Duality Theorem has several important consequences.

The Duality Theorem (Theorem 2.22)

If both linear programs P and D have feasible solutions, then they both have
optimal solutions. Moreover, if x∗ and y ∗ are optimal solutions of P and D,
respectively, then c⊤x∗ = b⊤y ∗. That is, the maximum of P equals the
minimum of D.

• Dual programs can be constructed for any linear program.

General recipe for duality

Primal linear program Dual linear program

Variables x1, . . . , xm y1, . . . , yn

Matrix A ∈ Rn×m A⊤ ∈ Rm×n

Right-hand side b ∈ Rn c ∈ Rm

Objective function max c⊤x min b⊤y

Constraints ith constraint has ≤ yi ≥ 0

≥ yi ≤ 0

= yi ∈ R

xj ≥ 0 jth constraint has ≥
xj ≤ 0 ≤
xj ∈ R =

Table: A recipe for making dual programs.

General recipe for duality

Primal linear program Dual linear program

Variables x1, . . . , xm y1, . . . , yn

Matrix A ∈ Rn×m A⊤ ∈ Rm×n

Right-hand side b ∈ Rn c ∈ Rm

Objective function max c⊤x min b⊤y

Constraints ith constraint has ≤ yi ≥ 0

≥ yi ≤ 0

= yi ∈ R

xj ≥ 0 jth constraint has ≥
xj ≤ 0 ≤
xj ∈ R =

Table: A recipe for making dual programs.

Proof of the Minimax Theorem I

• We now proceed with the proof of the Minimax Theorem.

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players
exist and can be efficiently computed. There is a number v such that, for
any worst-case optimal strategies x∗ and y ∗, the strategy profile (x∗, y ∗) is a
Nash equilibrium and β(x∗) = (x∗)⊤My ∗ = α(y ∗) = v .

• We want to compute x∗ such that β(x∗) = maxx∈S1 β(x) where
β(x) = miny∈S2 x

⊤My using LP. We first show how not to do it.

• Naive straightforward approach with variables x1, . . . , xm:

maximize β(x) subject to the constraints
m∑
i=1

xi = 1 and x ≥ 0.

• This is not LP! (the objective function β(x) = miny∈S2 x
⊤My is not

linear in x) What can we compute with LP?

Proof of the Minimax Theorem I

• We now proceed with the proof of the Minimax Theorem.

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players
exist and can be efficiently computed. There is a number v such that, for
any worst-case optimal strategies x∗ and y ∗, the strategy profile (x∗, y ∗) is a
Nash equilibrium and β(x∗) = (x∗)⊤My ∗ = α(y ∗) = v .

• We want to compute x∗ such that β(x∗) = maxx∈S1 β(x) where
β(x) = miny∈S2 x

⊤My using LP. We first show how not to do it.

• Naive straightforward approach with variables x1, . . . , xm:

maximize β(x) subject to the constraints
m∑
i=1

xi = 1 and x ≥ 0.

• This is not LP! (the objective function β(x) = miny∈S2 x
⊤My is not

linear in x) What can we compute with LP?

Proof of the Minimax Theorem I

• We now proceed with the proof of the Minimax Theorem.

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players
exist and can be efficiently computed. There is a number v such that, for
any worst-case optimal strategies x∗ and y ∗, the strategy profile (x∗, y ∗) is a
Nash equilibrium and β(x∗) = (x∗)⊤My ∗ = α(y ∗) = v .

• We want to compute x∗ such that β(x∗) = maxx∈S1 β(x) where
β(x) = miny∈S2 x

⊤My using LP.

We first show how not to do it.

• Naive straightforward approach with variables x1, . . . , xm:

maximize β(x) subject to the constraints
m∑
i=1

xi = 1 and x ≥ 0.

• This is not LP! (the objective function β(x) = miny∈S2 x
⊤My is not

linear in x) What can we compute with LP?

Proof of the Minimax Theorem I

• We now proceed with the proof of the Minimax Theorem.

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players
exist and can be efficiently computed. There is a number v such that, for
any worst-case optimal strategies x∗ and y ∗, the strategy profile (x∗, y ∗) is a
Nash equilibrium and β(x∗) = (x∗)⊤My ∗ = α(y ∗) = v .

• We want to compute x∗ such that β(x∗) = maxx∈S1 β(x) where
β(x) = miny∈S2 x

⊤My using LP. We first show how not to do it.

• Naive straightforward approach with variables x1, . . . , xm:

maximize β(x) subject to the constraints
m∑
i=1

xi = 1 and x ≥ 0.

• This is not LP! (the objective function β(x) = miny∈S2 x
⊤My is not

linear in x) What can we compute with LP?

Proof of the Minimax Theorem I

• We now proceed with the proof of the Minimax Theorem.

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players
exist and can be efficiently computed. There is a number v such that, for
any worst-case optimal strategies x∗ and y ∗, the strategy profile (x∗, y ∗) is a
Nash equilibrium and β(x∗) = (x∗)⊤My ∗ = α(y ∗) = v .

• We want to compute x∗ such that β(x∗) = maxx∈S1 β(x) where
β(x) = miny∈S2 x

⊤My using LP. We first show how not to do it.

• Naive straightforward approach with variables x1, . . . , xm:

maximize β(x) subject to the constraints
m∑
i=1

xi = 1 and x ≥ 0.

• This is not LP! (the objective function β(x) = miny∈S2 x
⊤My is not

linear in x) What can we compute with LP?

Proof of the Minimax Theorem I

• We now proceed with the proof of the Minimax Theorem.

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players
exist and can be efficiently computed. There is a number v such that, for
any worst-case optimal strategies x∗ and y ∗, the strategy profile (x∗, y ∗) is a
Nash equilibrium and β(x∗) = (x∗)⊤My ∗ = α(y ∗) = v .

• We want to compute x∗ such that β(x∗) = maxx∈S1 β(x) where
β(x) = miny∈S2 x

⊤My using LP. We first show how not to do it.

• Naive straightforward approach with variables x1, . . . , xm:

maximize β(x) subject to the constraints
m∑
i=1

xi = 1 and x ≥ 0.

• This is not LP! (the objective function β(x) = miny∈S2 x
⊤My is not

linear in x) What can we compute with LP?

Proof of the Minimax Theorem I

• We now proceed with the proof of the Minimax Theorem.

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players
exist and can be efficiently computed. There is a number v such that, for
any worst-case optimal strategies x∗ and y ∗, the strategy profile (x∗, y ∗) is a
Nash equilibrium and β(x∗) = (x∗)⊤My ∗ = α(y ∗) = v .

• We want to compute x∗ such that β(x∗) = maxx∈S1 β(x) where
β(x) = miny∈S2 x

⊤My using LP. We first show how not to do it.

• Naive straightforward approach with variables x1, . . . , xm:

maximize β(x) subject to the constraints
m∑
i=1

xi = 1 and x ≥ 0.

• This is not LP!

(the objective function β(x) = miny∈S2 x
⊤My is not

linear in x) What can we compute with LP?

Proof of the Minimax Theorem I

• We now proceed with the proof of the Minimax Theorem.

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players
exist and can be efficiently computed. There is a number v such that, for
any worst-case optimal strategies x∗ and y ∗, the strategy profile (x∗, y ∗) is a
Nash equilibrium and β(x∗) = (x∗)⊤My ∗ = α(y ∗) = v .

• We want to compute x∗ such that β(x∗) = maxx∈S1 β(x) where
β(x) = miny∈S2 x

⊤My using LP. We first show how not to do it.

• Naive straightforward approach with variables x1, . . . , xm:

maximize β(x) subject to the constraints
m∑
i=1

xi = 1 and x ≥ 0.

• This is not LP! (the objective function β(x) = miny∈S2 x
⊤My is not

linear in x)

What can we compute with LP?

Proof of the Minimax Theorem I

• We now proceed with the proof of the Minimax Theorem.

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players
exist and can be efficiently computed. There is a number v such that, for
any worst-case optimal strategies x∗ and y ∗, the strategy profile (x∗, y ∗) is a
Nash equilibrium and β(x∗) = (x∗)⊤My ∗ = α(y ∗) = v .

• We want to compute x∗ such that β(x∗) = maxx∈S1 β(x) where
β(x) = miny∈S2 x

⊤My using LP. We first show how not to do it.

• Naive straightforward approach with variables x1, . . . , xm:

maximize β(x) subject to the constraints
m∑
i=1

xi = 1 and x ≥ 0.

• This is not LP! (the objective function β(x) = miny∈S2 x
⊤My is not

linear in x) What can we compute with LP?

Proof of the Minimax Theorem II

• For fixed x ∈ S1, we can compute a best response of 2 to x .

• We use the following linear program P with variables y1, . . . , yn:

(P) minimize x⊤My subject to
n∑

j=1

yj = 1 and y ≥ 0.

• Its dual is the following LP D with a single variable x0:

(D) maximize x0 subject to 1x0 ≤ M⊤x .

• By the Duality Theorem, P and D have the same optimal value β(x).

• Thus, if we treat x1, . . . , xm as variables in D, we obtain the following
linear program D ′ with variables x0, x1, . . . , xm:

(D ′) maximize x0 subject to 1x0 −M⊤x ≤ 0,
m∑
i=1

xi = 1 and x ≥ 0.

• The optimum x∗ of D ′ is a worst-case optimum strategy for 1!

Proof of the Minimax Theorem II

• For fixed x ∈ S1, we can compute a best response of 2 to x .

• We use the following linear program P with variables y1, . . . , yn:

(P) minimize x⊤My subject to
n∑

j=1

yj = 1 and y ≥ 0.

• Its dual is the following LP D with a single variable x0:

(D) maximize x0 subject to 1x0 ≤ M⊤x .

• By the Duality Theorem, P and D have the same optimal value β(x).

• Thus, if we treat x1, . . . , xm as variables in D, we obtain the following
linear program D ′ with variables x0, x1, . . . , xm:

(D ′) maximize x0 subject to 1x0 −M⊤x ≤ 0,
m∑
i=1

xi = 1 and x ≥ 0.

• The optimum x∗ of D ′ is a worst-case optimum strategy for 1!

Proof of the Minimax Theorem II

• For fixed x ∈ S1, we can compute a best response of 2 to x .

• We use the following linear program P with variables y1, . . . , yn:

(P) minimize x⊤My subject to
n∑

j=1

yj = 1 and y ≥ 0.

• Its dual is the following LP D with a single variable x0:

(D) maximize x0 subject to 1x0 ≤ M⊤x .

• By the Duality Theorem, P and D have the same optimal value β(x).

• Thus, if we treat x1, . . . , xm as variables in D, we obtain the following
linear program D ′ with variables x0, x1, . . . , xm:

(D ′) maximize x0 subject to 1x0 −M⊤x ≤ 0,
m∑
i=1

xi = 1 and x ≥ 0.

• The optimum x∗ of D ′ is a worst-case optimum strategy for 1!

Proof of the Minimax Theorem II

• For fixed x ∈ S1, we can compute a best response of 2 to x .

• We use the following linear program P with variables y1, . . . , yn:

(P) minimize x⊤My subject to
n∑

j=1

yj = 1 and y ≥ 0.

• Its dual is the following LP D with a single variable x0:

(D) maximize x0 subject to 1x0 ≤ M⊤x .

• By the Duality Theorem, P and D have the same optimal value β(x).

• Thus, if we treat x1, . . . , xm as variables in D, we obtain the following
linear program D ′ with variables x0, x1, . . . , xm:

(D ′) maximize x0 subject to 1x0 −M⊤x ≤ 0,
m∑
i=1

xi = 1 and x ≥ 0.

• The optimum x∗ of D ′ is a worst-case optimum strategy for 1!

Proof of the Minimax Theorem II

• For fixed x ∈ S1, we can compute a best response of 2 to x .

• We use the following linear program P with variables y1, . . . , yn:

(P) minimize x⊤My subject to
n∑

j=1

yj = 1 and y ≥ 0.

• Its dual is the following LP D with a single variable x0:

(D) maximize x0 subject to 1x0 ≤ M⊤x .

• By the Duality Theorem, P and D have the same optimal value β(x).

• Thus, if we treat x1, . . . , xm as variables in D, we obtain the following
linear program D ′ with variables x0, x1, . . . , xm:

(D ′) maximize x0 subject to 1x0 −M⊤x ≤ 0,
m∑
i=1

xi = 1 and x ≥ 0.

• The optimum x∗ of D ′ is a worst-case optimum strategy for 1!

Proof of the Minimax Theorem II

• For fixed x ∈ S1, we can compute a best response of 2 to x .

• We use the following linear program P with variables y1, . . . , yn:

(P) minimize x⊤My subject to
n∑

j=1

yj = 1 and y ≥ 0.

• Its dual is the following LP D with a single variable x0:

(D) maximize x0 subject to 1x0 ≤ M⊤x .

• By the Duality Theorem, P and D have the same optimal value β(x).

• Thus, if we treat x1, . . . , xm as variables in D, we obtain the following
linear program D ′ with variables x0, x1, . . . , xm:

(D ′) maximize x0 subject to 1x0 −M⊤x ≤ 0,
m∑
i=1

xi = 1 and x ≥ 0.

• The optimum x∗ of D ′ is a worst-case optimum strategy for 1!

Proof of the Minimax Theorem II

• For fixed x ∈ S1, we can compute a best response of 2 to x .

• We use the following linear program P with variables y1, . . . , yn:

(P) minimize x⊤My subject to
n∑

j=1

yj = 1 and y ≥ 0.

• Its dual is the following LP D with a single variable x0:

(D) maximize x0 subject to 1x0 ≤ M⊤x .

• By the Duality Theorem, P and D have the same optimal value β(x).

• Thus, if we treat x1, . . . , xm as variables in D, we obtain the following
linear program D ′ with variables x0, x1, . . . , xm:

(D ′) maximize x0 subject to 1x0 −M⊤x ≤ 0,
m∑
i=1

xi = 1 and x ≥ 0.

• The optimum x∗ of D ′ is a worst-case optimum strategy for 1!

Proof of the Minimax Theorem II

• For fixed x ∈ S1, we can compute a best response of 2 to x .

• We use the following linear program P with variables y1, . . . , yn:

(P) minimize x⊤My subject to
n∑

j=1

yj = 1 and y ≥ 0.

• Its dual is the following LP D with a single variable x0:

(D) maximize x0 subject to 1x0 ≤ M⊤x .

• By the Duality Theorem, P and D have the same optimal value β(x).

• Thus, if we treat x1, . . . , xm as variables in D, we obtain the following
linear program D ′ with variables x0, x1, . . . , xm:

(D ′) maximize x0 subject to 1x0 −M⊤x ≤ 0,
m∑
i=1

xi = 1 and x ≥ 0.

• The optimum x∗ of D ′ is a worst-case optimum strategy for 1!

Proof of the Minimax Theorem II

• For fixed x ∈ S1, we can compute a best response of 2 to x .

• We use the following linear program P with variables y1, . . . , yn:

(P) minimize x⊤My subject to
n∑

j=1

yj = 1 and y ≥ 0.

• Its dual is the following LP D with a single variable x0:

(D) maximize x0 subject to 1x0 ≤ M⊤x .

• By the Duality Theorem, P and D have the same optimal value β(x).

• Thus, if we treat x1, . . . , xm as variables in D, we obtain the following
linear program D ′ with variables x0, x1, . . . , xm:

(D ′) maximize x0 subject to 1x0 −M⊤x ≤ 0,
m∑
i=1

xi = 1 and x ≥ 0.

• The optimum x∗ of D ′ is a worst-case optimum strategy for 1!

Proof of the Minimax Theorem III

• Analogously, we can compute a worst-case optimum strategy y ∗ for 2
using this linear program P ′ with variables y0, y1, . . . , yn:

(P ′) minimize y0 subject to 1y0 −My ≥ 0,
n∑

j=1

yj = 1 and y ≥ 0.

• So we, proved the first part of the Minimax Theorem. It remains to
show that (x∗, y ∗) is NE and β(x∗) = (x∗)⊤My ∗ = α(y ∗) = v .

• Using the general recipe for duality, we see that P ′ and D ′ are dual to
each other! (Exercise)

• By the Duality Theorem, P ′ and D ′ have the same optimal value

β(x∗) = x∗0 = y ∗
0 = α(y ∗).

This value v is attained in any worst-case optimal strategy.

• By part (c) of Lemma 2.20, (x∗, y ∗) is NE, that is, we have
β(x∗) = (x∗)⊤My ∗ = α(y ∗).

Proof of the Minimax Theorem III

• Analogously, we can compute a worst-case optimum strategy y ∗ for 2
using this linear program P ′ with variables y0, y1, . . . , yn:

(P ′) minimize y0 subject to 1y0 −My ≥ 0,
n∑

j=1

yj = 1 and y ≥ 0.

• So we, proved the first part of the Minimax Theorem. It remains to
show that (x∗, y ∗) is NE and β(x∗) = (x∗)⊤My ∗ = α(y ∗) = v .

• Using the general recipe for duality, we see that P ′ and D ′ are dual to
each other! (Exercise)

• By the Duality Theorem, P ′ and D ′ have the same optimal value

β(x∗) = x∗0 = y ∗
0 = α(y ∗).

This value v is attained in any worst-case optimal strategy.

• By part (c) of Lemma 2.20, (x∗, y ∗) is NE, that is, we have
β(x∗) = (x∗)⊤My ∗ = α(y ∗).

Proof of the Minimax Theorem III

• Analogously, we can compute a worst-case optimum strategy y ∗ for 2
using this linear program P ′ with variables y0, y1, . . . , yn:

(P ′) minimize y0 subject to 1y0 −My ≥ 0,
n∑

j=1

yj = 1 and y ≥ 0.

• So we, proved the first part of the Minimax Theorem.

It remains to
show that (x∗, y ∗) is NE and β(x∗) = (x∗)⊤My ∗ = α(y ∗) = v .

• Using the general recipe for duality, we see that P ′ and D ′ are dual to
each other! (Exercise)

• By the Duality Theorem, P ′ and D ′ have the same optimal value

β(x∗) = x∗0 = y ∗
0 = α(y ∗).

This value v is attained in any worst-case optimal strategy.

• By part (c) of Lemma 2.20, (x∗, y ∗) is NE, that is, we have
β(x∗) = (x∗)⊤My ∗ = α(y ∗).

Proof of the Minimax Theorem III

• Analogously, we can compute a worst-case optimum strategy y ∗ for 2
using this linear program P ′ with variables y0, y1, . . . , yn:

(P ′) minimize y0 subject to 1y0 −My ≥ 0,
n∑

j=1

yj = 1 and y ≥ 0.

• So we, proved the first part of the Minimax Theorem. It remains to
show that (x∗, y ∗) is NE and β(x∗) = (x∗)⊤My ∗ = α(y ∗) = v .

• Using the general recipe for duality, we see that P ′ and D ′ are dual to
each other! (Exercise)

• By the Duality Theorem, P ′ and D ′ have the same optimal value

β(x∗) = x∗0 = y ∗
0 = α(y ∗).

This value v is attained in any worst-case optimal strategy.

• By part (c) of Lemma 2.20, (x∗, y ∗) is NE, that is, we have
β(x∗) = (x∗)⊤My ∗ = α(y ∗).

Proof of the Minimax Theorem III

• Analogously, we can compute a worst-case optimum strategy y ∗ for 2
using this linear program P ′ with variables y0, y1, . . . , yn:

(P ′) minimize y0 subject to 1y0 −My ≥ 0,
n∑

j=1

yj = 1 and y ≥ 0.

• So we, proved the first part of the Minimax Theorem. It remains to
show that (x∗, y ∗) is NE and β(x∗) = (x∗)⊤My ∗ = α(y ∗) = v .

• Using the general recipe for duality, we see that P ′ and D ′ are dual to
each other! (Exercise)

• By the Duality Theorem, P ′ and D ′ have the same optimal value

β(x∗) = x∗0 = y ∗
0 = α(y ∗).

This value v is attained in any worst-case optimal strategy.

• By part (c) of Lemma 2.20, (x∗, y ∗) is NE, that is, we have
β(x∗) = (x∗)⊤My ∗ = α(y ∗).

Proof of the Minimax Theorem III

• Analogously, we can compute a worst-case optimum strategy y ∗ for 2
using this linear program P ′ with variables y0, y1, . . . , yn:

(P ′) minimize y0 subject to 1y0 −My ≥ 0,
n∑

j=1

yj = 1 and y ≥ 0.

• So we, proved the first part of the Minimax Theorem. It remains to
show that (x∗, y ∗) is NE and β(x∗) = (x∗)⊤My ∗ = α(y ∗) = v .

• Using the general recipe for duality, we see that P ′ and D ′ are dual to
each other! (Exercise)

• By the Duality Theorem, P ′ and D ′ have the same optimal value

β(x∗) = x∗0 = y ∗
0 = α(y ∗).

This value v is attained in any worst-case optimal strategy.

• By part (c) of Lemma 2.20, (x∗, y ∗) is NE, that is, we have
β(x∗) = (x∗)⊤My ∗ = α(y ∗).

Proof of the Minimax Theorem III

• Analogously, we can compute a worst-case optimum strategy y ∗ for 2
using this linear program P ′ with variables y0, y1, . . . , yn:

(P ′) minimize y0 subject to 1y0 −My ≥ 0,
n∑

j=1

yj = 1 and y ≥ 0.

• So we, proved the first part of the Minimax Theorem. It remains to
show that (x∗, y ∗) is NE and β(x∗) = (x∗)⊤My ∗ = α(y ∗) = v .

• Using the general recipe for duality, we see that P ′ and D ′ are dual to
each other! (Exercise)

• By the Duality Theorem, P ′ and D ′ have the same optimal value

β(x∗) = x∗0 = y ∗
0 = α(y ∗).

This value v is attained in any worst-case optimal strategy.

• By part (c) of Lemma 2.20, (x∗, y ∗) is NE, that is, we have
β(x∗) = (x∗)⊤My ∗ = α(y ∗).

Proof of the Minimax Theorem III

• Analogously, we can compute a worst-case optimum strategy y ∗ for 2
using this linear program P ′ with variables y0, y1, . . . , yn:

(P ′) minimize y0 subject to 1y0 −My ≥ 0,
n∑

j=1

yj = 1 and y ≥ 0.

• So we, proved the first part of the Minimax Theorem. It remains to
show that (x∗, y ∗) is NE and β(x∗) = (x∗)⊤My ∗ = α(y ∗) = v .

• Using the general recipe for duality, we see that P ′ and D ′ are dual to
each other! (Exercise)

• By the Duality Theorem, P ′ and D ′ have the same optimal value

β(x∗) = x∗0 = y ∗
0 = α(y ∗).

This value v is attained in any worst-case optimal strategy.

• By part (c) of Lemma 2.20, (x∗, y ∗) is NE, that is, we have
β(x∗) = (x∗)⊤My ∗ = α(y ∗).

Proof of the Minimax Theorem III

• Analogously, we can compute a worst-case optimum strategy y ∗ for 2
using this linear program P ′ with variables y0, y1, . . . , yn:

(P ′) minimize y0 subject to 1y0 −My ≥ 0,
n∑

j=1

yj = 1 and y ≥ 0.

• So we, proved the first part of the Minimax Theorem. It remains to
show that (x∗, y ∗) is NE and β(x∗) = (x∗)⊤My ∗ = α(y ∗) = v .

• Using the general recipe for duality, we see that P ′ and D ′ are dual to
each other! (Exercise)

• By the Duality Theorem, P ′ and D ′ have the same optimal value

β(x∗) = x∗0 = y ∗
0 = α(y ∗).

This value v is attained in any worst-case optimal strategy.

• By part (c) of Lemma 2.20, (x∗, y ∗) is NE, that is, we have
β(x∗) = (x∗)⊤My ∗ = α(y ∗).

Nash equilibria in bimatrix games

Bimatrix games

• Since zero-sum games are solved now, we try to efficiently find Nash
equilibria in bimatrix games, that is, games of 2-players (not necessarily
zero-sum).

• Example: Prisoner’s dilemma

Testify Remain silent

Testify (-2,-2) (-3,0)

Remain silent (0,-3) (-1,-1)

Sources: https://sciworthy.com/

Bimatrix games

• Since zero-sum games are solved now, we try to efficiently find Nash
equilibria in bimatrix games, that is, games of 2-players (not necessarily
zero-sum).

• Example: Prisoner’s dilemma

Testify Remain silent

Testify (-2,-2) (-3,0)

Remain silent (0,-3) (-1,-1)

Sources: https://sciworthy.com/

Bimatrix games

• Since zero-sum games are solved now, we try to efficiently find Nash
equilibria in bimatrix games, that is, games of 2-players (not necessarily
zero-sum).

• Example: Prisoner’s dilemma

Testify Remain silent

Testify (-2,-2) (-3,0)

Remain silent (0,-3) (-1,-1)

Sources: https://sciworthy.com/

Bimatrix games

• Since zero-sum games are solved now, we try to efficiently find Nash
equilibria in bimatrix games, that is, games of 2-players (not necessarily
zero-sum).

• Example: Prisoner’s dilemma

Testify Remain silent

Testify (-2,-2) (-3,0)

Remain silent (0,-3) (-1,-1)

Sources: https://sciworthy.com/

Bimatrix games examples: collaborative projects

Source: https://filestage.io/

Bimatrix games examples: education, knowledge sharing

Source: https://www.123rf.com/

Bimatrix games examples: the battle for Gotham’s soul

Cooperate Detonate

Cooperate (0,0) (0,1)

Detonate (1,0) (0,0)

Sources: https://www.cbr.com/

Nash equilibria in bimatrix games by brute force

• We try to design an algorithm for finding Nash equilibria in games of
two players (bimatrix games).

• We state some observations that yield a brute-force algorithm.

Source: https://pinterest.com

• Later, we show the currently best known algorithm for this problem.

Nash equilibria in bimatrix games by brute force

• We try to design an algorithm for finding Nash equilibria in games of
two players (bimatrix games).

• We state some observations that yield a brute-force algorithm.

Source: https://pinterest.com

• Later, we show the currently best known algorithm for this problem.

Nash equilibria in bimatrix games by brute force

• We try to design an algorithm for finding Nash equilibria in games of
two players (bimatrix games).

• We state some observations that yield a brute-force algorithm.

Source: https://pinterest.com

• Later, we show the currently best known algorithm for this problem.

Nash equilibria in bimatrix games by brute force

• We try to design an algorithm for finding Nash equilibria in games of
two players (bimatrix games).

• We state some observations that yield a brute-force algorithm.

Source: https://pinterest.com

• Later, we show the currently best known algorithm for this problem.

Best response condition

• We first state the perhaps most useful observation in our course.

• The support of a mixed strategy Supp(si) = si is {ai ∈ Ai : si(ai) > 0}.

Best response condition (Observation 2.23)

In a normal-form game G = (P ,A, u) of n players, for every player i ∈ P , a
mixed strategy si is a best response to s−i if and only if all pure strategies in
the support of si are best responses to s−i .

• Thus, the problem of finding NE is combinatorial problem, not a
continuous one.

• The hearth of the problem is in finding the right supports.

• Once we have the right supports, the precise mixed strategies can be
computed by solving a system of algebraic equations (which are linear
in the case of two players).

Best response condition

• We first state the perhaps most useful observation in our course.

• The support of a mixed strategy Supp(si) = si is {ai ∈ Ai : si(ai) > 0}.

Best response condition (Observation 2.23)

In a normal-form game G = (P ,A, u) of n players, for every player i ∈ P , a
mixed strategy si is a best response to s−i if and only if all pure strategies in
the support of si are best responses to s−i .

• Thus, the problem of finding NE is combinatorial problem, not a
continuous one.

• The hearth of the problem is in finding the right supports.

• Once we have the right supports, the precise mixed strategies can be
computed by solving a system of algebraic equations (which are linear
in the case of two players).

Best response condition

• We first state the perhaps most useful observation in our course.

• The support of a mixed strategy Supp(si) = si is {ai ∈ Ai : si(ai) > 0}.

Best response condition (Observation 2.23)

In a normal-form game G = (P ,A, u) of n players, for every player i ∈ P , a
mixed strategy si is a best response to s−i if and only if all pure strategies in
the support of si are best responses to s−i .

• Thus, the problem of finding NE is combinatorial problem, not a
continuous one.

• The hearth of the problem is in finding the right supports.

• Once we have the right supports, the precise mixed strategies can be
computed by solving a system of algebraic equations (which are linear
in the case of two players).

Best response condition

• We first state the perhaps most useful observation in our course.

• The support of a mixed strategy Supp(si) = si is {ai ∈ Ai : si(ai) > 0}.

Best response condition (Observation 2.23)

In a normal-form game G = (P ,A, u) of n players, for every player i ∈ P , a
mixed strategy si is a best response to s−i if and only if all pure strategies in
the support of si are best responses to s−i .

• Thus, the problem of finding NE is combinatorial problem, not a
continuous one.

• The hearth of the problem is in finding the right supports.

• Once we have the right supports, the precise mixed strategies can be
computed by solving a system of algebraic equations (which are linear
in the case of two players).

Best response condition

• We first state the perhaps most useful observation in our course.

• The support of a mixed strategy Supp(si) = si is {ai ∈ Ai : si(ai) > 0}.

Best response condition (Observation 2.23)

In a normal-form game G = (P ,A, u) of n players, for every player i ∈ P , a
mixed strategy si is a best response to s−i if and only if all pure strategies in
the support of si are best responses to s−i .

• Thus, the problem of finding NE is combinatorial problem, not a
continuous one.

• The hearth of the problem is in finding the right supports.

• Once we have the right supports, the precise mixed strategies can be
computed by solving a system of algebraic equations (which are linear
in the case of two players).

Best response condition

• We first state the perhaps most useful observation in our course.

• The support of a mixed strategy Supp(si) = si is {ai ∈ Ai : si(ai) > 0}.

Best response condition (Observation 2.23)

In a normal-form game G = (P ,A, u) of n players, for every player i ∈ P , a
mixed strategy si is a best response to s−i if and only if all pure strategies in
the support of si are best responses to s−i .

• Thus, the problem of finding NE is combinatorial problem, not a
continuous one.

• The hearth of the problem is in finding the right supports.

• Once we have the right supports, the precise mixed strategies can be
computed by solving a system of algebraic equations (which are linear
in the case of two players).

Best response condition

• We first state the perhaps most useful observation in our course.

• The support of a mixed strategy Supp(si) = si is {ai ∈ Ai : si(ai) > 0}.

Best response condition (Observation 2.23)

In a normal-form game G = (P ,A, u) of n players, for every player i ∈ P , a
mixed strategy si is a best response to s−i if and only if all pure strategies in
the support of si are best responses to s−i .

• Thus, the problem of finding NE is combinatorial problem, not a
continuous one.

• The hearth of the problem is in finding the right supports.

• Once we have the right supports, the precise mixed strategies can be
computed by solving a system of algebraic equations (which are linear
in the case of two players).

Proof of the Best response condition

• First, assume every ai ∈ Supp(si) satisfies ui(ai ; s−i) ≥ ui(s
′
i ; s−i) for

every s ′i ∈ Si . Then, for every s ′i ∈ Si , the linearity of ui implies

ui(s) =
∑

ai∈Supp(si)

si(ai)ui(ai ; s−i) ≥
∑

ai∈Supp(si)

si(ai)ui(s
′
i ; s−i) = ui(s

′
i ; s−i).

• Second, assume si is a best response of i to s−i . Suppose there is
ai ∈ Supp(si) that is not a best response of i to s−i . Then, there is
s ′i ∈ Si with ui(ai ; s−i) < ui(s

′
i ; s−i). Since si is a best response to s−i ,

we get si(ai) < 1. By the linearity of ui , there is âi ∈ Supp(si) with
ui(âi ; s−i) > ui(ai ; s−i). We define a new mixed strategy s∗i ∈ Si by
setting s∗i (ai) = 0, s∗i (âi) = si(âi) + si(ai) and keeping s∗i (ai) = si(ai)
otherwise. Then, by the linearity of ui

ui(s
∗
i ; s−i) =

∑
ai∈Ai

s∗i (ai)ui(ai ; s−i) >
∑
ai∈Ai

si(ai)ui(ai ; s−i) = ui(s),

a contradiction.

Proof of the Best response condition

• First, assume every ai ∈ Supp(si) satisfies ui(ai ; s−i) ≥ ui(s
′
i ; s−i) for

every s ′i ∈ Si .

Then, for every s ′i ∈ Si , the linearity of ui implies

ui(s) =
∑

ai∈Supp(si)

si(ai)ui(ai ; s−i) ≥
∑

ai∈Supp(si)

si(ai)ui(s
′
i ; s−i) = ui(s

′
i ; s−i).

• Second, assume si is a best response of i to s−i . Suppose there is
ai ∈ Supp(si) that is not a best response of i to s−i . Then, there is
s ′i ∈ Si with ui(ai ; s−i) < ui(s

′
i ; s−i). Since si is a best response to s−i ,

we get si(ai) < 1. By the linearity of ui , there is âi ∈ Supp(si) with
ui(âi ; s−i) > ui(ai ; s−i). We define a new mixed strategy s∗i ∈ Si by
setting s∗i (ai) = 0, s∗i (âi) = si(âi) + si(ai) and keeping s∗i (ai) = si(ai)
otherwise. Then, by the linearity of ui

ui(s
∗
i ; s−i) =

∑
ai∈Ai

s∗i (ai)ui(ai ; s−i) >
∑
ai∈Ai

si(ai)ui(ai ; s−i) = ui(s),

a contradiction.

Proof of the Best response condition

• First, assume every ai ∈ Supp(si) satisfies ui(ai ; s−i) ≥ ui(s
′
i ; s−i) for

every s ′i ∈ Si . Then, for every s ′i ∈ Si , the linearity of ui implies

ui(s) =
∑

ai∈Supp(si)

si(ai)ui(ai ; s−i) ≥
∑

ai∈Supp(si)

si(ai)ui(s
′
i ; s−i) = ui(s

′
i ; s−i).

• Second, assume si is a best response of i to s−i . Suppose there is
ai ∈ Supp(si) that is not a best response of i to s−i . Then, there is
s ′i ∈ Si with ui(ai ; s−i) < ui(s

′
i ; s−i). Since si is a best response to s−i ,

we get si(ai) < 1. By the linearity of ui , there is âi ∈ Supp(si) with
ui(âi ; s−i) > ui(ai ; s−i). We define a new mixed strategy s∗i ∈ Si by
setting s∗i (ai) = 0, s∗i (âi) = si(âi) + si(ai) and keeping s∗i (ai) = si(ai)
otherwise. Then, by the linearity of ui

ui(s
∗
i ; s−i) =

∑
ai∈Ai

s∗i (ai)ui(ai ; s−i) >
∑
ai∈Ai

si(ai)ui(ai ; s−i) = ui(s),

a contradiction.

Proof of the Best response condition

• First, assume every ai ∈ Supp(si) satisfies ui(ai ; s−i) ≥ ui(s
′
i ; s−i) for

every s ′i ∈ Si . Then, for every s ′i ∈ Si , the linearity of ui implies

ui(s) =
∑

ai∈Supp(si)

si(ai)ui(ai ; s−i)

≥
∑

ai∈Supp(si)

si(ai)ui(s
′
i ; s−i) = ui(s

′
i ; s−i).

• Second, assume si is a best response of i to s−i . Suppose there is
ai ∈ Supp(si) that is not a best response of i to s−i . Then, there is
s ′i ∈ Si with ui(ai ; s−i) < ui(s

′
i ; s−i). Since si is a best response to s−i ,

we get si(ai) < 1. By the linearity of ui , there is âi ∈ Supp(si) with
ui(âi ; s−i) > ui(ai ; s−i). We define a new mixed strategy s∗i ∈ Si by
setting s∗i (ai) = 0, s∗i (âi) = si(âi) + si(ai) and keeping s∗i (ai) = si(ai)
otherwise. Then, by the linearity of ui

ui(s
∗
i ; s−i) =

∑
ai∈Ai

s∗i (ai)ui(ai ; s−i) >
∑
ai∈Ai

si(ai)ui(ai ; s−i) = ui(s),

a contradiction.

Proof of the Best response condition

• First, assume every ai ∈ Supp(si) satisfies ui(ai ; s−i) ≥ ui(s
′
i ; s−i) for

every s ′i ∈ Si . Then, for every s ′i ∈ Si , the linearity of ui implies

ui(s) =
∑

ai∈Supp(si)

si(ai)ui(ai ; s−i) ≥
∑

ai∈Supp(si)

si(ai)ui(s
′
i ; s−i)

= ui(s
′
i ; s−i).

• Second, assume si is a best response of i to s−i . Suppose there is
ai ∈ Supp(si) that is not a best response of i to s−i . Then, there is
s ′i ∈ Si with ui(ai ; s−i) < ui(s

′
i ; s−i). Since si is a best response to s−i ,

we get si(ai) < 1. By the linearity of ui , there is âi ∈ Supp(si) with
ui(âi ; s−i) > ui(ai ; s−i). We define a new mixed strategy s∗i ∈ Si by
setting s∗i (ai) = 0, s∗i (âi) = si(âi) + si(ai) and keeping s∗i (ai) = si(ai)
otherwise. Then, by the linearity of ui

ui(s
∗
i ; s−i) =

∑
ai∈Ai

s∗i (ai)ui(ai ; s−i) >
∑
ai∈Ai

si(ai)ui(ai ; s−i) = ui(s),

a contradiction.

Proof of the Best response condition

• First, assume every ai ∈ Supp(si) satisfies ui(ai ; s−i) ≥ ui(s
′
i ; s−i) for

every s ′i ∈ Si . Then, for every s ′i ∈ Si , the linearity of ui implies

ui(s) =
∑

ai∈Supp(si)

si(ai)ui(ai ; s−i) ≥
∑

ai∈Supp(si)

si(ai)ui(s
′
i ; s−i) = ui(s

′
i ; s−i).

• Second, assume si is a best response of i to s−i . Suppose there is
ai ∈ Supp(si) that is not a best response of i to s−i . Then, there is
s ′i ∈ Si with ui(ai ; s−i) < ui(s

′
i ; s−i). Since si is a best response to s−i ,

we get si(ai) < 1. By the linearity of ui , there is âi ∈ Supp(si) with
ui(âi ; s−i) > ui(ai ; s−i). We define a new mixed strategy s∗i ∈ Si by
setting s∗i (ai) = 0, s∗i (âi) = si(âi) + si(ai) and keeping s∗i (ai) = si(ai)
otherwise. Then, by the linearity of ui

ui(s
∗
i ; s−i) =

∑
ai∈Ai

s∗i (ai)ui(ai ; s−i) >
∑
ai∈Ai

si(ai)ui(ai ; s−i) = ui(s),

a contradiction.

Proof of the Best response condition

• First, assume every ai ∈ Supp(si) satisfies ui(ai ; s−i) ≥ ui(s
′
i ; s−i) for

every s ′i ∈ Si . Then, for every s ′i ∈ Si , the linearity of ui implies

ui(s) =
∑

ai∈Supp(si)

si(ai)ui(ai ; s−i) ≥
∑

ai∈Supp(si)

si(ai)ui(s
′
i ; s−i) = ui(s

′
i ; s−i).

• Second, assume si is a best response of i to s−i .

Suppose there is
ai ∈ Supp(si) that is not a best response of i to s−i . Then, there is
s ′i ∈ Si with ui(ai ; s−i) < ui(s

′
i ; s−i). Since si is a best response to s−i ,

we get si(ai) < 1. By the linearity of ui , there is âi ∈ Supp(si) with
ui(âi ; s−i) > ui(ai ; s−i). We define a new mixed strategy s∗i ∈ Si by
setting s∗i (ai) = 0, s∗i (âi) = si(âi) + si(ai) and keeping s∗i (ai) = si(ai)
otherwise. Then, by the linearity of ui

ui(s
∗
i ; s−i) =

∑
ai∈Ai

s∗i (ai)ui(ai ; s−i) >
∑
ai∈Ai

si(ai)ui(ai ; s−i) = ui(s),

a contradiction.

Proof of the Best response condition

• First, assume every ai ∈ Supp(si) satisfies ui(ai ; s−i) ≥ ui(s
′
i ; s−i) for

every s ′i ∈ Si . Then, for every s ′i ∈ Si , the linearity of ui implies

ui(s) =
∑

ai∈Supp(si)

si(ai)ui(ai ; s−i) ≥
∑

ai∈Supp(si)

si(ai)ui(s
′
i ; s−i) = ui(s

′
i ; s−i).

• Second, assume si is a best response of i to s−i . Suppose there is
ai ∈ Supp(si) that is not a best response of i to s−i .

Then, there is
s ′i ∈ Si with ui(ai ; s−i) < ui(s

′
i ; s−i). Since si is a best response to s−i ,

we get si(ai) < 1. By the linearity of ui , there is âi ∈ Supp(si) with
ui(âi ; s−i) > ui(ai ; s−i). We define a new mixed strategy s∗i ∈ Si by
setting s∗i (ai) = 0, s∗i (âi) = si(âi) + si(ai) and keeping s∗i (ai) = si(ai)
otherwise. Then, by the linearity of ui

ui(s
∗
i ; s−i) =

∑
ai∈Ai

s∗i (ai)ui(ai ; s−i) >
∑
ai∈Ai

si(ai)ui(ai ; s−i) = ui(s),

a contradiction.

Proof of the Best response condition

• First, assume every ai ∈ Supp(si) satisfies ui(ai ; s−i) ≥ ui(s
′
i ; s−i) for

every s ′i ∈ Si . Then, for every s ′i ∈ Si , the linearity of ui implies

ui(s) =
∑

ai∈Supp(si)

si(ai)ui(ai ; s−i) ≥
∑

ai∈Supp(si)

si(ai)ui(s
′
i ; s−i) = ui(s

′
i ; s−i).

• Second, assume si is a best response of i to s−i . Suppose there is
ai ∈ Supp(si) that is not a best response of i to s−i . Then, there is
s ′i ∈ Si with ui(ai ; s−i) < ui(s

′
i ; s−i).

Since si is a best response to s−i ,
we get si(ai) < 1. By the linearity of ui , there is âi ∈ Supp(si) with
ui(âi ; s−i) > ui(ai ; s−i). We define a new mixed strategy s∗i ∈ Si by
setting s∗i (ai) = 0, s∗i (âi) = si(âi) + si(ai) and keeping s∗i (ai) = si(ai)
otherwise. Then, by the linearity of ui

ui(s
∗
i ; s−i) =

∑
ai∈Ai

s∗i (ai)ui(ai ; s−i) >
∑
ai∈Ai

si(ai)ui(ai ; s−i) = ui(s),

a contradiction.

Proof of the Best response condition

• First, assume every ai ∈ Supp(si) satisfies ui(ai ; s−i) ≥ ui(s
′
i ; s−i) for

every s ′i ∈ Si . Then, for every s ′i ∈ Si , the linearity of ui implies

ui(s) =
∑

ai∈Supp(si)

si(ai)ui(ai ; s−i) ≥
∑

ai∈Supp(si)

si(ai)ui(s
′
i ; s−i) = ui(s

′
i ; s−i).

• Second, assume si is a best response of i to s−i . Suppose there is
ai ∈ Supp(si) that is not a best response of i to s−i . Then, there is
s ′i ∈ Si with ui(ai ; s−i) < ui(s

′
i ; s−i). Since si is a best response to s−i ,

we get si(ai) < 1.

By the linearity of ui , there is âi ∈ Supp(si) with
ui(âi ; s−i) > ui(ai ; s−i). We define a new mixed strategy s∗i ∈ Si by
setting s∗i (ai) = 0, s∗i (âi) = si(âi) + si(ai) and keeping s∗i (ai) = si(ai)
otherwise. Then, by the linearity of ui

ui(s
∗
i ; s−i) =

∑
ai∈Ai

s∗i (ai)ui(ai ; s−i) >
∑
ai∈Ai

si(ai)ui(ai ; s−i) = ui(s),

a contradiction.

Proof of the Best response condition

• First, assume every ai ∈ Supp(si) satisfies ui(ai ; s−i) ≥ ui(s
′
i ; s−i) for

every s ′i ∈ Si . Then, for every s ′i ∈ Si , the linearity of ui implies

ui(s) =
∑

ai∈Supp(si)

si(ai)ui(ai ; s−i) ≥
∑

ai∈Supp(si)

si(ai)ui(s
′
i ; s−i) = ui(s

′
i ; s−i).

• Second, assume si is a best response of i to s−i . Suppose there is
ai ∈ Supp(si) that is not a best response of i to s−i . Then, there is
s ′i ∈ Si with ui(ai ; s−i) < ui(s

′
i ; s−i). Since si is a best response to s−i ,

we get si(ai) < 1. By the linearity of ui , there is âi ∈ Supp(si) with
ui(âi ; s−i) > ui(ai ; s−i).

We define a new mixed strategy s∗i ∈ Si by
setting s∗i (ai) = 0, s∗i (âi) = si(âi) + si(ai) and keeping s∗i (ai) = si(ai)
otherwise. Then, by the linearity of ui

ui(s
∗
i ; s−i) =

∑
ai∈Ai

s∗i (ai)ui(ai ; s−i) >
∑
ai∈Ai

si(ai)ui(ai ; s−i) = ui(s),

a contradiction.

Proof of the Best response condition

• First, assume every ai ∈ Supp(si) satisfies ui(ai ; s−i) ≥ ui(s
′
i ; s−i) for

every s ′i ∈ Si . Then, for every s ′i ∈ Si , the linearity of ui implies

ui(s) =
∑

ai∈Supp(si)

si(ai)ui(ai ; s−i) ≥
∑

ai∈Supp(si)

si(ai)ui(s
′
i ; s−i) = ui(s

′
i ; s−i).

• Second, assume si is a best response of i to s−i . Suppose there is
ai ∈ Supp(si) that is not a best response of i to s−i . Then, there is
s ′i ∈ Si with ui(ai ; s−i) < ui(s

′
i ; s−i). Since si is a best response to s−i ,

we get si(ai) < 1. By the linearity of ui , there is âi ∈ Supp(si) with
ui(âi ; s−i) > ui(ai ; s−i). We define a new mixed strategy s∗i ∈ Si by
setting s∗i (ai) = 0, s∗i (âi) = si(âi) + si(ai) and keeping s∗i (ai) = si(ai)
otherwise.

Then, by the linearity of ui

ui(s
∗
i ; s−i) =

∑
ai∈Ai

s∗i (ai)ui(ai ; s−i) >
∑
ai∈Ai

si(ai)ui(ai ; s−i) = ui(s),

a contradiction.

Proof of the Best response condition

• First, assume every ai ∈ Supp(si) satisfies ui(ai ; s−i) ≥ ui(s
′
i ; s−i) for

every s ′i ∈ Si . Then, for every s ′i ∈ Si , the linearity of ui implies

ui(s) =
∑

ai∈Supp(si)

si(ai)ui(ai ; s−i) ≥
∑

ai∈Supp(si)

si(ai)ui(s
′
i ; s−i) = ui(s

′
i ; s−i).

• Second, assume si is a best response of i to s−i . Suppose there is
ai ∈ Supp(si) that is not a best response of i to s−i . Then, there is
s ′i ∈ Si with ui(ai ; s−i) < ui(s

′
i ; s−i). Since si is a best response to s−i ,

we get si(ai) < 1. By the linearity of ui , there is âi ∈ Supp(si) with
ui(âi ; s−i) > ui(ai ; s−i). We define a new mixed strategy s∗i ∈ Si by
setting s∗i (ai) = 0, s∗i (âi) = si(âi) + si(ai) and keeping s∗i (ai) = si(ai)
otherwise. Then, by the linearity of ui

ui(s
∗
i ; s−i)

=
∑
ai∈Ai

s∗i (ai)ui(ai ; s−i) >
∑
ai∈Ai

si(ai)ui(ai ; s−i) = ui(s),

a contradiction.

Proof of the Best response condition

• First, assume every ai ∈ Supp(si) satisfies ui(ai ; s−i) ≥ ui(s
′
i ; s−i) for

every s ′i ∈ Si . Then, for every s ′i ∈ Si , the linearity of ui implies

ui(s) =
∑

ai∈Supp(si)

si(ai)ui(ai ; s−i) ≥
∑

ai∈Supp(si)

si(ai)ui(s
′
i ; s−i) = ui(s

′
i ; s−i).

• Second, assume si is a best response of i to s−i . Suppose there is
ai ∈ Supp(si) that is not a best response of i to s−i . Then, there is
s ′i ∈ Si with ui(ai ; s−i) < ui(s

′
i ; s−i). Since si is a best response to s−i ,

we get si(ai) < 1. By the linearity of ui , there is âi ∈ Supp(si) with
ui(âi ; s−i) > ui(ai ; s−i). We define a new mixed strategy s∗i ∈ Si by
setting s∗i (ai) = 0, s∗i (âi) = si(âi) + si(ai) and keeping s∗i (ai) = si(ai)
otherwise. Then, by the linearity of ui

ui(s
∗
i ; s−i) =

∑
ai∈Ai

s∗i (ai)ui(ai ; s−i)

>
∑
ai∈Ai

si(ai)ui(ai ; s−i) = ui(s),

a contradiction.

Proof of the Best response condition

• First, assume every ai ∈ Supp(si) satisfies ui(ai ; s−i) ≥ ui(s
′
i ; s−i) for

every s ′i ∈ Si . Then, for every s ′i ∈ Si , the linearity of ui implies

ui(s) =
∑

ai∈Supp(si)

si(ai)ui(ai ; s−i) ≥
∑

ai∈Supp(si)

si(ai)ui(s
′
i ; s−i) = ui(s

′
i ; s−i).

• Second, assume si is a best response of i to s−i . Suppose there is
ai ∈ Supp(si) that is not a best response of i to s−i . Then, there is
s ′i ∈ Si with ui(ai ; s−i) < ui(s

′
i ; s−i). Since si is a best response to s−i ,

we get si(ai) < 1. By the linearity of ui , there is âi ∈ Supp(si) with
ui(âi ; s−i) > ui(ai ; s−i). We define a new mixed strategy s∗i ∈ Si by
setting s∗i (ai) = 0, s∗i (âi) = si(âi) + si(ai) and keeping s∗i (ai) = si(ai)
otherwise. Then, by the linearity of ui

ui(s
∗
i ; s−i) =

∑
ai∈Ai

s∗i (ai)ui(ai ; s−i) >
∑
ai∈Ai

si(ai)ui(ai ; s−i)

= ui(s),

a contradiction.

Proof of the Best response condition

• First, assume every ai ∈ Supp(si) satisfies ui(ai ; s−i) ≥ ui(s
′
i ; s−i) for

every s ′i ∈ Si . Then, for every s ′i ∈ Si , the linearity of ui implies

ui(s) =
∑

ai∈Supp(si)

si(ai)ui(ai ; s−i) ≥
∑

ai∈Supp(si)

si(ai)ui(s
′
i ; s−i) = ui(s

′
i ; s−i).

• Second, assume si is a best response of i to s−i . Suppose there is
ai ∈ Supp(si) that is not a best response of i to s−i . Then, there is
s ′i ∈ Si with ui(ai ; s−i) < ui(s

′
i ; s−i). Since si is a best response to s−i ,

we get si(ai) < 1. By the linearity of ui , there is âi ∈ Supp(si) with
ui(âi ; s−i) > ui(ai ; s−i). We define a new mixed strategy s∗i ∈ Si by
setting s∗i (ai) = 0, s∗i (âi) = si(âi) + si(ai) and keeping s∗i (ai) = si(ai)
otherwise. Then, by the linearity of ui

ui(s
∗
i ; s−i) =

∑
ai∈Ai

s∗i (ai)ui(ai ; s−i) >
∑
ai∈Ai

si(ai)ui(ai ; s−i) = ui(s),

a contradiction.

Proof of the Best response condition

• First, assume every ai ∈ Supp(si) satisfies ui(ai ; s−i) ≥ ui(s
′
i ; s−i) for

every s ′i ∈ Si . Then, for every s ′i ∈ Si , the linearity of ui implies

ui(s) =
∑

ai∈Supp(si)

si(ai)ui(ai ; s−i) ≥
∑

ai∈Supp(si)

si(ai)ui(s
′
i ; s−i) = ui(s

′
i ; s−i).

• Second, assume si is a best response of i to s−i . Suppose there is
ai ∈ Supp(si) that is not a best response of i to s−i . Then, there is
s ′i ∈ Si with ui(ai ; s−i) < ui(s

′
i ; s−i). Since si is a best response to s−i ,

we get si(ai) < 1. By the linearity of ui , there is âi ∈ Supp(si) with
ui(âi ; s−i) > ui(ai ; s−i). We define a new mixed strategy s∗i ∈ Si by
setting s∗i (ai) = 0, s∗i (âi) = si(âi) + si(ai) and keeping s∗i (ai) = si(ai)
otherwise. Then, by the linearity of ui

ui(s
∗
i ; s−i) =

∑
ai∈Ai

s∗i (ai)ui(ai ; s−i) >
∑
ai∈Ai

si(ai)ui(ai ; s−i) = ui(s),

a contradiction.

Proof of the Best response condition

• First, assume every ai ∈ Supp(si) satisfies ui(ai ; s−i) ≥ ui(s
′
i ; s−i) for

every s ′i ∈ Si . Then, for every s ′i ∈ Si , the linearity of ui implies

ui(s) =
∑

ai∈Supp(si)

si(ai)ui(ai ; s−i) ≥
∑

ai∈Supp(si)

si(ai)ui(s
′
i ; s−i) = ui(s

′
i ; s−i).

• Second, assume si is a best response of i to s−i . Suppose there is
ai ∈ Supp(si) that is not a best response of i to s−i . Then, there is
s ′i ∈ Si with ui(ai ; s−i) < ui(s

′
i ; s−i). Since si is a best response to s−i ,

we get si(ai) < 1. By the linearity of ui , there is âi ∈ Supp(si) with
ui(âi ; s−i) > ui(ai ; s−i). We define a new mixed strategy s∗i ∈ Si by
setting s∗i (ai) = 0, s∗i (âi) = si(âi) + si(ai) and keeping s∗i (ai) = si(ai)
otherwise. Then, by the linearity of ui

ui(s
∗
i ; s−i) =

∑
ai∈Ai

s∗i (ai)ui(ai ; s−i) >
∑
ai∈Ai

si(ai)ui(ai ; s−i) = ui(s),

a contradiction.

Best response condition in bimatrix games

• We can use this simple observation to design a brute-force algorithm for
finding NE in bimatrix games.

• Let G = ({1, 2},A = A1 × A2, u) be a bimatrix game.

• Let A1 = {1, . . . ,m} and A2 = {1, . . . , n} (later considered disjoint).

• The payoffs u1 and u2 can be represented by matrices M ,N ∈ Rm×n as
Mi ,j = u1(i , j) and Ni ,j = u2(i , j) for every (i , j) ∈ A1 × A2.

• The expected payoffs of s with mixed strategy vectors x and y are then

u1(s) = x⊤My and u2(s) = x⊤Ny .

• By the Best response condition, x is a best response to y iff

∀ i ∈ A1 : xi > 0 =⇒ Mi ,∗y = max{Mk,∗y : k ∈ A1}. (1)

• Analogously, y is a best response to x iff

∀ j ∈ A2 : yj > 0 =⇒ N⊤
j ,∗x = max{N⊤

k,∗x : k ∈ A2}. (2)

Best response condition in bimatrix games

• We can use this simple observation to design a brute-force algorithm for
finding NE in bimatrix games.

• Let G = ({1, 2},A = A1 × A2, u) be a bimatrix game.

• Let A1 = {1, . . . ,m} and A2 = {1, . . . , n} (later considered disjoint).

• The payoffs u1 and u2 can be represented by matrices M ,N ∈ Rm×n as
Mi ,j = u1(i , j) and Ni ,j = u2(i , j) for every (i , j) ∈ A1 × A2.

• The expected payoffs of s with mixed strategy vectors x and y are then

u1(s) = x⊤My and u2(s) = x⊤Ny .

• By the Best response condition, x is a best response to y iff

∀ i ∈ A1 : xi > 0 =⇒ Mi ,∗y = max{Mk,∗y : k ∈ A1}. (1)

• Analogously, y is a best response to x iff

∀ j ∈ A2 : yj > 0 =⇒ N⊤
j ,∗x = max{N⊤

k,∗x : k ∈ A2}. (2)

Best response condition in bimatrix games

• We can use this simple observation to design a brute-force algorithm for
finding NE in bimatrix games.

• Let G = ({1, 2},A = A1 × A2, u) be a bimatrix game.

• Let A1 = {1, . . . ,m} and A2 = {1, . . . , n} (later considered disjoint).

• The payoffs u1 and u2 can be represented by matrices M ,N ∈ Rm×n as
Mi ,j = u1(i , j) and Ni ,j = u2(i , j) for every (i , j) ∈ A1 × A2.

• The expected payoffs of s with mixed strategy vectors x and y are then

u1(s) = x⊤My and u2(s) = x⊤Ny .

• By the Best response condition, x is a best response to y iff

∀ i ∈ A1 : xi > 0 =⇒ Mi ,∗y = max{Mk,∗y : k ∈ A1}. (1)

• Analogously, y is a best response to x iff

∀ j ∈ A2 : yj > 0 =⇒ N⊤
j ,∗x = max{N⊤

k,∗x : k ∈ A2}. (2)

Best response condition in bimatrix games

• We can use this simple observation to design a brute-force algorithm for
finding NE in bimatrix games.

• Let G = ({1, 2},A = A1 × A2, u) be a bimatrix game.

• Let A1 = {1, . . . ,m} and A2 = {1, . . . , n}

(later considered disjoint).

• The payoffs u1 and u2 can be represented by matrices M ,N ∈ Rm×n as
Mi ,j = u1(i , j) and Ni ,j = u2(i , j) for every (i , j) ∈ A1 × A2.

• The expected payoffs of s with mixed strategy vectors x and y are then

u1(s) = x⊤My and u2(s) = x⊤Ny .

• By the Best response condition, x is a best response to y iff

∀ i ∈ A1 : xi > 0 =⇒ Mi ,∗y = max{Mk,∗y : k ∈ A1}. (1)

• Analogously, y is a best response to x iff

∀ j ∈ A2 : yj > 0 =⇒ N⊤
j ,∗x = max{N⊤

k,∗x : k ∈ A2}. (2)

Best response condition in bimatrix games

• We can use this simple observation to design a brute-force algorithm for
finding NE in bimatrix games.

• Let G = ({1, 2},A = A1 × A2, u) be a bimatrix game.

• Let A1 = {1, . . . ,m} and A2 = {1, . . . , n} (later considered disjoint).

• The payoffs u1 and u2 can be represented by matrices M ,N ∈ Rm×n as
Mi ,j = u1(i , j) and Ni ,j = u2(i , j) for every (i , j) ∈ A1 × A2.

• The expected payoffs of s with mixed strategy vectors x and y are then

u1(s) = x⊤My and u2(s) = x⊤Ny .

• By the Best response condition, x is a best response to y iff

∀ i ∈ A1 : xi > 0 =⇒ Mi ,∗y = max{Mk,∗y : k ∈ A1}. (1)

• Analogously, y is a best response to x iff

∀ j ∈ A2 : yj > 0 =⇒ N⊤
j ,∗x = max{N⊤

k,∗x : k ∈ A2}. (2)

Best response condition in bimatrix games

• We can use this simple observation to design a brute-force algorithm for
finding NE in bimatrix games.

• Let G = ({1, 2},A = A1 × A2, u) be a bimatrix game.

• Let A1 = {1, . . . ,m} and A2 = {1, . . . , n} (later considered disjoint).

• The payoffs u1 and u2 can be represented by matrices M ,N ∈ Rm×n as
Mi ,j = u1(i , j) and Ni ,j = u2(i , j) for every (i , j) ∈ A1 × A2.

• The expected payoffs of s with mixed strategy vectors x and y are then

u1(s) = x⊤My and u2(s) = x⊤Ny .

• By the Best response condition, x is a best response to y iff

∀ i ∈ A1 : xi > 0 =⇒ Mi ,∗y = max{Mk,∗y : k ∈ A1}. (1)

• Analogously, y is a best response to x iff

∀ j ∈ A2 : yj > 0 =⇒ N⊤
j ,∗x = max{N⊤

k,∗x : k ∈ A2}. (2)

Best response condition in bimatrix games

• We can use this simple observation to design a brute-force algorithm for
finding NE in bimatrix games.

• Let G = ({1, 2},A = A1 × A2, u) be a bimatrix game.

• Let A1 = {1, . . . ,m} and A2 = {1, . . . , n} (later considered disjoint).

• The payoffs u1 and u2 can be represented by matrices M ,N ∈ Rm×n as
Mi ,j = u1(i , j) and Ni ,j = u2(i , j) for every (i , j) ∈ A1 × A2.

• The expected payoffs of s with mixed strategy vectors x and y are then

u1(s) = x⊤My and u2(s) = x⊤Ny .

• By the Best response condition, x is a best response to y iff

∀ i ∈ A1 : xi > 0 =⇒ Mi ,∗y = max{Mk,∗y : k ∈ A1}. (1)

• Analogously, y is a best response to x iff

∀ j ∈ A2 : yj > 0 =⇒ N⊤
j ,∗x = max{N⊤

k,∗x : k ∈ A2}. (2)

Best response condition in bimatrix games

• We can use this simple observation to design a brute-force algorithm for
finding NE in bimatrix games.

• Let G = ({1, 2},A = A1 × A2, u) be a bimatrix game.

• Let A1 = {1, . . . ,m} and A2 = {1, . . . , n} (later considered disjoint).

• The payoffs u1 and u2 can be represented by matrices M ,N ∈ Rm×n as
Mi ,j = u1(i , j) and Ni ,j = u2(i , j) for every (i , j) ∈ A1 × A2.

• The expected payoffs of s with mixed strategy vectors x and y are then

u1(s) = x⊤My and u2(s) = x⊤Ny .

• By the Best response condition, x is a best response to y iff

∀ i ∈ A1 : xi > 0 =⇒ Mi ,∗y = max{Mk,∗y : k ∈ A1}. (1)

• Analogously, y is a best response to x iff

∀ j ∈ A2 : yj > 0 =⇒ N⊤
j ,∗x = max{N⊤

k,∗x : k ∈ A2}. (2)

Best response condition in bimatrix games

• We can use this simple observation to design a brute-force algorithm for
finding NE in bimatrix games.

• Let G = ({1, 2},A = A1 × A2, u) be a bimatrix game.

• Let A1 = {1, . . . ,m} and A2 = {1, . . . , n} (later considered disjoint).

• The payoffs u1 and u2 can be represented by matrices M ,N ∈ Rm×n as
Mi ,j = u1(i , j) and Ni ,j = u2(i , j) for every (i , j) ∈ A1 × A2.

• The expected payoffs of s with mixed strategy vectors x and y are then

u1(s) = x⊤My and u2(s) = x⊤Ny .

• By the Best response condition, x is a best response to y iff

∀ i ∈ A1 : xi > 0 =⇒ Mi ,∗y = max{Mk,∗y : k ∈ A1}. (1)

• Analogously, y is a best response to x iff

∀ j ∈ A2 : yj > 0 =⇒ N⊤
j ,∗x = max{N⊤

k,∗x : k ∈ A2}. (2)

NE by support enumeration I

• We consider only special bimatrix games (the reason will be clear later).

• A bimatrix game is nondegenerate if there are at most k pure best
responses to every mixed strategy with support of size k .

◦ “Most bimatrix games are nondegenerate” and there are
perturbation methods to deal with degenerate games.

• Let I ⊆ A1 and J ⊆ A2 be supports in a nondegenerate game G .

• We define |I |+ |J | variables xi for i ∈ I and yj for j ∈ J that will
represent non-zero values in mixed strategy vectors x and y .

• We define equations
∑

i∈I xi = 1 and
∑

j∈J yj = 1, and |I |+ |J |
equations to ensure that the expected payoffs are equal and maximized
at the support: ∑

i∈I

N⊤
j ,ixi = v and

∑
j∈J

Mi ,jyj = u,

where u and v are two new variables. Note that they attain values
u = max{Mi ,∗y : i ∈ I} and v = max{N⊤

j ,∗x : j ∈ J}.

NE by support enumeration I

• We consider only special bimatrix games (the reason will be clear later).

• A bimatrix game is nondegenerate if there are at most k pure best
responses to every mixed strategy with support of size k .

◦ “Most bimatrix games are nondegenerate” and there are
perturbation methods to deal with degenerate games.

• Let I ⊆ A1 and J ⊆ A2 be supports in a nondegenerate game G .

• We define |I |+ |J | variables xi for i ∈ I and yj for j ∈ J that will
represent non-zero values in mixed strategy vectors x and y .

• We define equations
∑

i∈I xi = 1 and
∑

j∈J yj = 1, and |I |+ |J |
equations to ensure that the expected payoffs are equal and maximized
at the support: ∑

i∈I

N⊤
j ,ixi = v and

∑
j∈J

Mi ,jyj = u,

where u and v are two new variables. Note that they attain values
u = max{Mi ,∗y : i ∈ I} and v = max{N⊤

j ,∗x : j ∈ J}.

NE by support enumeration I

• We consider only special bimatrix games (the reason will be clear later).

• A bimatrix game is nondegenerate if there are at most k pure best
responses to every mixed strategy with support of size k .

◦ “Most bimatrix games are nondegenerate” and there are
perturbation methods to deal with degenerate games.

• Let I ⊆ A1 and J ⊆ A2 be supports in a nondegenerate game G .

• We define |I |+ |J | variables xi for i ∈ I and yj for j ∈ J that will
represent non-zero values in mixed strategy vectors x and y .

• We define equations
∑

i∈I xi = 1 and
∑

j∈J yj = 1, and |I |+ |J |
equations to ensure that the expected payoffs are equal and maximized
at the support: ∑

i∈I

N⊤
j ,ixi = v and

∑
j∈J

Mi ,jyj = u,

where u and v are two new variables. Note that they attain values
u = max{Mi ,∗y : i ∈ I} and v = max{N⊤

j ,∗x : j ∈ J}.

NE by support enumeration I

• We consider only special bimatrix games (the reason will be clear later).

• A bimatrix game is nondegenerate if there are at most k pure best
responses to every mixed strategy with support of size k .

◦ “Most bimatrix games are nondegenerate” and there are
perturbation methods to deal with degenerate games.

• Let I ⊆ A1 and J ⊆ A2 be supports in a nondegenerate game G .

• We define |I |+ |J | variables xi for i ∈ I and yj for j ∈ J that will
represent non-zero values in mixed strategy vectors x and y .

• We define equations
∑

i∈I xi = 1 and
∑

j∈J yj = 1, and |I |+ |J |
equations to ensure that the expected payoffs are equal and maximized
at the support: ∑

i∈I

N⊤
j ,ixi = v and

∑
j∈J

Mi ,jyj = u,

where u and v are two new variables. Note that they attain values
u = max{Mi ,∗y : i ∈ I} and v = max{N⊤

j ,∗x : j ∈ J}.

NE by support enumeration I

• We consider only special bimatrix games (the reason will be clear later).

• A bimatrix game is nondegenerate if there are at most k pure best
responses to every mixed strategy with support of size k .

◦ “Most bimatrix games are nondegenerate” and there are
perturbation methods to deal with degenerate games.

• Let I ⊆ A1 and J ⊆ A2 be supports in a nondegenerate game G .

• We define |I |+ |J | variables xi for i ∈ I and yj for j ∈ J that will
represent non-zero values in mixed strategy vectors x and y .

• We define equations
∑

i∈I xi = 1 and
∑

j∈J yj = 1, and |I |+ |J |
equations to ensure that the expected payoffs are equal and maximized
at the support: ∑

i∈I

N⊤
j ,ixi = v and

∑
j∈J

Mi ,jyj = u,

where u and v are two new variables. Note that they attain values
u = max{Mi ,∗y : i ∈ I} and v = max{N⊤

j ,∗x : j ∈ J}.

NE by support enumeration I

• We consider only special bimatrix games (the reason will be clear later).

• A bimatrix game is nondegenerate if there are at most k pure best
responses to every mixed strategy with support of size k .

◦ “Most bimatrix games are nondegenerate” and there are
perturbation methods to deal with degenerate games.

• Let I ⊆ A1 and J ⊆ A2 be supports in a nondegenerate game G .

• We define |I |+ |J | variables xi for i ∈ I and yj for j ∈ J that will
represent non-zero values in mixed strategy vectors x and y .

• We define equations
∑

i∈I xi = 1 and
∑

j∈J yj = 1, and |I |+ |J |
equations to ensure that the expected payoffs are equal and maximized
at the support: ∑

i∈I

N⊤
j ,ixi = v and

∑
j∈J

Mi ,jyj = u,

where u and v are two new variables. Note that they attain values
u = max{Mi ,∗y : i ∈ I} and v = max{N⊤

j ,∗x : j ∈ J}.

NE by support enumeration I

• We consider only special bimatrix games (the reason will be clear later).

• A bimatrix game is nondegenerate if there are at most k pure best
responses to every mixed strategy with support of size k .

◦ “Most bimatrix games are nondegenerate” and there are
perturbation methods to deal with degenerate games.

• Let I ⊆ A1 and J ⊆ A2 be supports in a nondegenerate game G .

• We define |I |+ |J | variables xi for i ∈ I and yj for j ∈ J that will
represent non-zero values in mixed strategy vectors x and y .

• We define equations
∑

i∈I xi = 1 and
∑

j∈J yj = 1, and |I |+ |J |
equations to ensure that the expected payoffs are equal and maximized
at the support:

∑
i∈I

N⊤
j ,ixi = v and

∑
j∈J

Mi ,jyj = u,

where u and v are two new variables. Note that they attain values
u = max{Mi ,∗y : i ∈ I} and v = max{N⊤

j ,∗x : j ∈ J}.

NE by support enumeration I

• We consider only special bimatrix games (the reason will be clear later).

• A bimatrix game is nondegenerate if there are at most k pure best
responses to every mixed strategy with support of size k .

◦ “Most bimatrix games are nondegenerate” and there are
perturbation methods to deal with degenerate games.

• Let I ⊆ A1 and J ⊆ A2 be supports in a nondegenerate game G .

• We define |I |+ |J | variables xi for i ∈ I and yj for j ∈ J that will
represent non-zero values in mixed strategy vectors x and y .

• We define equations
∑

i∈I xi = 1 and
∑

j∈J yj = 1, and |I |+ |J |
equations to ensure that the expected payoffs are equal and maximized
at the support: ∑

i∈I

N⊤
j ,ixi = v and

∑
j∈J

Mi ,jyj = u,

where u and v are two new variables. Note that they attain values
u = max{Mi ,∗y : i ∈ I} and v = max{N⊤

j ,∗x : j ∈ J}.

NE by support enumeration I

• We consider only special bimatrix games (the reason will be clear later).

• A bimatrix game is nondegenerate if there are at most k pure best
responses to every mixed strategy with support of size k .

◦ “Most bimatrix games are nondegenerate” and there are
perturbation methods to deal with degenerate games.

• Let I ⊆ A1 and J ⊆ A2 be supports in a nondegenerate game G .

• We define |I |+ |J | variables xi for i ∈ I and yj for j ∈ J that will
represent non-zero values in mixed strategy vectors x and y .

• We define equations
∑

i∈I xi = 1 and
∑

j∈J yj = 1, and |I |+ |J |
equations to ensure that the expected payoffs are equal and maximized
at the support: ∑

i∈I

N⊤
j ,ixi = v and

∑
j∈J

Mi ,jyj = u,

where u and v are two new variables.

Note that they attain values
u = max{Mi ,∗y : i ∈ I} and v = max{N⊤

j ,∗x : j ∈ J}.

NE by support enumeration I

• We consider only special bimatrix games (the reason will be clear later).

• A bimatrix game is nondegenerate if there are at most k pure best
responses to every mixed strategy with support of size k .

◦ “Most bimatrix games are nondegenerate” and there are
perturbation methods to deal with degenerate games.

• Let I ⊆ A1 and J ⊆ A2 be supports in a nondegenerate game G .

• We define |I |+ |J | variables xi for i ∈ I and yj for j ∈ J that will
represent non-zero values in mixed strategy vectors x and y .

• We define equations
∑

i∈I xi = 1 and
∑

j∈J yj = 1, and |I |+ |J |
equations to ensure that the expected payoffs are equal and maximized
at the support: ∑

i∈I

N⊤
j ,ixi = v and

∑
j∈J

Mi ,jyj = u,

where u and v are two new variables. Note that they attain values
u = max{Mi ,∗y : i ∈ I} and v = max{N⊤

j ,∗x : j ∈ J}.

NE by support enumeration II

• We have a system S(I , J) of |I |+ |J |+ 2 variables
x1, . . . , x|I |, y1, . . . , y|J|, u, v and |I |+ |J |+ 2 linear equations.

• If the numbers in the solution are all non-negative and satisfy (1)
and (2), then we have a NE by the Best response condition. If G is
nondegenerate, then such a solution is unique (if it exists).

• It follows immediately from the Best response condition that supports
of strategies in NE of a non-degenerate game have the same size.

• This suggests a simple algorithm for finding NE of G : go through all
possible supports I ⊆ A1 and J ⊆ A2 of size k ∈ {1, . . . ,min{m, n}}
and verify whether the supports I and J yield NE by solving the system
S(I , J) of linear equations.

• The running time is then about 4n for m = n.

NE by support enumeration II

• We have a system S(I , J) of |I |+ |J |+ 2 variables
x1, . . . , x|I |, y1, . . . , y|J|, u, v and |I |+ |J |+ 2 linear equations.

• If the numbers in the solution are all non-negative and satisfy (1)
and (2), then we have a NE by the Best response condition. If G is
nondegenerate, then such a solution is unique (if it exists).

• It follows immediately from the Best response condition that supports
of strategies in NE of a non-degenerate game have the same size.

• This suggests a simple algorithm for finding NE of G : go through all
possible supports I ⊆ A1 and J ⊆ A2 of size k ∈ {1, . . . ,min{m, n}}
and verify whether the supports I and J yield NE by solving the system
S(I , J) of linear equations.

• The running time is then about 4n for m = n.

NE by support enumeration II

• We have a system S(I , J) of |I |+ |J |+ 2 variables
x1, . . . , x|I |, y1, . . . , y|J|, u, v and |I |+ |J |+ 2 linear equations.

• If the numbers in the solution are all non-negative and satisfy (1)
and (2), then we have a NE by the Best response condition.

If G is
nondegenerate, then such a solution is unique (if it exists).

• It follows immediately from the Best response condition that supports
of strategies in NE of a non-degenerate game have the same size.

• This suggests a simple algorithm for finding NE of G : go through all
possible supports I ⊆ A1 and J ⊆ A2 of size k ∈ {1, . . . ,min{m, n}}
and verify whether the supports I and J yield NE by solving the system
S(I , J) of linear equations.

• The running time is then about 4n for m = n.

NE by support enumeration II

• We have a system S(I , J) of |I |+ |J |+ 2 variables
x1, . . . , x|I |, y1, . . . , y|J|, u, v and |I |+ |J |+ 2 linear equations.

• If the numbers in the solution are all non-negative and satisfy (1)
and (2), then we have a NE by the Best response condition. If G is
nondegenerate, then such a solution is unique (if it exists).

• It follows immediately from the Best response condition that supports
of strategies in NE of a non-degenerate game have the same size.

• This suggests a simple algorithm for finding NE of G : go through all
possible supports I ⊆ A1 and J ⊆ A2 of size k ∈ {1, . . . ,min{m, n}}
and verify whether the supports I and J yield NE by solving the system
S(I , J) of linear equations.

• The running time is then about 4n for m = n.

NE by support enumeration II

• We have a system S(I , J) of |I |+ |J |+ 2 variables
x1, . . . , x|I |, y1, . . . , y|J|, u, v and |I |+ |J |+ 2 linear equations.

• If the numbers in the solution are all non-negative and satisfy (1)
and (2), then we have a NE by the Best response condition. If G is
nondegenerate, then such a solution is unique (if it exists).

• It follows immediately from the Best response condition that supports
of strategies in NE of a non-degenerate game have the same size.

• This suggests a simple algorithm for finding NE of G : go through all
possible supports I ⊆ A1 and J ⊆ A2 of size k ∈ {1, . . . ,min{m, n}}
and verify whether the supports I and J yield NE by solving the system
S(I , J) of linear equations.

• The running time is then about 4n for m = n.

NE by support enumeration II

• We have a system S(I , J) of |I |+ |J |+ 2 variables
x1, . . . , x|I |, y1, . . . , y|J|, u, v and |I |+ |J |+ 2 linear equations.

• If the numbers in the solution are all non-negative and satisfy (1)
and (2), then we have a NE by the Best response condition. If G is
nondegenerate, then such a solution is unique (if it exists).

• It follows immediately from the Best response condition that supports
of strategies in NE of a non-degenerate game have the same size.

• This suggests a simple algorithm for finding NE of G : go through all
possible supports I ⊆ A1 and J ⊆ A2 of size k ∈ {1, . . . ,min{m, n}}
and verify whether the supports I and J yield NE by solving the system
S(I , J) of linear equations.

• The running time is then about 4n for m = n.

NE by support enumeration II

• We have a system S(I , J) of |I |+ |J |+ 2 variables
x1, . . . , x|I |, y1, . . . , y|J|, u, v and |I |+ |J |+ 2 linear equations.

• If the numbers in the solution are all non-negative and satisfy (1)
and (2), then we have a NE by the Best response condition. If G is
nondegenerate, then such a solution is unique (if it exists).

• It follows immediately from the Best response condition that supports
of strategies in NE of a non-degenerate game have the same size.

• This suggests a simple algorithm for finding NE of G : go through all
possible supports I ⊆ A1 and J ⊆ A2 of size k ∈ {1, . . . ,min{m, n}}
and verify whether the supports I and J yield NE by solving the system
S(I , J) of linear equations.

• The running time is then about 4n for m = n.

Example: Battle of sexes

• We show the brute-force algorithm on the Battle of sexes game.

Football (1) Opera (2)

Football (1) (2,1) (0,0)

Opera (2) (0,0) (1,2)

• That is, we have M = (2 0
0 1) and N = (1 0

0 2) = N⊤.

• If I = {1, 2} and J = {1, 2}, then we want to solve the following
system of 6 equations with 6 variables x1, x2, y1, y2, u, v :

x1= v , 2x2 = v , x1 + x2 = 1

2y1= u, y2 = u, ; y1 + y2 = 1

• This yields a unique solution (x1, x2) = (2
3
, 1
3
) and (y1, y2) = (1

3
, 2
3
).

Since x , y ≥ 0 and there is no better pure strategy, we have NE.

Example: Battle of sexes

• We show the brute-force algorithm on the Battle of sexes game.

Football (1) Opera (2)

Football (1) (2,1) (0,0)

Opera (2) (0,0) (1,2)

• That is, we have M = (2 0
0 1) and N = (1 0

0 2) = N⊤.

• If I = {1, 2} and J = {1, 2}, then we want to solve the following
system of 6 equations with 6 variables x1, x2, y1, y2, u, v :

x1= v , 2x2 = v , x1 + x2 = 1

2y1= u, y2 = u, ; y1 + y2 = 1

• This yields a unique solution (x1, x2) = (2
3
, 1
3
) and (y1, y2) = (1

3
, 2
3
).

Since x , y ≥ 0 and there is no better pure strategy, we have NE.

Example: Battle of sexes

• We show the brute-force algorithm on the Battle of sexes game.

Football (1) Opera (2)

Football (1) (2,1) (0,0)

Opera (2) (0,0) (1,2)

• That is, we have M = (2 0
0 1) and N = (1 0

0 2) = N⊤.

• If I = {1, 2} and J = {1, 2}, then we want to solve the following
system of 6 equations with 6 variables x1, x2, y1, y2, u, v :

x1= v , 2x2 = v , x1 + x2 = 1

2y1= u, y2 = u, ; y1 + y2 = 1

• This yields a unique solution (x1, x2) = (2
3
, 1
3
) and (y1, y2) = (1

3
, 2
3
).

Since x , y ≥ 0 and there is no better pure strategy, we have NE.

Example: Battle of sexes

• We show the brute-force algorithm on the Battle of sexes game.

Football (1) Opera (2)

Football (1) (2,1) (0,0)

Opera (2) (0,0) (1,2)

• That is, we have M = (2 0
0 1) and N = (1 0

0 2) = N⊤.

• If I = {1, 2} and J = {1, 2}, then we want to solve the following
system of 6 equations with 6 variables x1, x2, y1, y2, u, v :

x1= v , 2x2 = v , x1 + x2 = 1

2y1= u, y2 = u, ; y1 + y2 = 1

• This yields a unique solution (x1, x2) = (2
3
, 1
3
) and (y1, y2) = (1

3
, 2
3
).

Since x , y ≥ 0 and there is no better pure strategy, we have NE.

Example: Battle of sexes

• We show the brute-force algorithm on the Battle of sexes game.

Football (1) Opera (2)

Football (1) (2,1) (0,0)

Opera (2) (0,0) (1,2)

• That is, we have M = (2 0
0 1) and N = (1 0

0 2) = N⊤.

• If I = {1, 2} and J = {1, 2}, then we want to solve the following
system of 6 equations with 6 variables x1, x2, y1, y2, u, v :

x1= v , 2x2 = v , x1 + x2 = 1

2y1= u, y2 = u, ; y1 + y2 = 1

• This yields a unique solution (x1, x2) = (2
3
, 1
3
) and (y1, y2) = (1

3
, 2
3
).

Since x , y ≥ 0 and there is no better pure strategy, we have NE.

Example: Battle of sexes

• We show the brute-force algorithm on the Battle of sexes game.

Football (1) Opera (2)

Football (1) (2,1) (0,0)

Opera (2) (0,0) (1,2)

• That is, we have M = (2 0
0 1) and N = (1 0

0 2) = N⊤.

• If I = {1, 2} and J = {1, 2}, then we want to solve the following
system of 6 equations with 6 variables x1, x2, y1, y2, u, v :

x1= v , 2x2 = v , x1 + x2 = 1

2y1= u, y2 = u, ; y1 + y2 = 1

• This yields a unique solution (x1, x2) = (2
3
, 1
3
) and (y1, y2) = (1

3
, 2
3
).

Since x , y ≥ 0 and there is no better pure strategy, we have NE.

• Next lecture we learn the Lemke–Howson algorithm, the best known
algorithm to find Nash equilibria in bimatrix games.

Thank you for your attention.

• Next lecture we learn the Lemke–Howson algorithm, the best known
algorithm to find Nash equilibria in bimatrix games.

Thank you for your attention.

• Next lecture we learn the Lemke–Howson algorithm, the best known
algorithm to find Nash equilibria in bimatrix games.

Thank you for your attention.

• Next lecture we learn the Lemke–Howson algorithm, the best known
algorithm to find Nash equilibria in bimatrix games.

Thank you for your attention.

