Algorithmic game theory

Martin Balko

3rd lecture

October 18th 2024

Proof of the Minimax Theorem

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number ν such that, for any worst-case optimal strategies x^* and y^* , the strategy profile (x^*, y^*) is a Nash equilibrium and $\beta(x^*) = (x^*)^{\top}My^* = \alpha(y^*) = v$.

Figure: John von Neumann (1903–1957) and Oskar Morgenstern (1902–1977).

Sources: https://en.wikiquote.org and https://austriainusa.org

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number ν such that, for any worst-case optimal strategies x^* and y^* , the strategy profile (x^*, y^*) is a Nash equilibrium and $\beta(x^*) = (x^*)^{\top}My^* = \alpha(y^*) = v$.

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number ν such that, for any worst-case optimal strategies x^* and y^* , the strategy profile (x^*, y^*) is a Nash equilibrium and $\beta(x^*) = (x^*)^{\top}My^* = \alpha(y^*) = v$.

 $\bullet\,$ Recall that $\beta(x)=\mathsf{min}_{y\in\mathcal{S}_2} \,x^\top M y$ and $\alpha(y)=\mathsf{max}_{x\in\mathcal{S}_1} \,x^\top M y$ are the best possible payoffs of player 2 to x and of player 1 to y, respectively.

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number ν such that, for any worst-case optimal strategies x^* and y^* , the strategy profile (x^*, y^*) is a Nash equilibrium and $\beta(x^*) = (x^*)^{\top}My^* = \alpha(y^*) = v$.

- $\bullet\,$ Recall that $\beta(x)=\mathsf{min}_{y\in\mathcal{S}_2} \,x^\top M y$ and $\alpha(y)=\mathsf{max}_{x\in\mathcal{S}_1} \,x^\top M y$ are the best possible payoffs of player 2 to x and of player 1 to y , respectively.
- Also, the worst-case optimal strategy \overline{x} for player 1, satisfies

$$
\beta(\overline{x}) = \max_{x \in S_1} \beta(x).
$$

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number ν such that, for any worst-case optimal strategies x^* and y^* , the strategy profile (x^*, y^*) is a Nash equilibrium and $\beta(x^*) = (x^*)^{\top}My^* = \alpha(y^*) = v$.

- $\bullet\,$ Recall that $\beta(x)=\mathsf{min}_{y\in\mathcal{S}_2} \,x^\top M y$ and $\alpha(y)=\mathsf{max}_{x\in\mathcal{S}_1} \,x^\top M y$ are the best possible payoffs of player 2 to x and of player 1 to y , respectively.
- Also, the worst-case optimal strategy \overline{x} for player 1, satisfies

$$
\beta(\overline{x}) = \max_{x \in S_1} \beta(x).
$$

• The worst-case optimal strategy \overline{y} for player 2, satisfies

$$
\alpha(\overline{y}) = \min_{y \in S_2} \alpha(y).
$$

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number ν such that, for any worst-case optimal strategies x^* and y^* , the strategy profile (x^*, y^*) is a Nash equilibrium and $\beta(x^*) = (x^*)^{\top}My^* = \alpha(y^*) = v$.

- $\bullet\,$ Recall that $\beta(x)=\mathsf{min}_{y\in\mathcal{S}_2} \,x^\top M y$ and $\alpha(y)=\mathsf{max}_{x\in\mathcal{S}_1} \,x^\top M y$ are the best possible payoffs of player 2 to x and of player 1 to y , respectively.
- Also, the worst-case optimal strategy \overline{x} for player 1, satisfies

$$
\beta(\overline{x}) = \max_{x \in S_1} \beta(x).
$$

• The worst-case optimal strategy \overline{y} for player 2, satisfies

$$
\alpha(\overline{y}) = \min_{y \in S_2} \alpha(y).
$$

• We prove the theorem using linear programming.

 \bullet A hyperplane in \mathbb{R}^d is a set $\{x\in\mathbb{R}^d\colon v^\top x = w\}$ for some $\mathsf{v}\in\mathbb{R}^d$ and $w \in \mathbb{R}$.

- \bullet A hyperplane in \mathbb{R}^d is a set $\{x\in\mathbb{R}^d\colon v^\top x = w\}$ for some $\mathsf{v}\in\mathbb{R}^d$ and $w \in \mathbb{R}$.
- A halfspace in \mathbb{R}^d is a set $\{x \in \mathbb{R}^d \colon v^\top x \leq w\}.$

- \bullet A hyperplane in \mathbb{R}^d is a set $\{x\in\mathbb{R}^d\colon v^\top x = w\}$ for some $\mathsf{v}\in\mathbb{R}^d$ and $w \in \mathbb{R}$.
- A halfspace in \mathbb{R}^d is a set $\{x \in \mathbb{R}^d \colon v^\top x \leq w\}.$

- \bullet A hyperplane in \mathbb{R}^d is a set $\{x\in\mathbb{R}^d\colon v^\top x = w\}$ for some $\mathsf{v}\in\mathbb{R}^d$ and $w \in \mathbb{R}$.
- A halfspace in \mathbb{R}^d is a set $\{x \in \mathbb{R}^d \colon v^\top x \leq w\}.$

 \bullet A (convex) polyhedron P in \mathbb{R}^d is an intersection of finitely many halfspaces in \mathbb{R}^d .

 \bullet A (convex) polyhedron P in \mathbb{R}^d is an intersection of finitely many halfspaces in \mathbb{R}^d . That is, $P = \{x \in \mathbb{R}^d \colon \, Vx \leq u\}$ for some $V \in \mathbb{R}^{n \times d}$ and $u \in \mathbb{R}^n$, where *n* is the number of halfspaces determining P.

- \bullet A (convex) polyhedron P in \mathbb{R}^d is an intersection of finitely many halfspaces in \mathbb{R}^d . That is, $P = \{x \in \mathbb{R}^d \colon \, Vx \leq u\}$ for some $V \in \mathbb{R}^{n \times d}$ and $u \in \mathbb{R}^n$, where *n* is the number of halfspaces determining P.
- A bounded polyhedron is called polytope.

- \bullet A (convex) polyhedron P in \mathbb{R}^d is an intersection of finitely many halfspaces in \mathbb{R}^d . That is, $P = \{x \in \mathbb{R}^d \colon \, Vx \leq u\}$ for some $V \in \mathbb{R}^{n \times d}$ and $u \in \mathbb{R}^n$, where *n* is the number of halfspaces determining P.
- \bullet A bounded polyhedron is called polytope. A d-dimensional polytope is simple if all its vertices are adjacent to exactly d edges.

- \bullet A (convex) polyhedron P in \mathbb{R}^d is an intersection of finitely many halfspaces in \mathbb{R}^d . That is, $P = \{x \in \mathbb{R}^d \colon \, Vx \leq u\}$ for some $V \in \mathbb{R}^{n \times d}$ and $u \in \mathbb{R}^n$, where *n* is the number of halfspaces determining P.
- \bullet A bounded polyhedron is called polytope. A d-dimensional polytope is simple if all its vertices are adjacent to exactly d edges.

- \bullet A (convex) polyhedron P in \mathbb{R}^d is an intersection of finitely many halfspaces in \mathbb{R}^d . That is, $P = \{x \in \mathbb{R}^d \colon \, Vx \leq u\}$ for some $V \in \mathbb{R}^{n \times d}$ and $u \in \mathbb{R}^n$, where *n* is the number of halfspaces determining P.
- \bullet A bounded polyhedron is called polytope. A d-dimensional polytope is simple if all its vertices are adjacent to exactly d edges.

- \bullet A (convex) polyhedron P in \mathbb{R}^d is an intersection of finitely many halfspaces in \mathbb{R}^d . That is, $P = \{x \in \mathbb{R}^d \colon \, Vx \leq u\}$ for some $V \in \mathbb{R}^{n \times d}$ and $u \in \mathbb{R}^n$, where *n* is the number of halfspaces determining P.
- \bullet A bounded polyhedron is called polytope. A d-dimensional polytope is simple if all its vertices are adjacent to exactly d edges.

- \bullet A (convex) polyhedron P in \mathbb{R}^d is an intersection of finitely many halfspaces in \mathbb{R}^d . That is, $P = \{x \in \mathbb{R}^d \colon \, Vx \leq u\}$ for some $V \in \mathbb{R}^{n \times d}$ and $u \in \mathbb{R}^n$, where *n* is the number of halfspaces determining P.
- \bullet A bounded polyhedron is called polytope. A d-dimensional polytope is simple if all its vertices are adjacent to exactly d edges.

- \bullet A (convex) polyhedron P in \mathbb{R}^d is an intersection of finitely many halfspaces in \mathbb{R}^d . That is, $P = \{x \in \mathbb{R}^d \colon \, Vx \leq u\}$ for some $V \in \mathbb{R}^{n \times d}$ and $u \in \mathbb{R}^n$, where *n* is the number of halfspaces determining P.
- \bullet A bounded polyhedron is called polytope. A d-dimensional polytope is simple if all its vertices are adjacent to exactly d edges.

Examples of polytopes in \mathbb{R}^3

Examples of polytopes in \mathbb{R}^3

• A linear program is an optimization problem with a linear objective function and linear constraints.

- A linear program is an optimization problem with a linear objective function and linear constraints.
- Every linear program P can be expressed in the canonical form: given $c \in \mathbb{R}^m$, $b \in \mathbb{R}^n$, and $A^{n \times m}$, we want to maximize $c^{\top}x$ subject to the constraints $Ax < b$ and $x > 0$.

- A linear program is an optimization problem with a linear objective function and linear constraints.
- Every linear program P can be expressed in the canonical form: given $c \in \mathbb{R}^m$, $b \in \mathbb{R}^n$, and $A^{n \times m}$, we want to maximize $c^{\top}x$ subject to the constraints $Ax < b$ and $x > 0$.
- Can be solved in polynomial time.

- A linear program is an optimization problem with a linear objective function and linear constraints.
- Every linear program P can be expressed in the canonical form: given $c \in \mathbb{R}^m$, $b \in \mathbb{R}^n$, and $A^{n \times m}$, we want to maximize $c^{\top}x$ subject to the constraints $Ax < b$ and $x > 0$.
- Can be solved in polynomial time. In practice, the Simplex method works, although it does not have a polynomial worst-case running time.

- A linear program is an optimization problem with a linear objective function and linear constraints.
- Every linear program P can be expressed in the canonical form: given $c \in \mathbb{R}^m$, $b \in \mathbb{R}^n$, and $A^{n \times m}$, we want to maximize $c^{\top}x$ subject to the constraints $Ax < b$ and $x > 0$.
- Can be solved in polynomial time. In practice, the Simplex method works, although it does not have a polynomial worst-case running time. The Ellipsoid method runs in polynomial time even in the worst-case.

- A linear program is an optimization problem with a linear objective function and linear constraints.
- Every linear program P can be expressed in the canonical form: given $c \in \mathbb{R}^m$, $b \in \mathbb{R}^n$, and $A^{n \times m}$, we want to maximize $c^{\top}x$ subject to the constraints $Ax < b$ and $x > 0$.
- Can be solved in polynomial time. In practice, the Simplex method works, although it does not have a polynomial worst-case running time. The Ellipsoid method runs in polynomial time even in the worst-case.
- Solving linear programs graphically:

- A linear program is an optimization problem with a linear objective function and linear constraints.
- Every linear program P can be expressed in the canonical form: given $c \in \mathbb{R}^m$, $b \in \mathbb{R}^n$, and $A^{n \times m}$, we want to maximize $c^{\top}x$ subject to the constraints $Ax < b$ and $x > 0$.
- Can be solved in polynomial time. In practice, the Simplex method works, although it does not have a polynomial worst-case running time. The Ellipsoid method runs in polynomial time even in the worst-case.
- Solving linear programs graphically:

- A linear program (LP) is an optimization problem with a linear objective function and linear constraints.
- Every linear program P can be expressed in the canonical form: given $c \in \mathbb{R}^m$, $b \in \mathbb{R}^n$, and $A^{n \times m}$, we want to maximize $c^{\top}x$ subject to the constraints $Ax < b$ and $x > 0$.
- LP can be solved in polynomial time. In practice, the Simplex method works, although it does not have a polynomial worst-case running time. The Ellipsoid method runs in polynomial time even in the worst-case.
- Solving linear programs graphically:

Duality of linear programming
• The linear program P where we want to

maximize $c^\top x$ subject to the constraints $Ax\leq b$ and $x\geq \mathbf{0}$ is called the primal linear program.

• The linear program P where we want to

maximize $c^\top x$ subject to the constraints $Ax\leq b$ and $x\geq \mathbf{0}$

is called the primal linear program.

• The associated dual linear program D is to

minimize $b^\top y$ subject to constraints $A^\top y \geq c$ and $y \geq \mathbf{0}.$

• The linear program P where we want to

maximize $c^\top x$ subject to the constraints $Ax\leq b$ and $x\geq \mathbf{0}$

is called the primal linear program.

• The associated dual linear program D is to

minimize $b^\top y$ subject to constraints $A^\top y \geq c$ and $y \geq \mathbf{0}.$

◦ "Solving a system of linear equalities from the rows-perspective instead of the columns-perspective".

• The linear program P where we want to

maximize $c^\top x$ subject to the constraints $Ax\leq b$ and $x\geq \mathbf{0}$

is called the primal linear program.

• The associated dual linear program D is to

minimize $b^\top y$ subject to constraints $A^\top y \geq c$ and $y \geq \mathbf{0}.$

- "Solving a system of linear equalities from the rows-perspective instead of the columns-perspective".
- The following Duality Theorem has several important consequences.

The Duality Theorem (Theorem 2.22)

If both linear programs P and D have feasible solutions, then they both have optimal solutions.

• The linear program P where we want to

maximize $c^\top x$ subject to the constraints $Ax\leq b$ and $x\geq \mathbf{0}$

is called the primal linear program.

• The associated dual linear program D is to

minimize $b^\top y$ subject to constraints $A^\top y \geq c$ and $y \geq \mathbf{0}.$

- "Solving a system of linear equalities from the rows-perspective instead of the columns-perspective".
- The following Duality Theorem has several important consequences.

The Duality Theorem (Theorem 2.22)

If both linear programs P and D have feasible solutions, then they both have optimal solutions. Moreover, if x^* and y^* are optimal solutions of P and D , respectively, then $c^{\top}x^* = b^{\top}y^*$.

• The linear program P where we want to

maximize $c^\top x$ subject to the constraints $Ax\leq b$ and $x\geq \mathbf{0}$

is called the primal linear program.

• The associated dual linear program D is to

minimize $b^\top y$ subject to constraints $A^\top y \geq c$ and $y \geq \mathbf{0}.$

- "Solving a system of linear equalities from the rows-perspective instead of the columns-perspective".
- The following Duality Theorem has several important consequences.

The Duality Theorem (Theorem 2.22)

If both linear programs P and D have feasible solutions, then they both have optimal solutions. Moreover, if x^* and y^* are optimal solutions of P and D , respectively, then $c^\top x^* = b^\top y^*$. That is, the maximum of P equals the minimum of D.

• The linear program P where we want to

maximize $c^\top x$ subject to the constraints $Ax\leq b$ and $x\geq \mathbf{0}$

is called the primal linear program.

• The associated dual linear program D is to

minimize $b^\top y$ subject to constraints $A^\top y \geq c$ and $y \geq \mathbf{0}.$

- "Solving a system of linear equalities from the rows-perspective instead of the columns-perspective".
- The following Duality Theorem has several important consequences.

The Duality Theorem (Theorem 2.22)

If both linear programs P and D have feasible solutions, then they both have optimal solutions. Moreover, if x^* and y^* are optimal solutions of P and D , respectively, then $c^\top x^* = b^\top y^*$. That is, the maximum of P equals the minimum of D.

• Dual programs can be constructed for any linear program.

General recipe for duality

General recipe for duality

Table: A recipe for making dual programs.

• We now proceed with the proof of the Minimax Theorem.

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number ν such that, for any worst-case optimal strategies x^* and y^* , the strategy profile (x^*, y^*) is a Nash equilibrium and $\beta(x^*) = (x^*)^{\top}My^* = \alpha(y^*) = v$.

• We now proceed with the proof of the Minimax Theorem.

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number ν such that, for any worst-case optimal strategies x^* and y^* , the strategy profile (x^*, y^*) is a Nash equilibrium and $\beta(x^*) = (x^*)^{\top}My^* = \alpha(y^*) = v$.

 $\bullet\,$ We want to compute x^* such that $\beta(x^*) = \max_{x\in\mathcal{S}_1} \beta(x)$ where $\beta(x) = \min_{y \in S_2} x^{\top}My$ using LP.

• We now proceed with the proof of the Minimax Theorem.

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number ν such that, for any worst-case optimal strategies x^* and y^* , the strategy profile (x^*, y^*) is a Nash equilibrium and $\beta(x^*) = (x^*)^{\top}My^* = \alpha(y^*) = v$.

 $\bullet\,$ We want to compute x^* such that $\beta(x^*) = \max_{x\in\mathcal{S}_1} \beta(x)$ where $\beta(x) = \mathsf{min}_{y \in S_2} \, x^{\top} M y$ using LP. We first show how not to do it.

• We now proceed with the proof of the Minimax Theorem.

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number ν such that, for any worst-case optimal strategies x^* and y^* , the strategy profile (x^*, y^*) is a Nash equilibrium and $\beta(x^*) = (x^*)^{\top}My^* = \alpha(y^*) = v$.

- $\bullet\,$ We want to compute x^* such that $\beta(x^*) = \max_{x\in\mathcal{S}_1} \beta(x)$ where $\beta(x) = \mathsf{min}_{y \in S_2} \, x^{\top} M y$ using LP. We first show how not to do it.
- Naive straightforward approach with variables x_1, \ldots, x_m :

• We now proceed with the proof of the Minimax Theorem.

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number ν such that, for any worst-case optimal strategies x^* and y^* , the strategy profile (x^*, y^*) is a Nash equilibrium and $\beta(x^*) = (x^*)^{\top}My^* = \alpha(y^*) = v$.

- $\bullet\,$ We want to compute x^* such that $\beta(x^*) = \max_{x\in\mathcal{S}_1} \beta(x)$ where $\beta(x) = \mathsf{min}_{y \in S_2} \, x^{\top} M y$ using LP. We first show how not to do it.
- Naive straightforward approach with variables x_1, \ldots, x_m :

maximize $\beta(x)$ subject to the constraints $\sum_{n=1}^{m}$ $i=1$ $x_i = 1$ and $x \ge 0$.

• We now proceed with the proof of the Minimax Theorem.

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number ν such that, for any worst-case optimal strategies x^* and y^* , the strategy profile (x^*, y^*) is a Nash equilibrium and $\beta(x^*) = (x^*)^{\top}My^* = \alpha(y^*) = v$.

- $\bullet\,$ We want to compute x^* such that $\beta(x^*) = \max_{x\in\mathcal{S}_1} \beta(x)$ where $\beta(x) = \mathsf{min}_{y \in S_2} \, x^{\top} M y$ using LP. We first show how not to do it.
- Naive straightforward approach with variables x_1, \ldots, x_m :

maximize
$$
\beta(x)
$$
 subject to the constraints $\sum_{i=1}^{m} x_i = 1$ and $x \ge 0$.

• This is not LP!

• We now proceed with the proof of the Minimax Theorem.

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number ν such that, for any worst-case optimal strategies x^* and y^* , the strategy profile (x^*, y^*) is a Nash equilibrium and $\beta(x^*) = (x^*)^{\top}My^* = \alpha(y^*) = v$.

- $\bullet\,$ We want to compute x^* such that $\beta(x^*) = \max_{x\in\mathcal{S}_1} \beta(x)$ where $\beta(x) = \mathsf{min}_{y \in S_2} \, x^{\top} M y$ using LP. We first show how not to do it.
- Naive straightforward approach with variables x_1, \ldots, x_m :

maximize
$$
\beta(x)
$$
 subject to the constraints $\sum_{i=1}^{m} x_i = 1$ and $x \ge 0$.

 \bullet This is not LP! (the objective function $\beta(x) = \mathsf{min}_{y \in S_2} \, x^{\top} M y$ is not linear in x)

• We now proceed with the proof of the Minimax Theorem.

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number ν such that, for any worst-case optimal strategies x^* and y^* , the strategy profile (x^*, y^*) is a Nash equilibrium and $\beta(x^*) = (x^*)^{\top}My^* = \alpha(y^*) = v$.

- $\bullet\,$ We want to compute x^* such that $\beta(x^*) = \max_{x\in\mathcal{S}_1} \beta(x)$ where $\beta(x) = \mathsf{min}_{y \in S_2} \, x^{\top} M y$ using LP. We first show how not to do it.
- Naive straightforward approach with variables x_1, \ldots, x_m :

maximize
$$
\beta(x)
$$
 subject to the constraints $\sum_{i=1}^{m} x_i = 1$ and $x \ge 0$.

 \bullet This is not LP! (the objective function $\beta(x)=\mathsf{min}_{y\in \mathcal{S}_2} \, x^{\top}My$ is not linear in x) What can we compute with LP?

• For fixed $x \in S_1$, we can compute a best response of 2 to x.

- For fixed $x \in S_1$, we can compute a best response of 2 to x.
- We use the following linear program P with variables y_1, \ldots, y_n :

(P) minimize $x^{\top}My$ subject to $\sum_{j=1}^{n} y_j = 1$ and $y \ge 0$. $j=1$

- For fixed $x \in S_1$, we can compute a best response of 2 to x.
- We use the following linear program P with variables y_1, \ldots, y_n :

(P) minimize
$$
x^{\top} My
$$
 subject to $\sum_{j=1}^{n} y_j = 1$ and $y \ge 0$.

• Its dual is the following LP D with a single variable x_0 :

- For fixed $x \in S_1$, we can compute a best response of 2 to x.
- We use the following linear program P with variables y_1, \ldots, y_n :

(P) minimize
$$
x^{\top}My
$$
 subject to $\sum_{j=1}^{n} y_j = 1$ and $y \ge 0$.

• Its dual is the following LP D with a single variable x_0 :

(D) maximize x_0 subject to $1x_0 \leq M^\top x$.

- For fixed $x \in S_1$, we can compute a best response of 2 to x.
- We use the following linear program P with variables y_1, \ldots, y_n :

(P) minimize
$$
x^{\top} My
$$
 subject to $\sum_{j=1}^{n} y_j = 1$ and $y \ge 0$.

• Its dual is the following LP D with a single variable x_0 :

(D) maximize x_0 subject to $1x_0 \leq M^\top x$.

• By the Duality Theorem, P and D have the same optimal value $\beta(x)$.

- For fixed $x \in S_1$, we can compute a best response of 2 to x.
- We use the following linear program P with variables y_1, \ldots, y_n :

(P) minimize
$$
x^{\top} My
$$
 subject to $\sum_{j=1}^{n} y_j = 1$ and $y \ge 0$.

• Its dual is the following LP D with a single variable x_0 :

(D) maximize x_0 subject to $1x_0 \le M^\top x$.

- By the Duality Theorem, P and D have the same optimal value $\beta(x)$.
- Thus, if we treat x_1, \ldots, x_m as variables in D, we obtain the following linear program D' with variables x_0, x_1, \ldots, x_m :

- For fixed $x \in S_1$, we can compute a best response of 2 to x.
- We use the following linear program P with variables y_1, \ldots, y_n :

(P) minimize
$$
x^{\top} My
$$
 subject to $\sum_{j=1}^{n} y_j = 1$ and $y \ge 0$.

• Its dual is the following LP D with a single variable x_0 :

(D) maximize x_0 subject to $1x_0 \le M^\top x$.

- By the Duality Theorem, P and D have the same optimal value $\beta(x)$.
- Thus, if we treat x_1, \ldots, x_m as variables in D, we obtain the following linear program D' with variables x_0, x_1, \ldots, x_m :

 (D') -maximize x_0 subject to $\mathbf{1}x_0 - M^\top x \leq \mathbf{0},$ $\sum_{i=1}^{m} x_i = 1$ and $x ≥ \mathbf{0}.$ $i=1$

- For fixed $x \in S_1$, we can compute a best response of 2 to x.
- We use the following linear program P with variables y_1, \ldots, y_n :

(P) minimize
$$
x^{\top} My
$$
 subject to $\sum_{j=1}^{n} y_j = 1$ and $y \ge 0$.

• Its dual is the following LP D with a single variable x_0 :

(D) maximize x_0 subject to $1x_0 \leq M^\top x$.

- By the Duality Theorem, P and D have the same optimal value $\beta(x)$.
- Thus, if we treat x_1, \ldots, x_m as variables in D, we obtain the following linear program D' with variables x_0, x_1, \ldots, x_m :

$$
(D')\quad\text{maximize } x_0 \text{ subject to } \mathbf{1}x_0 - M^\top x \leq \mathbf{0}, \sum_{i=1}^m x_i = 1 \text{ and } x \geq \mathbf{0}.
$$

• The optimum x^* of D' is a worst-case optimum strategy for 1!

• Analogously, we can compute a worst-case optimum strategy y^* for 2 using this linear program P' with variables y_0, y_1, \ldots, y_n :

 $({P}^{\prime})$ -minimize y_{0} subject to $1y_{0}-My\geq\mathbf{0}, \sum^{n}$ $j=1$ $y_j=1$ and $y\geq\mathbf{0}$.

• Analogously, we can compute a worst-case optimum strategy y^* for 2 using this linear program P' with variables y_0, y_1, \ldots, y_n :

 $({P}^{\prime})$ -minimize y_{0} subject to $1y_{0}-My\geq\mathbf{0}, \sum^{n}$ $j=1$ $y_j=1$ and $y\geq\mathbf{0}$.

• So we, proved the first part of the Minimax Theorem.

• Analogously, we can compute a worst-case optimum strategy y^* for 2 using this linear program P' with variables y_0, y_1, \ldots, y_n :

 $({P}^{\prime})$ -minimize y_{0} subject to $1y_{0}-My\geq\mathbf{0}, \sum^{n}$ $j=1$ $y_j=1$ and $y\geq\mathbf{0}$.

• So we, proved the first part of the Minimax Theorem. It remains to show that (x^*, y^*) is NE and $\beta(x^*) = (x^*)^{\top}My^* = \alpha(y^*) = v$.

• Analogously, we can compute a worst-case optimum strategy y^* for 2 using this linear program P' with variables y_0, y_1, \ldots, y_n :

 $({P}^{\prime})$ -minimize y_{0} subject to $1y_{0}-My\geq\mathbf{0}, \sum^{n}$ $j=1$ $y_j=1$ and $y\geq\mathbf{0}$.

- So we, proved the first part of the Minimax Theorem. It remains to show that (x^*, y^*) is NE and $\beta(x^*) = (x^*)^{\top}My^* = \alpha(y^*) = v$.
- Using the general recipe for duality, we see that P' and D' are dual to each other! (Exercise)

• Analogously, we can compute a worst-case optimum strategy y^* for 2 using this linear program P' with variables y_0, y_1, \ldots, y_n :

 $({P}^{\prime})$ -minimize y_{0} subject to $1y_{0}-My\geq\mathbf{0}, \sum^{n}$ $j=1$ $y_j=1$ and $y\geq\mathbf{0}$.

- So we, proved the first part of the Minimax Theorem. It remains to show that (x^*, y^*) is NE and $\beta(x^*) = (x^*)^{\top}My^* = \alpha(y^*) = v$.
- Using the general recipe for duality, we see that P' and D' are dual to each other! (Exercise)
- \bullet By the Duality Theorem, P' and D' have the same optimal value

$$
\beta(x^*) = x_0^* = y_0^* = \alpha(y^*).
$$

• Analogously, we can compute a worst-case optimum strategy y^* for 2 using this linear program P' with variables y_0, y_1, \ldots, y_n :

 (P') -minimize y_0 subject to $1y_0 - My \geq \mathbf{0},$ $\sum_{j=1}^{n} y_j = 1$ and $y \geq \mathbf{0}.$ $j=1$

- So we, proved the first part of the Minimax Theorem. It remains to show that (x^*, y^*) is NE and $\beta(x^*) = (x^*)^{\top}My^* = \alpha(y^*) = v$.
- Using the general recipe for duality, we see that P' and D' are dual to each other! (Exercise)
- \bullet By the Duality Theorem, P' and D' have the same optimal value

$$
\beta(x^*) = x_0^* = y_0^* = \alpha(y^*).
$$

This value ν is attained in any worst-case optimal strategy.

• Analogously, we can compute a worst-case optimum strategy y^* for 2 using this linear program P' with variables y_0, y_1, \ldots, y_n :

 (P') -minimize y_0 subject to $1y_0 - My \geq \mathbf{0},$ $\sum_{j=1}^{n} y_j = 1$ and $y \geq \mathbf{0}.$ $j=1$

- So we, proved the first part of the Minimax Theorem. It remains to show that (x^*, y^*) is NE and $\beta(x^*) = (x^*)^{\top}My^* = \alpha(y^*) = v$.
- Using the general recipe for duality, we see that P' and D' are dual to each other! (Exercise)
- \bullet By the Duality Theorem, P' and D' have the same optimal value

$$
\beta(x^*) = x_0^* = y_0^* = \alpha(y^*).
$$

This value ν is attained in any worst-case optimal strategy.

• By part (c) of Lemma 2.20, (x^*, y^*) is NE, that is, we have $\beta(x^*) = (x^*)^{\top}My^* = \alpha(y^*).$

• Analogously, we can compute a worst-case optimum strategy y^* for 2 using this linear program P' with variables y_0, y_1, \ldots, y_n :

 (P') -minimize y_0 subject to $1y_0 - My \geq \mathbf{0},$ $\sum_{j=1}^{n} y_j = 1$ and $y \geq \mathbf{0}.$ $j=1$

- So we, proved the first part of the Minimax Theorem. It remains to show that (x^*, y^*) is NE and $\beta(x^*) = (x^*)^{\top}My^* = \alpha(y^*) = v$.
- Using the general recipe for duality, we see that P' and D' are dual to each other! (Exercise)
- \bullet By the Duality Theorem, P' and D' have the same optimal value

$$
\beta(x^*) = x_0^* = y_0^* = \alpha(y^*).
$$

This value ν is attained in any worst-case optimal strategy.

• By part (c) of Lemma 2.20, (x^*, y^*) is NE, that is, we have $\beta(x^*) = (x^*)^{\top}My^* = \alpha(y^*).$
Nash equilibria in bimatrix games

Bimatrix games

• Since zero-sum games are solved now, we try to efficiently find Nash equilibria in bimatrix games, that is, games of 2-players (not necessarily zero-sum).

Bimatrix games

- Since zero-sum games are solved now, we try to efficiently find Nash equilibria in bimatrix games, that is, games of 2-players (not necessarily zero-sum).
- Example: Prisoner's dilemma

Bimatrix games

- Since zero-sum games are solved now, we try to efficiently find Nash equilibria in bimatrix games, that is, games of 2-players (not necessarily zero-sum).
- Example: Prisoner's dilemma

Sources: https://sciworthy.com/

Bimatrix games examples: collaborative projects

Source: https://filestage.io/

Bimatrix games examples: education, knowledge sharing

Source: https://www.123rf.com/

Bimatrix games examples: the battle for Gotham's soul

Sources: https://www.cbr.com/

• We try to design an algorithm for finding Nash equilibria in games of two players (bimatrix games).

- We try to design an algorithm for finding Nash equilibria in games of two players (bimatrix games).
- We state some observations that yield a brute-force algorithm. SIMPLY EXPLAINED:

- We try to design an algorithm for finding Nash equilibria in games of two players (bimatrix games).
- We state some observations that yield a brute-force algorithm.

SIMPI V EXPI AINED. **BRUTE FORCE ATTACK**

Source: https://pinterest.com

• Later, we show the currently best known algorithm for this problem.

• We first state the perhaps most useful observation in our course.

- We first state the perhaps most useful observation in our course.
- The support of a mixed strategy $Supp(s_i) = s_i$ is $\{a_i \in A_i : s_i(a_i) > 0\}.$

- We first state the perhaps most useful observation in our course.
- The support of a mixed strategy $Supp(s_i) = s_i$ is $\{a_i \in A_i : s_i(a_i) > 0\}.$

Best response condition (Observation 2.23)

In a normal-form game $G = (P, A, u)$ of *n* players, for every player $i \in P$, a mixed strategy s_i is a best response to s_{-i} if and only if all pure strategies in the support of s_i are best responses to s_{-i} .

- We first state the perhaps most useful observation in our course.
- The support of a mixed strategy $Supp(s_i) = s_i$ is $\{a_i \in A_i : s_i(a_i) > 0\}.$

Best response condition (Observation 2.23)

In a normal-form game $G = (P, A, u)$ of *n* players, for every player $i \in P$, a mixed strategy s_i is a best response to s_{-i} if and only if all pure strategies in the support of s_i are best responses to s_{-i} .

• Thus, the problem of finding NE is combinatorial problem, not a continuous one.

- We first state the perhaps most useful observation in our course.
- The support of a mixed strategy $Supp(s_i) = s_i$ is $\{a_i \in A_i : s_i(a_i) > 0\}.$

Best response condition (Observation 2.23)

In a normal-form game $G = (P, A, u)$ of *n* players, for every player $i \in P$, a mixed strategy s_i is a best response to s_{-i} if and only if all pure strategies in the support of s_i are best responses to s_{-i} .

- Thus, the problem of finding NE is combinatorial problem, not a continuous one.
- The hearth of the problem is in finding the right supports.

- We first state the perhaps most useful observation in our course.
- The support of a mixed strategy $Supp(s_i) = s_i$ is $\{a_i \in A_i : s_i(a_i) > 0\}.$

Best response condition (Observation 2.23)

In a normal-form game $G = (P, A, u)$ of *n* players, for every player $i \in P$, a mixed strategy s_i is a best response to s_{-i} if and only if all pure strategies in the support of s_i are best responses to s_{-i} .

- Thus, the problem of finding NE is combinatorial problem, not a continuous one.
- The hearth of the problem is in finding the right supports.
- Once we have the right supports, the precise mixed strategies can be computed by solving a system of algebraic equations (which are linear in the case of two players).

 \bullet First, assume every $a_i \in Supp(s_i)$ satisfies $u_i(a_i; s_{-i}) \geq u_i(s'_i; s_{-i})$ for every $s'_i \in S_i$.

$$
u_i(s) = \sum_{a_i \in \text{Supp}(s_i)} s_i(a_i) u_i(a_i; s_{-i})
$$

$$
u_i(s) = \sum_{a_i \in \text{Supp}(s_i)} s_i(a_i) u_i(a_i; s_{-i}) \ge \sum_{a_i \in \text{Supp}(s_i)} s_i(a_i) u_i(s'_i; s_{-i})
$$

$$
u_i(s) = \sum_{a_i \in \text{Supp}(s_i)} s_i(a_i) u_i(a_i; s_{-i}) \ge \sum_{a_i \in \text{Supp}(s_i)} s_i(a_i) u_i(s'_i; s_{-i}) = u_i(s'_i; s_{-i}).
$$

 \bullet First, assume every $a_i \in Supp(s_i)$ satisfies $u_i(a_i; s_{-i}) \geq u_i(s'_i; s_{-i})$ for every $s_i' \in S_i$. Then, for every $s_i' \in S_i$, the linearity of u_i implies

$$
u_i(s)=\sum_{a_i\in Supp(s_i)}s_i(a_i)u_i(a_i;s_{-i})\geq \sum_{a_i\in Supp(s_i)}s_i(a_i)u_i(s_i';s_{-i})=u_i(s_i';s_{-i}).
$$

• Second, assume s_i is a best response of *i* to s_{-i} .

 \bullet First, assume every $a_i \in Supp(s_i)$ satisfies $u_i(a_i; s_{-i}) \geq u_i(s'_i; s_{-i})$ for every $s_i' \in S_i$. Then, for every $s_i' \in S_i$, the linearity of u_i implies

$$
u_i(s)=\sum_{a_i\in Supp(s_i)}s_i(a_i)u_i(a_i;s_{-i})\geq \sum_{a_i\in Supp(s_i)}s_i(a_i)u_i(s_i';s_{-i})=u_i(s_i';s_{-i}).
$$

• Second, assume s_i is a best response of *i* to s_{−i}. Suppose there is $\overline{a}_i \in Supp(s_i)$ that is not a best response of i to $s_{-i}.$

 \bullet First, assume every $a_i \in Supp(s_i)$ satisfies $u_i(a_i; s_{-i}) \geq u_i(s'_i; s_{-i})$ for every $s_i' \in S_i$. Then, for every $s_i' \in S_i$, the linearity of u_i implies

$$
u_i(s)=\sum_{a_i\in Supp(s_i)}s_i(a_i)u_i(a_i;s_{-i})\geq \sum_{a_i\in Supp(s_i)}s_i(a_i)u_i(s_i';s_{-i})=u_i(s_i';s_{-i}).
$$

• Second, assume s_i is a best response of *i* to s_{−i}. Suppose there is \overline{a}_i ∈ Supp (s_i) that is not a best response of i to s_i. Then, there is $s'_i \in S_i$ with $u_i(\overline{a}_i; s_{-i}) < u_i(s'_i; s_{-i}).$

 \bullet First, assume every $a_i \in Supp(s_i)$ satisfies $u_i(a_i; s_{-i}) \geq u_i(s'_i; s_{-i})$ for every $s_i' \in S_i$. Then, for every $s_i' \in S_i$, the linearity of u_i implies

$$
u_i(s)=\sum_{a_i\in Supp(s_i)}s_i(a_i)u_i(a_i;s_{-i})\geq \sum_{a_i\in Supp(s_i)}s_i(a_i)u_i(s_i';s_{-i})=u_i(s_i';s_{-i}).
$$

• Second, assume s_i is a best response of *i* to s_{−i}. Suppose there is \overline{a}_i ∈ Supp (s_i) that is not a best response of i to s_i. Then, there is $s_i' \in S_i$ with $u_i(\overline{a}_i; s_{-i}) < u_i(s_i'; s_{-i})$. Since s_i is a best response to s_{-i} , we get $s_i(\overline{a}_i) < 1$.

 \bullet First, assume every $a_i \in Supp(s_i)$ satisfies $u_i(a_i; s_{-i}) \geq u_i(s'_i; s_{-i})$ for every $s_i' \in S_i$. Then, for every $s_i' \in S_i$, the linearity of u_i implies

$$
u_i(s)=\sum_{a_i\in Supp(s_i)}s_i(a_i)u_i(a_i;s_{-i})\geq \sum_{a_i\in Supp(s_i)}s_i(a_i)u_i(s_i';s_{-i})=u_i(s_i';s_{-i}).
$$

• Second, assume s_i is a best response of *i* to s_{−i}. Suppose there is \overline{a}_i ∈ Supp (s_i) that is not a best response of i to s_i. Then, there is $s_i' \in S_i$ with $u_i(\overline{a}_i; s_{-i}) < u_i(s_i'; s_{-i})$. Since s_i is a best response to s_{-i} , we get $s_i(\overline{s}_i) < 1.$ By the linearity of u_i , there is $\hat{s}_i \in Supp(s_i)$ with $u_i(\hat{a}_i; s_{-i}) > u_i(\overline{a}_i; s_{-i}).$

 \bullet First, assume every $a_i \in Supp(s_i)$ satisfies $u_i(a_i; s_{-i}) \geq u_i(s'_i; s_{-i})$ for every $s_i' \in S_i$. Then, for every $s_i' \in S_i$, the linearity of u_i implies

$$
u_i(s)=\sum_{a_i\in Supp(s_i)}s_i(a_i)u_i(a_i;s_{-i})\geq \sum_{a_i\in Supp(s_i)}s_i(a_i)u_i(s_i';s_{-i})=u_i(s_i';s_{-i}).
$$

• Second, assume s_i is a best response of *i* to s_{−i}. Suppose there is \overline{a}_i ∈ Supp (s_i) that is not a best response of i to s_i. Then, there is $s_i' \in S_i$ with $u_i(\overline{a}_i; s_{-i}) < u_i(s_i'; s_{-i})$. Since s_i is a best response to s_{-i} , we get $s_i(\overline{s}_i) < 1.$ By the linearity of u_i , there is $\hat{s}_i \in Supp(s_i)$ with $u_i(\hat{a}_i; s_{-i}) > u_i(\overline{a}_i; s_{-i})$. We define a new mixed strategy $s_i^* \in S_i$ by setting $s_i^*(\overline{a}_i)=0$, $s_i^*(\hat{a}_i)=s_i(\hat{a}_i)+s_i(\overline{a}_i)$ and keeping $s_i^*(a_i)=s_i(a_i)$ otherwise.

 \bullet First, assume every $a_i \in Supp(s_i)$ satisfies $u_i(a_i; s_{-i}) \geq u_i(s'_i; s_{-i})$ for every $s_i' \in S_i$. Then, for every $s_i' \in S_i$, the linearity of u_i implies

$$
u_i(s)=\sum_{a_i\in Supp(s_i)}s_i(a_i)u_i(a_i;s_{-i})\geq \sum_{a_i\in Supp(s_i)}s_i(a_i)u_i(s_i';s_{-i})=u_i(s_i';s_{-i}).
$$

• Second, assume s_i is a best response of *i* to s_{−i}. Suppose there is \overline{a}_i ∈ Supp (s_i) that is not a best response of i to s_i. Then, there is $s_i' \in S_i$ with $u_i(\overline{a}_i; s_{-i}) < u_i(s_i'; s_{-i})$. Since s_i is a best response to s_{-i} , we get $s_i(\overline{s}_i) < 1.$ By the linearity of u_i , there is $\hat{s}_i \in Supp(s_i)$ with $u_i(\hat{a}_i; s_{-i}) > u_i(\overline{a}_i; s_{-i})$. We define a new mixed strategy $s_i^* \in S_i$ by setting $s_i^*(\overline{a}_i)=0$, $s_i^*(\hat{a}_i)=s_i(\hat{a}_i)+s_i(\overline{a}_i)$ and keeping $s_i^*(a_i)=s_i(a_i)$ otherwise. Then, by the linearity of u_i

 $u_i(s_i^*; s_{-i})$

 \bullet First, assume every $a_i \in Supp(s_i)$ satisfies $u_i(a_i; s_{-i}) \geq u_i(s'_i; s_{-i})$ for every $s_i' \in S_i$. Then, for every $s_i' \in S_i$, the linearity of u_i implies

$$
u_i(s)=\sum_{a_i\in Supp(s_i)}s_i(a_i)u_i(a_i;s_{-i})\geq \sum_{a_i\in Supp(s_i)}s_i(a_i)u_i(s_i';s_{-i})=u_i(s_i';s_{-i}).
$$

• Second, assume s_i is a best response of *i* to s_{−i}. Suppose there is \overline{a}_i ∈ Supp (s_i) that is not a best response of i to s_i. Then, there is $s_i' \in S_i$ with $u_i(\overline{a}_i; s_{-i}) < u_i(s_i'; s_{-i})$. Since s_i is a best response to s_{-i} , we get $s_i(\overline{s}_i) < 1.$ By the linearity of u_i , there is $\hat{s}_i \in Supp(s_i)$ with $u_i(\hat{a}_i; s_{-i}) > u_i(\overline{a}_i; s_{-i})$. We define a new mixed strategy $s_i^* \in S_i$ by setting $s_i^*(\overline{a}_i)=0$, $s_i^*(\hat{a}_i)=s_i(\hat{a}_i)+s_i(\overline{a}_i)$ and keeping $s_i^*(a_i)=s_i(a_i)$ otherwise. Then, by the linearity of u_i

$$
u_i(s_i^*; s_{-i}) = \sum_{a_i \in A_i} s_i^*(a_i) u_i(a_i; s_{-i})
$$

 \bullet First, assume every $a_i \in Supp(s_i)$ satisfies $u_i(a_i; s_{-i}) \geq u_i(s'_i; s_{-i})$ for every $s_i' \in S_i$. Then, for every $s_i' \in S_i$, the linearity of u_i implies

$$
u_i(s)=\sum_{a_i\in Supp(s_i)}s_i(a_i)u_i(a_i;s_{-i})\geq \sum_{a_i\in Supp(s_i)}s_i(a_i)u_i(s_i';s_{-i})=u_i(s_i';s_{-i}).
$$

• Second, assume s_i is a best response of *i* to s_{−i}. Suppose there is \overline{a}_i ∈ Supp (s_i) that is not a best response of i to s_i. Then, there is $s_i' \in S_i$ with $u_i(\overline{a}_i; s_{-i}) < u_i(s_i'; s_{-i})$. Since s_i is a best response to s_{-i} , we get $s_i(\overline{s}_i) < 1.$ By the linearity of u_i , there is $\hat{s}_i \in Supp(s_i)$ with $u_i(\hat{a}_i; s_{-i}) > u_i(\overline{a}_i; s_{-i})$. We define a new mixed strategy $s_i^* \in S_i$ by setting $s_i^*(\overline{a}_i)=0$, $s_i^*(\hat{a}_i)=s_i(\hat{a}_i)+s_i(\overline{a}_i)$ and keeping $s_i^*(a_i)=s_i(a_i)$ otherwise. Then, by the linearity of u_i

$$
u_i(s_i^*; s_{-i}) = \sum_{a_i \in A_i} s_i^*(a_i) u_i(a_i; s_{-i}) > \sum_{a_i \in A_i} s_i(a_i) u_i(a_i; s_{-i})
$$

 \bullet First, assume every $a_i \in Supp(s_i)$ satisfies $u_i(a_i; s_{-i}) \geq u_i(s'_i; s_{-i})$ for every $s_i' \in S_i$. Then, for every $s_i' \in S_i$, the linearity of u_i implies

$$
u_i(s)=\sum_{a_i\in Supp(s_i)}s_i(a_i)u_i(a_i;s_{-i})\geq \sum_{a_i\in Supp(s_i)}s_i(a_i)u_i(s_i';s_{-i})=u_i(s_i';s_{-i}).
$$

• Second, assume s_i is a best response of *i* to s_{−i}. Suppose there is \overline{a}_i ∈ Supp (s_i) that is not a best response of i to s_i. Then, there is $s_i' \in S_i$ with $u_i(\overline{a}_i; s_{-i}) < u_i(s_i'; s_{-i})$. Since s_i is a best response to s_{-i} , we get $s_i(\overline{s}_i) < 1.$ By the linearity of u_i , there is $\hat{s}_i \in Supp(s_i)$ with $u_i(\hat{a}_i; s_{-i}) > u_i(\overline{a}_i; s_{-i})$. We define a new mixed strategy $s_i^* \in S_i$ by setting $s_i^*(\overline{a}_i)=0$, $s_i^*(\hat{a}_i)=s_i(\hat{a}_i)+s_i(\overline{a}_i)$ and keeping $s_i^*(a_i)=s_i(a_i)$ otherwise. Then, by the linearity of u_i

$$
u_i(s_i^*; s_{-i}) = \sum_{a_i \in A_i} s_i^*(a_i) u_i(a_i; s_{-i}) > \sum_{a_i \in A_i} s_i(a_i) u_i(a_i; s_{-i}) = u_i(s),
$$

 \bullet First, assume every $a_i \in Supp(s_i)$ satisfies $u_i(a_i; s_{-i}) \geq u_i(s'_i; s_{-i})$ for every $s_i' \in S_i$. Then, for every $s_i' \in S_i$, the linearity of u_i implies

$$
u_i(s)=\sum_{a_i\in Supp(s_i)}s_i(a_i)u_i(a_i;s_{-i})\geq \sum_{a_i\in Supp(s_i)}s_i(a_i)u_i(s_i';s_{-i})=u_i(s_i';s_{-i}).
$$

• Second, assume s_i is a best response of *i* to s_{−i}. Suppose there is \overline{a}_i ∈ Supp (s_i) that is not a best response of i to s_i. Then, there is $s_i' \in S_i$ with $u_i(\overline{a}_i; s_{-i}) < u_i(s_i'; s_{-i})$. Since s_i is a best response to s_{-i} , we get $s_i(\overline{s}_i) < 1.$ By the linearity of u_i , there is $\hat{s}_i \in Supp(s_i)$ with $u_i(\hat{a}_i; s_{-i}) > u_i(\overline{a}_i; s_{-i})$. We define a new mixed strategy $s_i^* \in S_i$ by setting $s_i^*(\overline{a}_i)=0$, $s_i^*(\hat{a}_i)=s_i(\hat{a}_i)+s_i(\overline{a}_i)$ and keeping $s_i^*(a_i)=s_i(a_i)$ otherwise. Then, by the linearity of u_i

$$
u_i(s_i^*; s_{-i}) = \sum_{a_i \in A_i} s_i^*(a_i) u_i(a_i; s_{-i}) > \sum_{a_i \in A_i} s_i(a_i) u_i(a_i; s_{-i}) = u_i(s),
$$

a contradiction.
Proof of the Best response condition

 \bullet First, assume every $a_i \in Supp(s_i)$ satisfies $u_i(a_i; s_{-i}) \geq u_i(s'_i; s_{-i})$ for every $s_i' \in S_i$. Then, for every $s_i' \in S_i$, the linearity of u_i implies

$$
u_i(s)=\sum_{a_i\in Supp(s_i)}s_i(a_i)u_i(a_i;s_{-i})\geq \sum_{a_i\in Supp(s_i)}s_i(a_i)u_i(s_i';s_{-i})=u_i(s_i';s_{-i}).
$$

• Second, assume s_i is a best response of *i* to s_{−i}. Suppose there is \overline{a}_i ∈ Supp (s_i) that is not a best response of i to s_i. Then, there is $s_i' \in S_i$ with $u_i(\overline{a}_i; s_{-i}) < u_i(s_i'; s_{-i})$. Since s_i is a best response to s_{-i} , we get $s_i(\overline{s}_i) < 1.$ By the linearity of u_i , there is $\hat a_i \in Supp(s_i)$ with $u_i(\hat{a}_i; s_{-i}) > u_i(\overline{a}_i; s_{-i})$. We define a new mixed strategy $s_i^* \in S_i$ by setting $s_i^*(\overline{a}_i)=0$, $s_i^*(\hat{a}_i)=s_i(\hat{a}_i)+s_i(\overline{a}_i)$ and keeping $s_i^*(a_i)=s_i(a_i)$ otherwise. Then, by the linearity of u_i

$$
u_i(s_i^*; s_{-i}) = \sum_{a_i \in A_i} s_i^*(a_i) u_i(a_i; s_{-i}) > \sum_{a_i \in A_i} s_i(a_i) u_i(a_i; s_{-i}) = u_i(s),
$$

a contradiction.

• We can use this simple observation to design a brute-force algorithm for finding NE in bimatrix games.

- We can use this simple observation to design a brute-force algorithm for finding NE in bimatrix games.
- Let $G = (\{1, 2\}, A = A_1 \times A_2, u)$ be a bimatrix game.

- We can use this simple observation to design a brute-force algorithm for finding NE in bimatrix games.
- Let $G = (\{1, 2\}, A = A_1 \times A_2, u)$ be a bimatrix game.
- Let $A_1 = \{1, ..., m\}$ and $A_2 = \{1, ..., n\}$

- We can use this simple observation to design a brute-force algorithm for finding NE in bimatrix games.
- Let $G = (\{1, 2\}, A = A_1 \times A_2, u)$ be a bimatrix game.
- Let $A_1 = \{1, \ldots, m\}$ and $A_2 = \{1, \ldots, n\}$ (later considered disjoint).

- We can use this simple observation to design a brute-force algorithm for finding NE in bimatrix games.
- Let $G = (\{1, 2\}, A = A_1 \times A_2, u)$ be a bimatrix game.
- Let $A_1 = \{1, \ldots, m\}$ and $A_2 = \{1, \ldots, n\}$ (later considered disjoint).
- The payoffs u_1 and u_2 can be represented by matrices $M, N \in \mathbb{R}^{m \times n}$ as $M_{i,j} = u_1(i, j)$ and $N_{i,j} = u_2(i, j)$ for every $(i, j) \in A_1 \times A_2$.

- We can use this simple observation to design a brute-force algorithm for finding NE in bimatrix games.
- Let $G = (\{1, 2\}, A = A_1 \times A_2, u)$ be a bimatrix game.
- Let $A_1 = \{1, \ldots, m\}$ and $A_2 = \{1, \ldots, n\}$ (later considered disjoint).
- The payoffs u_1 and u_2 can be represented by matrices $M, N \in \mathbb{R}^{m \times n}$ as $M_{i,j} = u_1(i,j)$ and $N_{i,j} = u_2(i,j)$ for every $(i,j) \in A_1 \times A_2$.
- The expected payoffs of s with mixed strategy vectors x and y are then

$$
u_1(s) = x^{\top} My \quad \text{and} \quad u_2(s) = x^{\top} Ny.
$$

- We can use this simple observation to design a brute-force algorithm for finding NE in bimatrix games.
- Let $G = (\{1, 2\}, A = A_1 \times A_2, u)$ be a bimatrix game.
- Let $A_1 = \{1, \ldots, m\}$ and $A_2 = \{1, \ldots, n\}$ (later considered disjoint).
- The payoffs u_1 and u_2 can be represented by matrices $M, N \in \mathbb{R}^{m \times n}$ as $M_{i,j} = u_1(i,j)$ and $N_{i,j} = u_2(i,j)$ for every $(i,j) \in A_1 \times A_2$.
- The expected payoffs of s with mixed strategy vectors x and y are then

$$
u_1(s) = x^{\top} My \quad \text{and} \quad u_2(s) = x^{\top} Ny.
$$

• By the Best response condition, x is a best response to v iff

$$
\forall i \in A_1: x_i > 0 \Longrightarrow M_{i,*}y = \max\{M_{k,*}y: k \in A_1\}.
$$
 (1)

- We can use this simple observation to design a brute-force algorithm for finding NE in bimatrix games.
- Let $G = (\{1, 2\}, A = A_1 \times A_2, u)$ be a bimatrix game.
- Let $A_1 = \{1, \ldots, m\}$ and $A_2 = \{1, \ldots, n\}$ (later considered disjoint).
- The payoffs u_1 and u_2 can be represented by matrices $M, N \in \mathbb{R}^{m \times n}$ as $M_{i,j} = u_1(i,j)$ and $N_{i,j} = u_2(i,j)$ for every $(i,j) \in A_1 \times A_2$.
- The expected payoffs of s with mixed strategy vectors x and y are then

$$
u_1(s) = x^{\top} My \quad \text{and} \quad u_2(s) = x^{\top} Ny.
$$

• By the Best response condition, x is a best response to y iff

$$
\forall i \in A_1: x_i > 0 \Longrightarrow M_{i,*}y = \max\{M_{k,*}y: k \in A_1\}.
$$
 (1)

• Analogously, y is a best response to x iff

$$
\forall j \in A_2 : y_j > 0 \Longrightarrow \mathcal{N}_{j,*}^{\top} x = \max \{ \mathcal{N}_{k,*}^{\top} x : k \in A_2 \}. \tag{2}
$$

• We consider only special bimatrix games (the reason will be clear later).

- We consider only special bimatrix games (the reason will be clear later).
- A bimatrix game is nondegenerate if there are at most k pure best responses to every mixed strategy with support of size k .

- We consider only special bimatrix games (the reason will be clear later).
- A bimatrix game is nondegenerate if there are at most k pure best responses to every mixed strategy with support of size k .
	- "Most bimatrix games are nondegenerate" and there are perturbation methods to deal with degenerate games.

- We consider only special bimatrix games (the reason will be clear later).
- A bimatrix game is nondegenerate if there are at most k pure best responses to every mixed strategy with support of size k .
	- "Most bimatrix games are nondegenerate" and there are perturbation methods to deal with degenerate games.
- Let $I \subseteq A_1$ and $J \subseteq A_2$ be supports in a nondegenerate game G.

- We consider only special bimatrix games (the reason will be clear later).
- A bimatrix game is nondegenerate if there are at most k pure best responses to every mixed strategy with support of size k .
	- "Most bimatrix games are nondegenerate" and there are perturbation methods to deal with degenerate games.
- Let $I \subseteq A_1$ and $J \subseteq A_2$ be supports in a nondegenerate game G.
- We define $|I|+|J|$ variables x_i for $i\in I$ and y_j for $j\in J$ that will represent non-zero values in mixed strategy vectors x and v .

- We consider only special bimatrix games (the reason will be clear later).
- A bimatrix game is nondegenerate if there are at most k pure best responses to every mixed strategy with support of size k .
	- "Most bimatrix games are nondegenerate" and there are perturbation methods to deal with degenerate games.
- Let $I \subseteq A_1$ and $J \subseteq A_2$ be supports in a nondegenerate game G.
- We define $|I|+|J|$ variables x_i for $i\in I$ and y_j for $j\in J$ that will represent non-zero values in mixed strategy vectors x and y .
- $\bullet\,$ We define equations $\sum_{i\in I} x_i=1$ and $\sum_{j\in J} y_j=1$, and $|I|+|J|$ equations to ensure that the expected payoffs are equal and maximized at the support:

- We consider only special bimatrix games (the reason will be clear later).
- A bimatrix game is nondegenerate if there are at most k pure best responses to every mixed strategy with support of size k .
	- "Most bimatrix games are nondegenerate" and there are perturbation methods to deal with degenerate games.
- Let $I \subseteq A_1$ and $J \subseteq A_2$ be supports in a nondegenerate game G.
- We define $|I|+|J|$ variables x_i for $i\in I$ and y_j for $j\in J$ that will represent non-zero values in mixed strategy vectors x and y .
- $\bullet\,$ We define equations $\sum_{i\in I} x_i=1$ and $\sum_{j\in J} y_j=1$, and $|I|+|J|$ equations to ensure that the expected payoffs are equal and maximized at the support:

$$
\sum_{i\in I} N_{j,i}^{\top} x_i = v \quad \text{ and } \quad \sum_{j\in J} M_{i,j} y_j = u,
$$

- We consider only special bimatrix games (the reason will be clear later).
- A bimatrix game is nondegenerate if there are at most k pure best responses to every mixed strategy with support of size k .
	- "Most bimatrix games are nondegenerate" and there are perturbation methods to deal with degenerate games.
- Let $I \subseteq A_1$ and $J \subseteq A_2$ be supports in a nondegenerate game G.
- We define $|I|+|J|$ variables x_i for $i\in I$ and y_j for $j\in J$ that will represent non-zero values in mixed strategy vectors x and y .
- $\bullet\,$ We define equations $\sum_{i\in I} x_i=1$ and $\sum_{j\in J} y_j=1$, and $|I|+|J|$ equations to ensure that the expected payoffs are equal and maximized at the support:

$$
\sum_{i\in I} N_{j,i}^\top x_i = v \quad \text{ and } \quad \sum_{j\in J} M_{i,j} y_j = u,
$$

where μ and ν are two new variables.

- We consider only special bimatrix games (the reason will be clear later).
- A bimatrix game is nondegenerate if there are at most k pure best responses to every mixed strategy with support of size k .
	- "Most bimatrix games are nondegenerate" and there are perturbation methods to deal with degenerate games.
- Let $I \subseteq A_1$ and $J \subseteq A_2$ be supports in a nondegenerate game G.
- We define $|I|+|J|$ variables x_i for $i\in I$ and y_j for $j\in J$ that will represent non-zero values in mixed strategy vectors x and y .
- $\bullet\,$ We define equations $\sum_{i\in I} x_i=1$ and $\sum_{j\in J} y_j=1$, and $|I|+|J|$ equations to ensure that the expected payoffs are equal and maximized at the support:

$$
\sum_{i\in I} N_{j,i}^{\top} x_i = v \quad \text{ and } \quad \sum_{j\in J} M_{i,j} y_j = u,
$$

where μ and ν are two new variables. Note that they attain values $u = \max\{M_{i,*}y : i \in I\}$ and $v = \max\{N_{j,*}^{\top}x : j \in J\}$.

• We have a system $S(I, J)$ of $|I| + |J| + 2$ variables $x_1, \ldots, x_{|I|}, y_1, \ldots, y_{|J|}, u, v$ and $|I| + |J| + 2$ linear equations.

- We have a system $S(I, J)$ of $|I| + |J| + 2$ variables $x_1, \ldots, x_{|I|}, y_1, \ldots, y_{|J|}, u, v$ and $|I| + |J| + 2$ linear equations.
- If the numbers in the solution are all non-negative and satisfy (1) and [\(2\)](#page-109-1), then we have a NE by the Best response condition.

- We have a system $S(I, J)$ of $|I| + |J| + 2$ variables $x_1, \ldots, x_{|I|}, y_1, \ldots, y_{|J|}, u, v$ and $|I| + |J| + 2$ linear equations.
- If the numbers in the solution are all non-negative and satisfy (1) and (2) , then we have a NE by the Best response condition. If G is nondegenerate, then such a solution is unique (if it exists).

- We have a system $S(I, J)$ of $|I| + |J| + 2$ variables $x_1, \ldots, x_{|I|}, y_1, \ldots, y_{|J|}, u, v$ and $|I| + |J| + 2$ linear equations.
- If the numbers in the solution are all non-negative and satisfy (1) and (2) , then we have a NE by the Best response condition. If G is nondegenerate, then such a solution is unique (if it exists).
- It follows immediately from the Best response condition that supports of strategies in NE of a non-degenerate game have the same size.

- We have a system $S(I, J)$ of $|I| + |J| + 2$ variables $x_1, \ldots, x_{|I|}, y_1, \ldots, y_{|J|}, u, v$ and $|I| + |J| + 2$ linear equations.
- If the numbers in the solution are all non-negative and satisfy (1) and (2) , then we have a NE by the Best response condition. If G is nondegenerate, then such a solution is unique (if it exists).
- It follows immediately from the Best response condition that supports of strategies in NE of a non-degenerate game have the same size.
- This suggests a simple algorithm for finding NE of G: go through all possible supports $I \subseteq A_1$ and $J \subseteq A_2$ of size $k \in \{1, \ldots, \min\{m, n\}\}\$ and verify whether the supports ℓ and ℓ yield NE by solving the system $S(I, J)$ of linear equations.

- We have a system $S(I, J)$ of $|I| + |J| + 2$ variables $x_1, \ldots, x_{|I|}, y_1, \ldots, y_{|J|}, u, v$ and $|I| + |J| + 2$ linear equations.
- If the numbers in the solution are all non-negative and satisfy (1) and (2) , then we have a NE by the Best response condition. If G is nondegenerate, then such a solution is unique (if it exists).
- It follows immediately from the Best response condition that supports of strategies in NE of a non-degenerate game have the same size.
- This suggests a simple algorithm for finding NE of G: go through all possible supports $I \subseteq A_1$ and $J \subseteq A_2$ of size $k \in \{1, \ldots, \min\{m, n\}\}\$ and verify whether the supports ℓ and ℓ yield NE by solving the system $S(I, J)$ of linear equations.
- The running time is then about 4^n for $m = n$.

• We show the brute-force algorithm on the Battle of sexes game.

• We show the brute-force algorithm on the Battle of sexes game.

 \bullet That is, we have $M = \left(\begin{smallmatrix} 2 & 0 \ 0 & 1 \end{smallmatrix} \right)$ and $N = \left(\begin{smallmatrix} 1 & 0 \ 0 & 2 \end{smallmatrix} \right) = N^\top.$

• We show the brute-force algorithm on the Battle of sexes game.

- \bullet That is, we have $M = \left(\begin{smallmatrix} 2 & 0 \ 0 & 1 \end{smallmatrix} \right)$ and $N = \left(\begin{smallmatrix} 1 & 0 \ 0 & 2 \end{smallmatrix} \right) = N^\top.$
- If $I = \{1, 2\}$ and $J = \{1, 2\}$, then we want to solve the following system of 6 equations with 6 variables x_1, x_2, y_1, y_2, u, v :

$$
x_1 = v
$$
, $2x_2 = v$, $x_1 + x_2 = 1$
 $2y_1 = u$, $y_2 = u$, $y_1 + y_2 = 1$

• We show the brute-force algorithm on the Battle of sexes game.

- \bullet That is, we have $M = \left(\begin{smallmatrix} 2 & 0 \ 0 & 1 \end{smallmatrix} \right)$ and $N = \left(\begin{smallmatrix} 1 & 0 \ 0 & 2 \end{smallmatrix} \right) = N^\top.$
- If $I = \{1, 2\}$ and $J = \{1, 2\}$, then we want to solve the following system of 6 equations with 6 variables x_1, x_2, y_1, y_2, u, v :

$$
x_1 = v
$$
, $2x_2 = v$, $x_1 + x_2 = 1$
 $2y_1 = u$, $y_2 = u$, $y_1 + y_2 = 1$

• This yields a unique solution $(x_1, x_2) = (\frac{2}{3}, \frac{1}{3})$ $(\frac{1}{3})$ and $(y_1, y_2) = (\frac{1}{3}, \frac{2}{3})$ $\frac{2}{3}$.

• We show the brute-force algorithm on the Battle of sexes game.

- \bullet That is, we have $M = \left(\begin{smallmatrix} 2 & 0 \ 0 & 1 \end{smallmatrix} \right)$ and $N = \left(\begin{smallmatrix} 1 & 0 \ 0 & 2 \end{smallmatrix} \right) = N^\top.$
- If $I = \{1, 2\}$ and $J = \{1, 2\}$, then we want to solve the following system of 6 equations with 6 variables x_1, x_2, y_1, y_2, u, v :

$$
x_1 = v
$$
, $2x_2 = v$, $x_1 + x_2 = 1$
 $2y_1 = u$, $y_2 = u$, $y_1 + y_2 = 1$

• This yields a unique solution $(x_1, x_2) = (\frac{2}{3}, \frac{1}{3})$ $(\frac{1}{3})$ and $(y_1, y_2) = (\frac{1}{3}, \frac{2}{3})$ $\frac{2}{3}$. Since $x, y > 0$ and there is no better pure strategy, we have NE.

• Next lecture we learn the Lemke-Howson algorithm, the best known algorithm to find Nash equilibria in bimatrix games.

• Next lecture we learn the Lemke–Howson algorithm, the best known algorithm to find Nash equilibria in bimatrix games.

• Next lecture we learn the Lemke–Howson algorithm, the best known algorithm to find Nash equilibria in bimatrix games.

Thank you for your attention.