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Proof of Nash's Theorem



Nash equilibria in normal-form games

Rock | Paper | Scissors
Rock | (0,0) | (-1,1) | (1,-1)
Paper | (1,-1) | (0,0) | (-1,1)

Scissors | (-1,1) | (1,-1) | (0,0)
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Sources: https://en.wikipedia.org/

e We introduced perhaps the most influential solution concept, which
captures a notion of stability.

e The best response of player / to a strategy profile s_; is a mixed
strategy s’ such that u;(s’;s_;) > u;(s;;s_;) for each s! € §;.

e For a normal-form game G = (P, A, u) of n players, a Nash equilibrium
(NE) in G is a strategy profile (si,...,s,) such that s; is a best
response of player / to s_; for every i € P.

e Amazingly, every normal-form game has a Nash equilibrium.



Nash's Theorem

Nash’s Theorem (Theorem 2.16)

Every normal-form game has a Nash equilibrium.
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Figure: John Forbes Nash Jr. (1928-2015) and his depiction in the movie A
Beautiful mind.

Sources: https://britannica.com and https://medium.com



Preparations for the proof of Nash's theorem

e The proof is essentially topological, as its main ingredient is a
fixed-point theorem. We use a theorem due to Brouwer.

e For d € N, a subset X of RY is compact if X is closed and bounded.

e We say that a subset Y of R is convex if every line segment
containing two points from Y is fully contained in Y. Formally: for all
x, yfromY, tx+ (1 —1t)y € Y for every t € [0, 1].

e For n affinely independent points xi,...,x, € R? an (n — 1)-simplex
A, on xq1,...,X,Is the set of convex combinations of the points
X1,...,X,. Each simplex is a compact convex set in RY.

Lemma (Lemma 2.18)

For n,di,...,d, €N, let K1, ..., K, be compact sets, each K; lying in R,
Then, Ky x --- x K, is a compact set in R+ +dn,




Brouwer's Fixed Point Theorem

e For each d € N, let K be a non-empty compact convex set in R and
f: K — K be a continuous mapping. Then, there exists a fixed point
xo € K for f, that is, f(xp) = Xo.

Figure: L. E. J. Brouwer (1881-1966).

Source: https://arxiv.org/pdf/1612.06820.pdf

e https://www.youtube.com/watch?v=csInNn6pfT4&t=268s&ab_
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o Let G = (P, A, u) be a normal-form game of n players. Recall that S; is
the set of mixed strategies of player /.

e \We want to apply Brouwer’'s theorem, thus we need to find a suitable
compact convex body K and a continuous mapping f: K — K whose
fixed points are NE in G.

e We start with K. Let K = 5; x --- x §,, be the set of all mixed
strategies.
o We verify that K is compact and convex.
o By definition, each §; is, a simplex which is compact and convex.
o By Lemma 2.18, the set K = 5; X --- x 5, is compact.
o For any strategy profiles s = (s1,...,s,),s' = (s{,...,s.) € K and
a number t € [0, 1], the point

ts+(1—1t)s' = (tsy + (1 — t)sy,...,ts, + (1 —t)s))

Is also a mixed-strategy profile in K. Thus, K is convex.



Proof of Nash's Theorem ||

e \We now find the continuous mapping f: K — K.

e For every player 1 € P and action a; € A;, we define a mapping
©ia: K — R by setting

0 a(s) = max{0, uj(a;; s_;) — ui(s)}.

o @;a(s) > 0 iff i can improve his payoff by using a; instead of s;.
o By the definition of u;, this mapping is continuous.

e Given s € K, we define a new “improved” strategy profile s" € K as

/(a_) _ Si(ai) + cpi,ai(s) _ Si(ai) + gO,-,aI.(S) .
T Y hen (Si(B) Fwin(s) 14D, ca Pin(S)

o “Increase probability at actions that are better responses to s_;."
o s' € K as each s;(a;) liesin [0,1] and ), ., si(a;) = 1.
e We then define f by setting f(s) = ¢'.



Proof of Nash's Theorem Il|

e Then, f is continuous, since the mappings ¢; 5, are.
e |t remains to show that fixed points of f are exactly NE in G. Then,
Brouwer's theorem gives us a fixed point of f, which is NE in G.
e First, if s is NE, then all functions ¢; ,. are constant zero functions and
thus f(s) = s. So s is a fixed point for f.
e Second, assume that s = (s1,...,s,) € K is a fixed point for f.
o For any player /, there is a! € A; with s;(a;) > 0 such that
ui(a}; s—;) < uj(s). Otherwise, ui(s) < ), ca si(ai)ui(ai;s-;),
which is impossible by the linearity of the expec/ted payoff.
1+Zbi€(,4i120i,b,-(5) '
o Since s is a fixed point, we get s/(a’) = s;(a’) and, since
si(a) > 0, the denominator in the denominator is 1. This means
that ¢; 5. (s) = 0 for every b; € A;. It follows that s is NE as

ui(sis) = > s (bi)ui(biss—i) < Y sf(bi)ui(s) = ui(s).

b;,EA; b;EA;

o Then, p; »(s) = 0 and we get s/(a;) =



Nash's Theorem

remarks

e Two pages worth of Nobel prize!

48 MATHEMATICS: J. F. NASH, JR. Proc. N.A. S.

This follows from the arguments used in a forthcoming paper.i® It is
proved by constructing an “abstract” mapping cylinder of A and tran-
scribing into algebraic terms the proof of the analogous theorem on CW-
complexes.

* This note arose from consultations during the tenure of a John Simon Guggenheim
Memorial Fellowship by MacLane.

* Whitehead, L. ‘Combinat

. social Homotopy 1 and 11,7 Bull. 4.1, S5,
214-245'and 453-406 (1049). We refer to CHIand CHII,

+ By a complex we shall mean a connected CW complex, as defined in lﬁnlcﬂl
We do not restrict ourselves to finite complexes. A fixed O-cell ¢ ¢ K? will be the base
point for all the homotopy groups in K.

* MacLaue, S., “Cohomology Theory in Abstract Groups IIL” Ann. Math., 50,
736-761 (1949), referred to as CT III.

* An (unpublished) result like Theorem 1 for the homotopy type was obtained prior
to these results by J. A. Zilber.

# CT LI uses in place of equation (2.4) the stronger hypothesis that A3 contains the
center of 4, but all the relevant pply ‘weaker assumption

(@4).
7 Bilenberg, S., and MacLane, S., “Cohomology Theory in Abstract Groups IL”
Ann. Math., 48, 326-341 (1947).

* Eilenberg, S., and MacLage, S., “Determination of the Second Homology . . . by
Means of Homotopy Invariants,” these PROCEEDINGS, 32, 277-280 (1946).

? Blakers, A. L., “Some Relations Between Homology and Homotopy Groups,”
Ann. Math., 49, 428-461 (1948), §12.

 The hypothesis of Theorem C, requiring that »! (1) not be cyclic, can be readily
realized by suitable choice of the free group X, but this hypothesis is not needed here
(cf.9).

n El.lenb:rx S., and MacLane, S., “Homology of Spaces with Operators IL" Trans.
AM. 9-00 (1949); referred to as HSO I

 C(k) hue is the C(K) of CHII. Note that K exists and is a CW complex by
(M) of p. 231 of CH I and that p~1K" = K", where p is the projection p:K — K.

i Whitehead, J. H. C., “Simple Homotopy Types.” If W = 1, Theorem 5 follows
from (17:3) on p. 165 of S. Lefschetz, Algebraic Topology, (New York, 1942) and argu-
ments in §6 of J. H. C. Whitehead, “On Simply Connected 4-Dimensional Polyhedra”
(Comm. Math. Helv., 22, 48-02 (1949)). However this proof cannot be generalized to
the case W » 1.

EQUILIBRIUM POINTS IN N-PERSON GAMES
By JonN F. NasH, Jr.*
PRINCETON UNIVERSITY
Communicated by S. Lefschetz, November 16, 1049
One may define a concept of an n-person game in which each player has
a finite set of pure strategies and in which a definite set of payments to the
n players corresponds to each n-tuple of pure strategies, one strategy
being taken for each player. For mixed strategies, which are probability

Vor. 36, 1950 MATHEMATICS: G. POLYA 49

distributions over the pure strategies, the pay-off functions are the expecta-
tions of the players, thus becoming polylinear forms in the probabilities
with which the various players play their various pure strategies.

Any n-tuple of strategies, one for each player, may be regarded as a
point in the product space obtained by multiplying the 7 strategy spaces
of the players. One:such n-tuple counters another if the strategy of each
player in the countering n-tuple yields the highest obtainable expectation
for its player against the n — 1 strategies of the other players in the
countered n-tuple. A self- n-tuple is called an point.

The correspondence of each n-tuple with its set of countering n-tuples
gives a one-to-many mapping of the product space into itself. From the
definition of countering we see that the set of countering points of a point
is convex. By using the continuity of the pay-off functions we see that the
graph of the mapping is closed. The closedness is equivalent to saying:
if Py Py, ...and Qy Qs ..., Qu, ... are sequences of points in the product
space where Q, = Q, P, — P and Q, counters P, then Q counters P.

Since the graph is closed and since the-image of each point under the
mapping is convex, we infer from Kakutani's theorem! that the mapping
has a fixed point (i.e., point contained in its image). Hence there is an
equilibrium point.

In the two-person zero-sum case the “‘main theorem”? and the existence
of an equilibrium point are equivalent. In this case any two equilibrium
points lead to the'same expectations for the players, but this need not occur
in general.

* The author is indebted to Dr. David Gale for suggesting the use of Kakutani's
theorem to simplify the proof and to the A. E. C. for financial support.

1 Kakutani, S., Duke Math. J., 8, 457459 (1941)

# Von Neumans, J., and Morgenstern, O., The Theory of Games and Economic Be-
haviour, Chap. 3, Princeton University Press, Princeton, 1047.

REMARK ON WEYL'S NOTE “INEQUALITIES BETWEEN THE
TWO KINDS OF EIGENVALUES OF A LINEAR
TRANSFORMATION"*

By GEORGE PoLYA
DEPARTMENT OF MATHEMATICS, STANFORD UNIVERSITY
Communicated by H. Weyl, November 25, 1949

In the note quoted above H. Weyl proved a Theorem involving a func-
tion () and the a of a linear 4
and those, x;, of A*4. If the x,and A, = |a,|? are arranged 'in descending
order,

Sources: J. F. Nash: Equilibrium points in n-person games (1950).

e Requires finite numbers of players and actions, both assumptions are
necessary. (Consider 2-player game “who guesses larger number wins" .

e The proof is non-constructive. How to find NE efficiently?



Pareto optimality



Pareto optimality

e A brief detour: another example of an interesting solution concept,
other than NE.

e \We want to capture “the best” state of a game. Might be difficult,
consider the Battle of sexes.

e A strategy profile s in G Pareto dominates s’, written s’ < s, if, for
every player i, ui(s) > u;(s’), and there exists a player j such that
uj(s) > u;(s').

o The relation < is a partial ordering of the set S of all strategy
profiles of G.

o The outcomes of G that are considered best are the maximal
elements of S in <.

e A strategy profile s € S is Pareto optimal if there does not exist
another strategy profile s € S that Pareto dominates s.

o In zero-sum games, all strategy profiles are Pareto-optimal.
o Not all NE are Pareto-optimal (the NE in Prisoner's dilemma)



Vilfredo Pareto

e an ltalian engineer, sociologist, economist, political scientist, and
philosopher.

@ Not tmportant

@ [mportant

Figure: Vilfredo Pareto (1848-1923).

Sources: https://en.wikipedia.org and https://medium.com/

e Pareto principle: for many outcomes roughly 80% of consequences
come from 20% of the causes.



Finding Nash equilibria
IN zero-sum games



Finding Nash equilibria

e We know that NE exist in every normal-form game (Nash's theorem).
e However, we do not have any algorithm for how to find them yet.

e \We start with a simple class of 2-player games, so-called zero-sum
games.

e \We show that we can find NE efficiently in this case. In fact, we show
that NE “solves” zero-sum games completely.

e Historically, zero-sum games were considered first in game game theory
(by Morgenstern and Von Neumann in the 1940s).



/ero-sum games

e Two-player games (P, A, u) where u;(a) = —u»(a) for every a € A.

Scissors

beats paper

Rock | Paper | Scissors
Rock | (0,0) | (-1,1) | (1,-1)
Paper | (1,-1) | (0,0) | (-1,1)

Scissors | (-1,1) | (1,-1) | (0,0)

Sources: https://en.wikipedia.org/



/ero-sum games examples: chess

Source: https://edition.cnn.com/



/Zero-sum games examples: table tennis
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Source: https://www.reddit.com/



/Zero-sum games examples: derivative trading

Source: https://www.linkedin.com/



Zero-sum games examples: elections

Source: https://news.sky.com/



/ero-sum games examples: many more

Source: https://Ihongtortai.com/collection/what-is-a-non-zero-sum-game



Representing zero-sum games

e With zero-sum games, our notation simplifies.

o Let G = (P,A= A; X Ay, u) be a zero-sum game. That is,
u1(a) + ux(a) = 0 for every a € A.

o If Ay ={1,...,m}and A, = {1,...,n}, then G can be represented
with an m x n payoff matrix M where M; ; = uy(i,j) = —ua(i,J).

e For a strategy profile (s1,s,), we write x; = s1(/) and y; = s:(J),
representing (s;, sp) with mixed strategy vectors x = (xq, ..., X,) and

vy =(y1,-..,yn) that satisfy > " x; = 1 and Zj:lyj =1.
e The expected payoff of player 1 then equals

ur(s) = Z ur(a)si(i)s2(/) = Z Z M; jxiy; = x' My = —u(s).

a=(ij)EA i=1 j=1



Worst-case optimal strategies

e Thus, player's 2 best response to a strategy x of 1, is a vector y € 5,
that minimizes x' My. Player's 1 best response to a strategy y of 2 is
x € G; that maximizes x' My.

e Let 3(x) = min,cs, x' My be the best expected payoff of 2 against x.
Let a(y) = maxes, x' My be the best expected payoff of 1 to y.

e A strategy profile (x, y) is then a NE if and only if it satisfies
B(x) = x" My = a(y).

e Assume player 1 expects player 2 to select a best response to every
strategy x he can come up with. Player 1 then chooses a mixed

strategy x from S; that maximizes his expected payoff under this,
rather pessimistic, assumption.

e This worst-case optimal strategy for 1 satisfies 3(X) = max,cs, 5(x).
The worst-case optimal strategy for 2 is a mixed strategy v € S, that
satisfies a/(y) = minyes, a(y).



Worst-case optimal strategies and NE

e [o achieve NE in a zero-sum game, both players must select their
worst-case optimal strategies.

Lemma 2.20

(a) Forall x € S; and y € S,, we have 3(x) < x' My < a(y).

(b) If a strategy profile (x*, y*) is NE, then both strategies x* and y* are
worst-case optimal.

(c) Any strategies x* € 5; and y* € S, satisfying 5(x*) = a(y*) form NE
(x*, y*).

(a) This follows immediately from the definitions of 5 and «.

(b) Part (a) implies that 5(x) < a(y*) for every x € S5;. Since (x*, y*) is
NE, we have 5(x*) = a(y*) and thus B(x) < 5(x*) for every x € S;.
Thus, x* is a worst-case optimal for 1. Analogously for player 2.

(c) If B(x*) = a(y*), then (a) implies B(x*) = (x*)' My* = a(y*). ]



The Minimax Theorem

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players
exist and can be efficiently computed. There is a number v such that, for
any worst-case optimal strategies x* and y*, the strategy profile (x*, y*) is a
Nash equilibrium and B(x*) = (x*)' My* = a(y*) = v.

Figure: John von Neumann (1903-1957) and Oskar Morgenstern (1902-1977).

Sources: https://en.wikiquote.org and https://austriainusa.org




The Minimax Theorem: remarks

e |t was a starting point of game theory.

e Proved by Von Neumann in 1928 (predates Nash's Theorem).

e “As far as | can see, there could be no theory of games ... without
that theorem ... | thought there was nothing worth publishing until the
Minimax Theorem was proved.” (Von Neumann).

e [he Minimax theorem tells us everything about zero-sum games: there
is NE and it can be found efficiently. Moreover, there is a unique value
of the game v = (x*)" M(y*) of the payoff attained in any NE (x*, y*).

e [here are no secrets in zero-sum games: strategies known in advance
change nothing, each player can choose a worst-case optimal strategy
and get payoff > v. If the opponent chooses his worst-case optimal
strategy, then his payoff is always < v.

e The name: the expanded equality 5(x*) = v = a(y*) becomes

max min x' My = v = min maxx' My.
xES yeSy yES, x€5

e Original proof uses Brouwer's theorem. We will use linear programming.
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Source: https://czthomas.files.wordpress.com

Thank you for your attention.



