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Proof of Nash’s Theorem



Nash equilibria in normal-form games

Rock Paper Scissors

Rock (0,0) (-1,1) (1,-1)

Paper (1,-1) (0,0) (-1,1)

Scissors (-1,1) (1,-1) (0,0)

Sources: https://en.wikipedia.org/

• We introduced perhaps the most influential solution concept, which
captures a notion of stability.

• The best response of player i to a strategy profile s−i is a mixed
strategy s∗i such that ui(s

∗
i ; s−i) ≥ ui(s

′
i ; s−i) for each s ′i ∈ Si .

• For a normal-form game G = (P ,A, u) of n players, a Nash equilibrium
(NE) in G is a strategy profile (s1, . . . , sn) such that si is a best
response of player i to s−i for every i ∈ P .

• Amazingly, every normal-form game has a Nash equilibrium.
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Nash’s Theorem

Nash’s Theorem (Theorem 2.16)

Every normal-form game has a Nash equilibrium.

Figure: John Forbes Nash Jr. (1928–2015) and his depiction in the movie A
Beautiful mind.

Sources: https://britannica.com and https://medium.com



Preparations for the proof of Nash’s theorem

• The proof is essentially topological, as its main ingredient is a
fixed-point theorem. We use a theorem due to Brouwer.

• For d ∈ N, a subset X of Rd is compact if X is closed and bounded.

• We say that a subset Y of Rd is convex if every line segment
containing two points from Y is fully contained in Y . Formally: for all
x , y from Y , tx + (1− t)y ∈ Y for every t ∈ [0, 1].

• For n affinely independent points x1, . . . , xn ∈ Rd , an (n − 1)-simplex
∆n on x1, . . . , xn is the set of convex combinations of the points
x1, . . . , xn. Each simplex is a compact convex set in Rd .

Lemma (Lemma 2.18)

For n, d1, . . . , dn ∈ N, let K1, . . . ,Kn be compact sets, each Ki lying in Rdi .
Then, K1 × · · · × Kn is a compact set in Rd1+···+dn .
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Brouwer’s Fixed Point Theorem

• For each d ∈ N, let K be a non-empty compact convex set in Rd and
f : K → K be a continuous mapping. Then, there exists a fixed point
x0 ∈ K for f , that is, f (x0) = x0.

Figure: L. E. J. Brouwer (1881–1966).

Source: https://arxiv.org/pdf/1612.06820.pdf

• https://www.youtube.com/watch?v=csInNn6pfT4&t=268s&ab_

channel=Vsauce

https://www.youtube.com/watch?v=csInNn6pfT4&t=268s&ab_channel=Vsauce
https://www.youtube.com/watch?v=csInNn6pfT4&t=268s&ab_channel=Vsauce
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Proof of Nash’s Theorem I

• Let G = (P ,A, u) be a normal-form game of n players. Recall that Si is
the set of mixed strategies of player i .

• We want to apply Brouwer’s theorem, thus we need to find a suitable
compact convex body K and a continuous mapping f : K → K whose
fixed points are NE in G .

• We start with K . Let K = S1 × · · · × Sn be the set of all mixed
strategies.

◦ We verify that K is compact and convex.
◦ By definition, each Si is, a simplex which is compact and convex.
◦ By Lemma 2.18, the set K = S1 × · · · × Sn is compact.
◦ For any strategy profiles s = (s1, . . . , sn), s

′ = (s ′1, . . . , s
′
n) ∈ K and

a number t ∈ [0, 1], the point

ts + (1− t)s ′ = (ts1 + (1− t)s ′1, . . . , tsn + (1− t)s ′n)

is also a mixed-strategy profile in K . Thus, K is convex.
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Proof of Nash’s Theorem II

• We now find the continuous mapping f : K → K .

• For every player i ∈ P and action ai ∈ Ai , we define a mapping
φi ,ai : K → R by setting

φi ,ai (s) = max{0, ui(ai ; s−i)− ui(s)}.

◦ φi ,ai (s) > 0 iff i can improve his payoff by using ai instead of si .
◦ By the definition of ui , this mapping is continuous.

• Given s ∈ K , we define a new “improved” strategy profile s ′ ∈ K as

s ′i (ai) =
si(ai) + φi ,ai (s)∑

bi∈Ai
(si(bi) + φi ,bi (s))

=
si(ai) + φi ,ai (s)

1 +
∑

bi∈Ai
φi ,bi (s)

.

◦ “Increase probability at actions that are better responses to s−i .”
◦ s ′ ∈ K as each s ′i (ai) lies in [0, 1] and

∑
ai∈Ai

s ′i (ai) = 1.

• We then define f by setting f (s) = s ′.
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Proof of Nash’s Theorem III

• Then, f is continuous, since the mappings φi ,ai are.
• It remains to show that fixed points of f are exactly NE in G . Then,
Brouwer’s theorem gives us a fixed point of f , which is NE in G .

• First, if s is NE, then all functions φi ,ai are constant zero functions and
thus f (s) = s. So s is a fixed point for f .

• Second, assume that s = (s1, . . . , sn) ∈ K is a fixed point for f .
◦ For any player i , there is a′i ∈ Ai with si(ai) > 0 such that
ui(a

′
i ; s−i) ≤ ui(s). Otherwise, ui(s) <

∑
ai∈Ai

si(ai)ui(ai ; s−i),
which is impossible by the linearity of the expected payoff.

◦ Then, φi ,a′i
(s) = 0 and we get s ′i (a

′
i) =

si (a
′
i )

1+
∑

bi∈Ai
φi,bi

(s)
.

◦ Since s is a fixed point, we get s ′i (a
′
i) = si(a

′
i) and, since

si(a
′
i) > 0, the denominator in the denominator is 1. This means

that φi ,bi (s) = 0 for every bi ∈ Ai . It follows that s is NE as

ui(s
′′
i ; s−i) =

∑
bi∈Ai

s ′′i (bi)ui(bi ; s−i) ≤
∑
bi∈Ai

s ′′i (bi)ui(s) = ui(s).
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Nash’s Theorem: remarks

• Two pages worth of Nobel prize!

Sources: J. F. Nash: Equilibrium points in n-person games (1950).

• Requires finite numbers of players and actions, both assumptions are
necessary. (Consider 2-player game “who guesses larger number wins”.)

• The proof is non-constructive. How to find NE efficiently?
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Pareto optimality

• A brief detour: another example of an interesting solution concept,
other than NE.

• We want to capture “the best” state of a game. Might be difficult,
consider the Battle of sexes.

• A strategy profile s in G Pareto dominates s ′, written s ′ ≺ s, if, for
every player i , ui(s) ≥ ui(s

′), and there exists a player j such that
uj(s) > uj(s

′).

◦ The relation ≺ is a partial ordering of the set S of all strategy
profiles of G .

◦ The outcomes of G that are considered best are the maximal
elements of S in ≺.

• A strategy profile s ∈ S is Pareto optimal if there does not exist
another strategy profile s ′ ∈ S that Pareto dominates s.

◦ In zero-sum games, all strategy profiles are Pareto-optimal.
◦ Not all NE are Pareto-optimal (the NE in Prisoner’s dilemma)
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Vilfredo Pareto

• an Italian engineer, sociologist, economist, political scientist, and
philosopher.

Figure: Vilfredo Pareto (1848–1923).
Sources: https://en.wikipedia.org and https://medium.com/

• Pareto principle: for many outcomes roughly 80% of consequences
come from 20% of the causes.
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Finding Nash equilibria

• We know that NE exist in every normal-form game (Nash’s theorem).

• However, we do not have any algorithm for how to find them yet.

• We start with a simple class of 2-player games, so-called zero-sum
games.

• We show that we can find NE efficiently in this case. In fact, we show
that NE “solves” zero-sum games completely.

• Historically, zero-sum games were considered first in game game theory
(by Morgenstern and Von Neumann in the 1940s).
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Zero-sum games

• Two-player games (P ,A, u) where u1(a) = −u2(a) for every a ∈ A.

Rock Paper Scissors

Rock (0,0) (-1,1) (1,-1)

Paper (1,-1) (0,0) (-1,1)

Scissors (-1,1) (1,-1) (0,0)

Sources: https://en.wikipedia.org/
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Zero-sum games examples: chess

Source: https://edition.cnn.com/



Zero-sum games examples: table tennis

Source: https://www.reddit.com/



Zero-sum games examples: derivative trading

Source: https://www.linkedin.com/



Zero-sum games examples: elections

Source: https://news.sky.com/



Zero-sum games examples: many more

Source: https://lhongtortai.com/collection/what-is-a-non-zero-sum-game



Representing zero-sum games

• With zero-sum games, our notation simplifies.

• Let G = (P ,A = A1 × A2, u) be a zero-sum game. That is,
u1(a) + u2(a) = 0 for every a ∈ A.

• If A1 = {1, . . . ,m} and A2 = {1, . . . , n}, then G can be represented
with an m × n payoff matrix M where Mi ,j = u1(i , j) = −u2(i , j).

• For a strategy profile (s1, s2), we write xi = s1(i) and yj = s2(j),
representing (s1, s2) with mixed strategy vectors x = (x1, . . . , xm) and
y = (y1, . . . , yn) that satisfy

∑m
i=1 xi = 1 and

∑n
j=1 yj = 1.

• The expected payoff of player 1 then equals

u1(s) =
∑

a=(i ,j)∈A

u1(a)s1(i)s2(j) =
m∑
i=1

n∑
j=1

Mi ,jxiyj = x⊤My = −u2(s).
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Worst-case optimal strategies

• Thus, player’s 2 best response to a strategy x of 1, is a vector y ∈ S2

that minimizes x⊤My . Player’s 1 best response to a strategy y of 2 is
x ∈ S1 that maximizes x⊤My .

• Let β(x) = miny∈S2 x
⊤My be the best expected payoff of 2 against x .

Let α(y) = maxx∈S1 x
⊤My be the best expected payoff of 1 to y .

• A strategy profile (x , y) is then a NE if and only if it satisfies
β(x) = x⊤My = α(y).

• Assume player 1 expects player 2 to select a best response to every
strategy x he can come up with. Player 1 then chooses a mixed
strategy x from S1 that maximizes his expected payoff under this,
rather pessimistic, assumption.

• This worst-case optimal strategy for 1 satisfies β(x) = maxx∈S1 β(x).
The worst-case optimal strategy for 2 is a mixed strategy y ∈ S2 that
satisfies α(y) = miny∈S2 α(y).
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Worst-case optimal strategies and NE

• To achieve NE in a zero-sum game, both players must select their
worst-case optimal strategies.

Lemma 2.20

(a) For all x ∈ S1 and y ∈ S2, we have β(x) ≤ x⊤My ≤ α(y).

(b) If a strategy profile (x∗, y ∗) is NE, then both strategies x∗ and y ∗ are
worst-case optimal.

(c) Any strategies x∗ ∈ S1 and y ∗ ∈ S2 satisfying β(x∗) = α(y ∗) form NE
(x∗, y ∗).

(a) This follows immediately from the definitions of β and α.

(b) Part (a) implies that β(x) ≤ α(y ∗) for every x ∈ S1. Since (x∗, y ∗) is
NE, we have β(x∗) = α(y ∗) and thus β(x) ≤ β(x∗) for every x ∈ S1.
Thus, x∗ is a worst-case optimal for 1. Analogously for player 2.

(c) If β(x∗) = α(y ∗), then (a) implies β(x∗) = (x∗)⊤My ∗ = α(y ∗).
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The Minimax Theorem

The Minimax Theorem (Theorem 2.21)

For every zero-sum game, worst-case optimal strategies for both players
exist and can be efficiently computed. There is a number v such that, for
any worst-case optimal strategies x∗ and y ∗, the strategy profile (x∗, y ∗) is a
Nash equilibrium and β(x∗) = (x∗)⊤My ∗ = α(y ∗) = v .

Figure: John von Neumann (1903–1957) and Oskar Morgenstern (1902–1977).
Sources: https://en.wikiquote.org and https://austriainusa.org
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The Minimax Theorem: remarks

• It was a starting point of game theory.

• Proved by Von Neumann in 1928 (predates Nash’s Theorem).

• “As far as I can see, there could be no theory of games . . . without
that theorem . . . I thought there was nothing worth publishing until the
Minimax Theorem was proved.” (Von Neumann).

• The Minimax theorem tells us everything about zero-sum games: there
is NE and it can be found efficiently. Moreover, there is a unique value
of the game v = (x∗)⊤M(y ∗) of the payoff attained in any NE (x∗, y ∗).

• There are no secrets in zero-sum games: strategies known in advance
change nothing, each player can choose a worst-case optimal strategy
and get payoff ≥ v . If the opponent chooses his worst-case optimal
strategy, then his payoff is always ≤ v .

• The name: the expanded equality β(x∗) = v = α(y ∗) becomes

max
x∈S1

min
y∈S2

x⊤My = v = min
y∈S2

max
x∈S1

x⊤My .

• Original proof uses Brouwer’s theorem. We will use linear programming.
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Thank you for your attention.


