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Multi-parameter mechanism design

• In multi-parameter mechanism design, we have the following setting:

◦ n strategic bidders,
◦ a finite set Ω of outcomes,
◦ each bidder i has a private valuation vi(ω) ≥ 0 for every outcome
ω ∈ Ω.

• Each bidder i submits his bids bi(ω) ≥ 0 for each ω ∈ Ω and our goal is
to design a mechanism that selects an outcome ω ∈ Ω so that it
maximizes the social surplus

∑n
i=1 vi(ω).

• The valuations now depend on possible outcomes, so, for example, if
bidders compete for a single item, each bidder can have an opinion
about each other bidder winning the item as well.

• Example (single-item auction): we set Ω = {ω1, . . . , ωn, ω∅} has size
n + 1 and each outcome ωi with i ∈ N corresponds to the winner i of
the item. The last outcome ω∅ corresponds to nobody getting the item.
The valuations are vi(ωj) = 0 for every j ̸= i and vi(ωi) = vi otherwise.
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The Vickrey–Clarke–Groves (VCG) mechanism

VCG mechanism (Theorem 3.18)

In every multi-parameter mechanism design environment, there is a DSIC
social-surplus-maximizing mechanism.

Figure: William Vickrey, Edward H. Clarke, and Theodore Groves.
Sources: : https://en.wikipedia.org, https://www.demandrevelation.com/, and https://www.researchate.net/

• We now present the proof.
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VCG mechanism: proof idea

• The key idea is to consider the the loss of social surplus inflicted on the
other n − 1 bidders by the presence of bidder i . For example, in
single-item auctions, the winning bidder inflicts a social surplus loss of
the second-highest bid to the others.

• We define the payments to force each bidder to care about the others.
• We will see that the following allocation rule works

x(b) = argmaxω∈Ω

n∑
i=1

bi(ω)

together with this payment formula

pi(b) = max
ω∈Ω


n∑

j=1
j ̸=i

bj(ω)

−
n∑

j=1
j ̸=i

bj(ω
∗),

where ω∗ = x(b) is the outcome chosen by our allocation rule x for
given bids b.
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VCG auction example

• The government wants to construct roads connecting diverse cities, and
he wants cities to pay for the roads.

Sources: https://www.science4all.org/article/auction-design/
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VCG auction example

Sources: https://www.science4all.org/article/auction-design/

• Cities pay their negative externalities on the collectivity. Other cities
would be happier without the biggest city (NYC, say). How much
happier they would be is exactly what NYC must pay.
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VCG auction example

Sources: https://www.science4all.org/article/auction-design/

• If NYC was not there, then road network number 3 (RN3) would have
been chosen, as opposed to RN4. The value of RN3 for the other cities
would be 35 M$, as opposed to the 26 M$ of RN4. Therefore, the
negative externality of NYC is 35− 26 = 9 M$.
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VCG mechanism: proof I

• We proceed in two steps. First, we assume, without justification, that
bidders truthfully reveal their private information, and figure out which
outcome from Ω to pick.

• We maximize the social surplus, so our allocation rule needs to pick an
outcome that maximizes the social surplus. So, given bids
b = ((b1(ω))ω∈Ω, . . . , (bn(ω))ω∈Ω), we define the allocation rule by

x(b) = argmaxω∈Ω

n∑
i=1

bi(ω).

• Second, we need to choose payment rule p = (p1, . . . , pn) so that the
multi-parameter mechanism (x , p) is DSIC.

• We choose p so that our assumption about truthful bidders is justified.

• The key idea turns is considering the the loss of social surplus inflicted
on the other n − 1 bidders by the presence of bidder i .
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VCG mechanism: proof II

• Formally, we choose the payment rule as

pi(b) = max
ω∈Ω


n∑

j=1
j ̸=i

bj(ω)

−
n∑

j=1
j ̸=i

bj(ω
∗)

for every bidder i , where ω∗ = x(b) is the outcome chosen by our
allocation rule x for given bids b.

• The first term is the surplus of the remaining n − 1 bidders if we omit
bidder i . The second term is the social surplus if we consider bidder i .

• By definition, the mechanism (x , p) is maximizing social surplus,
assuming truthful bids. It remains to prove that it is DSIC.

• That is, we need to show that each bidder i maximizes his utility
vi(x(b))− pi(b) by setting bi(ω) = vi(ω) for every ω ∈ Ω.

• One can show that we have 0 ≤ pi(b) ≤ bi(ω
∗) (Exercise), hence

truthtelling agents are guaranteed non-negative utility.
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VCG mechanism: proof III

• We fix bidder i and the bids of other bidders b−i .
• If x(b) = ω∗, then, by the choice of p, the utility of bidder i equals

vi(ω
∗)− pi(b) =

(
vi(ω

∗) +
∑
j ̸=i

bj(ω
∗)

)
−

(
max
ω∈Ω

{∑
j ̸=i

bj(ω)

})
.

• The second term is independent of bi , thus bidder i needs to maximize
the first term of the expansion in order to maximize his utility.
However, bidder i cannot influence ω∗ directly, the mechanism (x , p)
gets to choose ω∗ so that sums of bids are maximized.

• Best case for bidder i is when the mechanism picks ω∗ that maximizes
the first term of the expansion, that is, bidder i wants to select

argmaxω∈Ω

{
vi(ω) +

∑
j ̸=i

bj(ω)

}
.

• If i bids truthfully, then this agrees with our choice of x . Thus, bidding
truthfully results in maximizing i ’s utility.
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Proof of Myerson’s lemma



Myerson’s lemma

Myerson’s lemma (Theorem 3.8)

In a single-parameter environment, the following three claims hold.

(a) An allocation rule is implementable if and only if it is monotone.

(b) If an allocation rule x is monotone, then there exists a unique payment
rule p such that the mechanism (x , p) is DSIC (assuming that bi = 0
implies pi(b) = 0).

(c) The payment rule p is given by the following explicit formula

pi(bi ; b−i) =

∫ bi

0

z · d

dz
xi(z ; b−i) dz

for every i ∈ {1, . . . , n}.

• We have applied this result many times, but we have not seen its proof
yet. Let’s fix that.
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Proof of Myerson’s lemma I

• Let x be an allocation rule and p be a payment rule such that (x , p) is
DSIC. We prove all three claims at once use a clever swapping trick.

• The DSIC property says that, for every z ,
ui(z ; b−i) = vi · xi(z ; b−i)− pi(z ; b−i) ≤ vi · xi(vi ; b−i)− pi(vi ; b−i).

• For two possible bids y and z with 0 ≤ y < z , bidder i might as well
have private valuation z and can submit the false bid y if he wants,
thus the DSIC condition gives

ui(y ; b−i) = z ·xi(y ; b−i)−pi(y ; b−i) ≤ z ·xi(z ; b−i)−pi(z ; b−i) = ui(z ; b−i).

• Analogously, we can have vi = y and bi = z and thus (x , p) satisfies

ui(z ; b−i) = y ·xi(z ; b−i)−pi(z ; b−i) ≤ y ·xi(y ; b−i)−pi(y ; b−i) = ui(y ; b−i).

• By putting these inequalities together, we obtain the following payment
difference sandwich:

z(xi(y ; b−i)− xi(z ; b−i)) ≤ pi(y ; b−i)− pi(z ; b−i) ≤ y(xi(y ; b−i)− xi(z ; b−i)).

• Since 0 ≤ y < z , we obtain xi(y ; b−i) ≤ xi(z ; b−i). Thus, if (x , p) is
DSIC, then x is monotone.
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Proof of Myerson’s lemma II

• In the rest of the proof, we assume that the allocation x is monotone.

• Let i and b−i be fixed, so we consider xi and pi as functions of z .

• First, we also assume that the function xi is piecewise constant. Thus,
the graph of xi consists of a finite number of intervals with “jumps”
between consecutive intervals:

xi(z; b−i)

z0

} jump(xi, t)

t

• For a piecewise constant function f , we use jump(f , t) to denote the
magnitude of the jump of f at point t.

• If we fix z in the payment difference sandwich and let y approach z
from below, then both sides become 0 if there is no jump of xi at z . If
jump(xi , z) = h > 0, then both sides tend to z · h.



Proof of Myerson’s lemma II

• In the rest of the proof, we assume that the allocation x is monotone.

• Let i and b−i be fixed, so we consider xi and pi as functions of z .

• First, we also assume that the function xi is piecewise constant. Thus,
the graph of xi consists of a finite number of intervals with “jumps”
between consecutive intervals:

xi(z; b−i)

z0

} jump(xi, t)

t

• For a piecewise constant function f , we use jump(f , t) to denote the
magnitude of the jump of f at point t.

• If we fix z in the payment difference sandwich and let y approach z
from below, then both sides become 0 if there is no jump of xi at z . If
jump(xi , z) = h > 0, then both sides tend to z · h.



Proof of Myerson’s lemma II

• In the rest of the proof, we assume that the allocation x is monotone.

• Let i and b−i be fixed,

so we consider xi and pi as functions of z .

• First, we also assume that the function xi is piecewise constant. Thus,
the graph of xi consists of a finite number of intervals with “jumps”
between consecutive intervals:

xi(z; b−i)

z0

} jump(xi, t)

t

• For a piecewise constant function f , we use jump(f , t) to denote the
magnitude of the jump of f at point t.

• If we fix z in the payment difference sandwich and let y approach z
from below, then both sides become 0 if there is no jump of xi at z . If
jump(xi , z) = h > 0, then both sides tend to z · h.



Proof of Myerson’s lemma II

• In the rest of the proof, we assume that the allocation x is monotone.

• Let i and b−i be fixed, so we consider xi and pi as functions of z .

• First, we also assume that the function xi is piecewise constant. Thus,
the graph of xi consists of a finite number of intervals with “jumps”
between consecutive intervals:

xi(z; b−i)

z0

} jump(xi, t)

t

• For a piecewise constant function f , we use jump(f , t) to denote the
magnitude of the jump of f at point t.

• If we fix z in the payment difference sandwich and let y approach z
from below, then both sides become 0 if there is no jump of xi at z . If
jump(xi , z) = h > 0, then both sides tend to z · h.



Proof of Myerson’s lemma II

• In the rest of the proof, we assume that the allocation x is monotone.

• Let i and b−i be fixed, so we consider xi and pi as functions of z .

• First, we also assume that the function xi is piecewise constant.

Thus,
the graph of xi consists of a finite number of intervals with “jumps”
between consecutive intervals:

xi(z; b−i)

z0

} jump(xi, t)

t

• For a piecewise constant function f , we use jump(f , t) to denote the
magnitude of the jump of f at point t.

• If we fix z in the payment difference sandwich and let y approach z
from below, then both sides become 0 if there is no jump of xi at z . If
jump(xi , z) = h > 0, then both sides tend to z · h.



Proof of Myerson’s lemma II

• In the rest of the proof, we assume that the allocation x is monotone.

• Let i and b−i be fixed, so we consider xi and pi as functions of z .

• First, we also assume that the function xi is piecewise constant. Thus,
the graph of xi consists of a finite number of intervals with “jumps”
between consecutive intervals:

xi(z; b−i)

z0

} jump(xi, t)

t

• For a piecewise constant function f , we use jump(f , t) to denote the
magnitude of the jump of f at point t.

• If we fix z in the payment difference sandwich and let y approach z
from below, then both sides become 0 if there is no jump of xi at z . If
jump(xi , z) = h > 0, then both sides tend to z · h.



Proof of Myerson’s lemma II

• In the rest of the proof, we assume that the allocation x is monotone.

• Let i and b−i be fixed, so we consider xi and pi as functions of z .

• First, we also assume that the function xi is piecewise constant. Thus,
the graph of xi consists of a finite number of intervals with “jumps”
between consecutive intervals:

xi(z; b−i)

z0

} jump(xi, t)

t

• For a piecewise constant function f , we use jump(f , t) to denote the
magnitude of the jump of f at point t.

• If we fix z in the payment difference sandwich and let y approach z
from below, then both sides become 0 if there is no jump of xi at z . If
jump(xi , z) = h > 0, then both sides tend to z · h.



Proof of Myerson’s lemma II

• In the rest of the proof, we assume that the allocation x is monotone.

• Let i and b−i be fixed, so we consider xi and pi as functions of z .

• First, we also assume that the function xi is piecewise constant. Thus,
the graph of xi consists of a finite number of intervals with “jumps”
between consecutive intervals:

xi(z; b−i)

z0

} jump(xi, t)

t

• For a piecewise constant function f , we use jump(f , t) to denote the
magnitude of the jump of f at point t.

• If we fix z in the payment difference sandwich and let y approach z
from below, then both sides become 0 if there is no jump of xi at z . If
jump(xi , z) = h > 0, then both sides tend to z · h.



Proof of Myerson’s lemma II

• In the rest of the proof, we assume that the allocation x is monotone.

• Let i and b−i be fixed, so we consider xi and pi as functions of z .

• First, we also assume that the function xi is piecewise constant. Thus,
the graph of xi consists of a finite number of intervals with “jumps”
between consecutive intervals:

xi(z; b−i)

z0

} jump(xi, t)

t

• For a piecewise constant function f , we use jump(f , t) to denote the
magnitude of the jump of f at point t.

• If we fix z in the payment difference sandwich and let y approach z
from below, then both sides become 0 if there is no jump of xi at z . If
jump(xi , z) = h > 0, then both sides tend to z · h.



Proof of Myerson’s lemma III

• Thus, if the mechanism (x , p) is supposed to be DSIC, then the
following constraint on p must hold for every z :

jump(pi , z) = z · jump(xi , z).

• If we combine this constraint with the initial condition pi(0; b−i) = 0,
we obtain a formula for the payment function p for every bidder i and
bids b−i of other bidders,

pi(bi ; b−i) =
ℓ∑

j=1

zj · jump(xi( · ; b−i), zj),

where z1, . . . , zℓ are the breakpoints of the allocation function
xi( · ; b−i) in the interval [0, bi ].

• With some additional facts from calculus, this argument can be
generalized to general monotone functions xi . We omit the details.



Proof of Myerson’s lemma III

• Thus, if the mechanism (x , p) is supposed to be DSIC, then the
following constraint on p must hold for every z :

jump(pi , z) = z · jump(xi , z).

• If we combine this constraint with the initial condition pi(0; b−i) = 0,
we obtain a formula for the payment function p for every bidder i and
bids b−i of other bidders,

pi(bi ; b−i) =
ℓ∑

j=1

zj · jump(xi( · ; b−i), zj),

where z1, . . . , zℓ are the breakpoints of the allocation function
xi( · ; b−i) in the interval [0, bi ].

• With some additional facts from calculus, this argument can be
generalized to general monotone functions xi . We omit the details.



Proof of Myerson’s lemma III

• Thus, if the mechanism (x , p) is supposed to be DSIC, then the
following constraint on p must hold for every z :

jump(pi , z) = z · jump(xi , z).

• If we combine this constraint with the initial condition pi(0; b−i) = 0,
we obtain a formula for the payment function p for every bidder i and
bids b−i of other bidders,

pi(bi ; b−i) =
ℓ∑

j=1

zj · jump(xi( · ; b−i), zj),

where z1, . . . , zℓ are the breakpoints of the allocation function
xi( · ; b−i) in the interval [0, bi ].

• With some additional facts from calculus, this argument can be
generalized to general monotone functions xi . We omit the details.



Proof of Myerson’s lemma III

• Thus, if the mechanism (x , p) is supposed to be DSIC, then the
following constraint on p must hold for every z :

jump(pi , z) = z · jump(xi , z).

• If we combine this constraint with the initial condition pi(0; b−i) = 0,
we obtain a formula for the payment function p for every bidder i and
bids b−i of other bidders,

pi(bi ; b−i) =
ℓ∑

j=1

zj · jump(xi( · ; b−i), zj),

where z1, . . . , zℓ are the breakpoints of the allocation function
xi( · ; b−i) in the interval [0, bi ].

• With some additional facts from calculus, this argument can be
generalized to general monotone functions xi . We omit the details.



Proof of Myerson’s lemma III

• Thus, if the mechanism (x , p) is supposed to be DSIC, then the
following constraint on p must hold for every z :

jump(pi , z) = z · jump(xi , z).

• If we combine this constraint with the initial condition pi(0; b−i) = 0,
we obtain a formula for the payment function p for every bidder i and
bids b−i of other bidders,

pi(bi ; b−i) =
ℓ∑

j=1

zj · jump(xi( · ; b−i), zj),

where z1, . . . , zℓ are the breakpoints of the allocation function
xi( · ; b−i) in the interval [0, bi ].

• With some additional facts from calculus, this argument can be
generalized to general monotone functions xi . We omit the details.



Proof of Myerson’s lemma III

• Thus, if the mechanism (x , p) is supposed to be DSIC, then the
following constraint on p must hold for every z :

jump(pi , z) = z · jump(xi , z).

• If we combine this constraint with the initial condition pi(0; b−i) = 0,
we obtain a formula for the payment function p for every bidder i and
bids b−i of other bidders,

pi(bi ; b−i) =
ℓ∑

j=1

zj · jump(xi( · ; b−i), zj),

where z1, . . . , zℓ are the breakpoints of the allocation function
xi( · ; b−i) in the interval [0, bi ].

• With some additional facts from calculus, this argument can be
generalized to general monotone functions xi .

We omit the details.



Proof of Myerson’s lemma III

• Thus, if the mechanism (x , p) is supposed to be DSIC, then the
following constraint on p must hold for every z :

jump(pi , z) = z · jump(xi , z).

• If we combine this constraint with the initial condition pi(0; b−i) = 0,
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Proof of Myerson’s lemma IV

• It remains to show that if x is monotone, then the mechanism (x , p) is
indeed DSIC.

• This argument works in general, but we present it only for piecewise
constant functions.

• We recall that the utility ui(bi ; b−i) = vi · xi(bi ; b−i)− pi(bi ; b−i).

• Using the expression of the payment, we see that the payment
pi(bi ; b−i) of bidder i corresponds to the part of [0, bi ]× [0, xi(bi ; b−i)]
lying to the left of the curve xi( · ; b−i).

• It will follow from a picture that it is optimal for bidder i to bid bi = vi .
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Revelation principle



Going beyond DSIC?

• So far we have considered only DSIC mechanisms, as they are easy to
play and predict. A natural question is whether we lose anything by
restricting ourselves to these mechanisms.

• We split the DSIC property into the following two parts:

◦ Each bidder has a dominant strategy, no matter what his private
valuation is.

◦ This dominant strategy is direct revelation (that is, truthtelling).

• Example (auction that satisfies only the first property):

◦ Consider a single-item auction, where the seller on given bids
(b1, . . . , bn) runs a Vickrey’s auction on bids (2b1, . . . , 2bn).

◦ Then each bidder has a dominant strategy and thus the first
property is satisfied.

◦ However, this dominant strategy is not direct revelation, but to bid
half of your value.

• So is DSIC too restrictive?
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Revelation principle

• No! We will see that only the first condition matters while the second
one then comes for free.

• Clearly, the first condition is not always satisfied (first-price auctions).
Without it, it is hard to predict the behavior of the bidders. Although it
sometimes makes sense to relax the first condition.

• The Revelation principle says that there is no need to relax the second
condition.

Revelation principle (Theorem 3.19)

For every multi-parameter mechanism M in which every bidder has a
dominant strategy, no matter what his private valuation is, there is an
equivalent mechanism M ′ in which each bidder has a dominant strategy that
is a direct revelation.
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Proof of the Revelation principle

• The proof proceeds by a simulation argument.

• For each bidder i and his valuations vi(ω)ω∈Ω, let si(vi(ω)ω∈Ω) be the
dominant strategy of i in the mechanism M .

• We now construct the mechanism M ′ that additionally satisfies the
second condition:

◦ The mechanism M ′ accepts sealed bids b1(ω)ω∈Ω, . . . , bn(ω)ω∈Ω
from the bidders.

◦ Then, M ′ submits the bids s1(b1(ω)ω∈Ω), . . . , sn(bn(ω)ω∈Ω) to M
and M ′ outputs the same outcome as M .

• The direct revelation is a dominant strategy in M ′, as if a bidder i has
valuations vi(ω)ω∈Ω, then submitting any other bid than vi(ω)ω∈Ω can
only result in playing a different strategy than si(vi(ω)ω∈Ω) in M ′. This,
however, can only decrease the utility of i .
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◦ Then, M ′ submits the bids s1(b1(ω)ω∈Ω), . . . , sn(bn(ω)ω∈Ω) to M
and M ′ outputs the same outcome as M .

• The direct revelation is a dominant strategy in M ′, as if a bidder i has
valuations vi(ω)ω∈Ω, then submitting any other bid than vi(ω)ω∈Ω can
only result in playing a different strategy than si(vi(ω)ω∈Ω) in M ′. This,
however, can only decrease the utility of i .
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Exams info

• Exam format:

◦ Oral exam with preparation, 3 hours max.
◦ I will ask about three topics, one survey question, one question
with proofs, and one exercise.

◦ The more points you have, the easier the exam is. If you have at
least 25 points, you do not need to solve the exercise part.

• Dates (so far):

◦ 14.1. – 9:00–19:00, capacity 30
◦ 20.1. – 9:00–19:00, capacity 30
◦ 28.1. – 9:00–16:00, capacity 20
◦ 3.2. – 9:00–16:00, capacity 20
◦ 11.2. – 9:00–16:00, capacity 20

• What you should know: everything that we covered (everything is
included in the lecture notes).
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