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Revenue maximization: what we know

• For revenue maximization, we had to consider Bayesian model, where
each bidder i draws his valuation according to some probability
distribution Fi (with density fi) that is known to the seller. We then try
to maximize the expected revenue.

• In DSIC mechanisms, maximizing the expected revenue is then the
same as maximizing the expected virtual social surplus∑n

i=1 φi(vi)xi(v). (Theorem 3.13) where

φi(x) = x − 1− Fi(x)

fi(x)
.

• If F1 = · · · = Fn = F is regular, then Vickrey’s auction with reserve
φ−1(0) maximizes the expected revenue among all single-item auctions.

• What if the seller does not know the distributions F1, . . . ,Fn?



Revenue maximization: what we know

• For revenue maximization, we had to consider Bayesian model, where
each bidder i draws his valuation according to some probability
distribution Fi (with density fi) that is known to the seller.

We then try
to maximize the expected revenue.

• In DSIC mechanisms, maximizing the expected revenue is then the
same as maximizing the expected virtual social surplus∑n

i=1 φi(vi)xi(v). (Theorem 3.13) where

φi(x) = x − 1− Fi(x)

fi(x)
.

• If F1 = · · · = Fn = F is regular, then Vickrey’s auction with reserve
φ−1(0) maximizes the expected revenue among all single-item auctions.

• What if the seller does not know the distributions F1, . . . ,Fn?



Revenue maximization: what we know

• For revenue maximization, we had to consider Bayesian model, where
each bidder i draws his valuation according to some probability
distribution Fi (with density fi) that is known to the seller. We then try
to maximize the expected revenue.

• In DSIC mechanisms, maximizing the expected revenue is then the
same as maximizing the expected virtual social surplus∑n

i=1 φi(vi)xi(v). (Theorem 3.13) where

φi(x) = x − 1− Fi(x)

fi(x)
.

• If F1 = · · · = Fn = F is regular, then Vickrey’s auction with reserve
φ−1(0) maximizes the expected revenue among all single-item auctions.

• What if the seller does not know the distributions F1, . . . ,Fn?



Revenue maximization: what we know

• For revenue maximization, we had to consider Bayesian model, where
each bidder i draws his valuation according to some probability
distribution Fi (with density fi) that is known to the seller. We then try
to maximize the expected revenue.

• In DSIC mechanisms, maximizing the expected revenue is then the
same as maximizing the expected virtual social surplus∑n

i=1 φi(vi)xi(v). (Theorem 3.13) where

φi(x) = x − 1− Fi(x)

fi(x)
.

• If F1 = · · · = Fn = F is regular, then Vickrey’s auction with reserve
φ−1(0) maximizes the expected revenue among all single-item auctions.

• What if the seller does not know the distributions F1, . . . ,Fn?



Revenue maximization: what we know

• For revenue maximization, we had to consider Bayesian model, where
each bidder i draws his valuation according to some probability
distribution Fi (with density fi) that is known to the seller. We then try
to maximize the expected revenue.

• In DSIC mechanisms, maximizing the expected revenue is then the
same as maximizing the expected virtual social surplus∑n

i=1 φi(vi)xi(v). (Theorem 3.13) where

φi(x) = x − 1− Fi(x)

fi(x)
.

• If F1 = · · · = Fn = F is regular, then Vickrey’s auction with reserve
φ−1(0) maximizes the expected revenue among all single-item auctions.

• What if the seller does not know the distributions F1, . . . ,Fn?



Revenue maximization: what we know

• For revenue maximization, we had to consider Bayesian model, where
each bidder i draws his valuation according to some probability
distribution Fi (with density fi) that is known to the seller. We then try
to maximize the expected revenue.

• In DSIC mechanisms, maximizing the expected revenue is then the
same as maximizing the expected virtual social surplus∑n

i=1 φi(vi)xi(v). (Theorem 3.13) where

φi(x) = x − 1− Fi(x)

fi(x)
.

• If F1 = · · · = Fn = F is regular, then Vickrey’s auction with reserve
φ−1(0) maximizes the expected revenue among all single-item auctions.

• What if the seller does not know the distributions F1, . . . ,Fn?



The Bulow–Klemperer theorem



The Bulow–Klemperer theorem

The Bulow–Klemperer theorem (Theorem 3.15)

Let F = F1 = · · · = Fn be a regular probability distribution.Then,

Ev1,...,vn+1∼F [Rev(VAn+1)] ≥ Ev1,...,vn∼F [Rev(OPTF ,n)] ,

where Rev(VAn+1) is the revenue of Vickrey auction VAn+1 with n + 1
bidders (and no reserve) and Rev(OPTF ,n) denotes the revenue of the
optimal auction OPTF ,n for F with n bidders.

Figure: Jeremy Bulow and Paul Klemperer.
Sources: https://economics.stanford.edu/ and https://www.economics.ox.ac.uk/

• More competition is better than finding the right auction format.
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The Bulow–Klemperer theorem: remarks

• If F = F1 = · · · = Fn is a regular probability distribution, then

Ev1,...,vn+1∼F [Rev(VAn+1)] ≥ Ev1,...,vn∼F [Rev(OPTF ,n)].

• Recall that OPTF ,n is the Vickrey auction with the reserve price
φ−1(0), where φ is the virtual valuation function of F .

• The auction on the left side does not depend on F while the one on the
right side does.

• The Bulow–Kemperer theorem implies that in all possible single-item
auctions with identical regular probability distributions on valuations of
n ≥ 2 bidders, the expected revenue of Vickrey auction is at least
n−1
n
-fraction of the expected revenue of an optimal auction for the

same number of bidders (Exercise).

• Informally: extra competition is more important than getting the
auction format just right.



The Bulow–Klemperer theorem: remarks

• If F = F1 = · · · = Fn is a regular probability distribution, then

Ev1,...,vn+1∼F [Rev(VAn+1)] ≥ Ev1,...,vn∼F [Rev(OPTF ,n)].

• Recall that OPTF ,n is the Vickrey auction with the reserve price
φ−1(0), where φ is the virtual valuation function of F .

• The auction on the left side does not depend on F while the one on the
right side does.

• The Bulow–Kemperer theorem implies that in all possible single-item
auctions with identical regular probability distributions on valuations of
n ≥ 2 bidders, the expected revenue of Vickrey auction is at least
n−1
n
-fraction of the expected revenue of an optimal auction for the

same number of bidders (Exercise).

• Informally: extra competition is more important than getting the
auction format just right.



The Bulow–Klemperer theorem: remarks

• If F = F1 = · · · = Fn is a regular probability distribution, then

Ev1,...,vn+1∼F [Rev(VAn+1)] ≥ Ev1,...,vn∼F [Rev(OPTF ,n)].

• Recall that OPTF ,n is the Vickrey auction with the reserve price
φ−1(0), where φ is the virtual valuation function of F .

• The auction on the left side does not depend on F while the one on the
right side does.

• The Bulow–Kemperer theorem implies that in all possible single-item
auctions with identical regular probability distributions on valuations of
n ≥ 2 bidders, the expected revenue of Vickrey auction is at least
n−1
n
-fraction of the expected revenue of an optimal auction for the

same number of bidders (Exercise).

• Informally: extra competition is more important than getting the
auction format just right.



The Bulow–Klemperer theorem: remarks

• If F = F1 = · · · = Fn is a regular probability distribution, then

Ev1,...,vn+1∼F [Rev(VAn+1)] ≥ Ev1,...,vn∼F [Rev(OPTF ,n)].

• Recall that OPTF ,n is the Vickrey auction with the reserve price
φ−1(0), where φ is the virtual valuation function of F .

• The auction on the left side does not depend on F while the one on the
right side does.

• The Bulow–Kemperer theorem implies that in all possible single-item
auctions with identical regular probability distributions on valuations of
n ≥ 2 bidders, the expected revenue of Vickrey auction is at least
n−1
n
-fraction of the expected revenue of an optimal auction for the

same number of bidders (Exercise).

• Informally: extra competition is more important than getting the
auction format just right.



The Bulow–Klemperer theorem: remarks

• If F = F1 = · · · = Fn is a regular probability distribution, then

Ev1,...,vn+1∼F [Rev(VAn+1)] ≥ Ev1,...,vn∼F [Rev(OPTF ,n)].

• Recall that OPTF ,n is the Vickrey auction with the reserve price
φ−1(0), where φ is the virtual valuation function of F .

• The auction on the left side does not depend on F while the one on the
right side does.

• The Bulow–Kemperer theorem implies that in all possible single-item
auctions with identical regular probability distributions on valuations of
n ≥ 2 bidders, the expected revenue of Vickrey auction is at least
n−1
n
-fraction of the expected revenue of an optimal auction for the

same number of bidders (Exercise).

• Informally: extra competition is more important than getting the
auction format just right.



The Bulow–Klemperer theorem: remarks

• If F = F1 = · · · = Fn is a regular probability distribution, then

Ev1,...,vn+1∼F [Rev(VAn+1)] ≥ Ev1,...,vn∼F [Rev(OPTF ,n)].

• Recall that OPTF ,n is the Vickrey auction with the reserve price
φ−1(0), where φ is the virtual valuation function of F .

• The auction on the left side does not depend on F while the one on the
right side does.

• The Bulow–Kemperer theorem implies that in all possible single-item
auctions with identical regular probability distributions on valuations of
n ≥ 2 bidders, the expected revenue of Vickrey auction is at least
n−1
n
-fraction of the expected revenue of an optimal auction for the

same number of bidders (Exercise).

• Informally: extra competition is more important than getting the
auction format just right.



The Bulow–Klemperer theorem: proof

• We define an auxiliary auction A of n + 1 bidders as follows:

◦ Simulate the optimal auction OPTF ,n on the bidders 1, . . . , n,

◦ If the item was not awarded, then give it to bidder n + 1 for free.
• By definition, A always allocates the item and we have

Ev1,...,vn+1∼F [Rev(A)] = Ev1,...,vn∼F [Rev(OPTF ,n)] .

• We now argue that the Vickrey auction maximizes expected revenue
over all auctions that are guaranteed to allocate the item.

• It follows from Theorem 3.13 that such an optimal auction awards the
item to the bidder with the highest virtual valuation (even if this is
negative). Since F = F1 = · · · = Fn and F is regular, this bidder is
always the bidder with the highest valuation and the Vickrey auction
VAn+1 awards him the item.

• Thus, VAn+1 has expected revenue at least that of every auction that
always allocates the item, including A. Therefore

Ev1,...,vn+1∼F [Rev(VAn+1)] ≥ Ev1,...,vn+1∼F [Rev(A)] = Ev1,...,vn∼F [Rev(OPTF ,n)] .
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Knapsack auctions



Going back to social surplus

• Let us go back to mechanisms that maximize social surplus.

• We know what awesome mechanisms are in single-item auctions. We
also have Myerson’s lemma for designing DSIC mechanisms.

• Can we design an awesome mechanism for every single-parameter
environment?

• An awesome mechanism satisfies the following three properties:

◦ DSIC: everybody has dominant strategy “bid truthfully” which
guarantees non-negative utility,

◦ strong performance: we maximize social surplus if everybody bids
truthfully,

◦ computational efficiency: the mechanism runs in polynomial time.
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Auction example: scheduling TV commercials

• Bidders are companies such that each company has its own TV
commercial of length wi and is willing to pay vi in order to have the
commercial presented during a commercial break. The seller is a
television station with a commercial break of length W .

Sources: https://mountain.com/ and https://www.eq-international.com/

• Can we design an awesome mechanism that assigns the slots?
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Knapsack auction

• We formalize this auction as follows.
• In a knapsack auction of n bidders 1, . . . , n, each bidder i has publicly
known size wi ≥ 0 and a private valuation vi ≥ 0. There is a single
seller who has a capacity W ≥ 0. The feasible set X consists of
{0, 1}-vectors (x1, . . . , xn) such that

∑n
i=1 xiwi ≤ W , where xi = 1

indicates that bidder i is a winning bidder.

• We now try to design an awesome mechanism for knapsack auctions.
◦ For bids b = (b1, . . . , bn), we choose x(b) from X such that∑n

i=1 bixi is maximized. Then, when bidders bid truthfully, the
social surplus is maximized.

◦ The allocation rule x is monotone (one-step function with
breakingpoint at some z) and thus Myerson’s lemma gives us a
payment rule p such that (x , p) is DSIC. If bi < z , then bidder i
pays nothing, otherwise he pays z · (1− 0) = z .

◦ So we have the first two conditions satisfied. However, the third
one will be problematic since x solves the Knapsack problem.
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Knapsack problem

• given a capacity W and n items of values v1, . . . , vn and sizes
w1, . . . ,wn, find a subset of the items having a maximum total value
such that the total size is at most W .

Sources: https://en.wikipedia.org and https://twitter.com/

• This problem is NP-hard.

• There is a pseudo-polynomial time algorithm using dynamic
programming and a fully polynomial-time approximation scheme.
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We are not always awesome

• Assuming P ̸= NP, we cannot satisfy the third condition (polynomial
time), since the Knapsack problem is NP-hard, and choosing the
allocation rule so that the social surplus is maximized solves it. Thus,
knapsack auctions are not awesome.

• Relaxing the first condition (DSIC property) does not help, since it is
the last two conditions that collide. We might relax the third condition,
say to pseudopolynomial time. This is helpful if our instances are small
or structured enough and we have enough time and computing power
to implement optimal surplus-maximization.

• The dominant paradigm is to relax the second constraint (optimal
surplus) as little as possible, subject to the first (DSIC) and the third
(polynomial-time) constraints.

• Myerson’s Lemma implies that the following goal is equivalent: design a
polynomial-time and monotone allocation rule that comes as close as
possible to maximizing the social surplus.
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Approximation with monotonicity

• This resembles the primary goal in approximation: design algorithms for
NP-hard problems that are as close to optimal as possible, subject to a
polynomial-time constraint.

• For us, the algorithms must additionally obey a monotonicity constraint.

• The “holy grail” in algorithmic mechanism design: for as many
NP-hard problems as possible, match the best-known approximation
guarantee for (not necessarily monotone) approximate surplus
maximization algorithms, subject to P ̸= NP. That is, we would like the
DSIC/monotone constraint to cause no additional surplus loss.

• We now illustrate this approach by designing an allocation rule that
gives at least half of the optimum social surplus in knapsack auctions.
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Greedy allocation for knapsack auctions

• We assume without loss of generality that no bidder i has wi > W . We
also assume that the bidders 1, . . . , n are sorted in the order < so that

b1
w1

≥ · · · ≥ bn
wn

.

• Consider the following greedy allocation rule xG = (xG1 , . . . , x
G
n ) ∈ X ,

which for given bids b = (b1, . . . , bn) selects a subset of bidders so that∑n
i=1 x

G
i wi ≤ W using the following procedure.

◦ Pick winners in the order < until one does not fit and then halt.
◦ Return either the solution from the first step or the highest bidder,
whichever creates more social surplus.

• The reason for the second step is that the solution in the first step
might be highly suboptimal if there is a very valuable and very large
bidder. Consider, for example, n = 2 with b1 = 2, w1 = 1, b2 = W ,
and w2 = W for a very large W .

• The rule xG is monotone (Exercise).



Greedy allocation for knapsack auctions

• We assume without loss of generality that no bidder i has wi > W .

We
also assume that the bidders 1, . . . , n are sorted in the order < so that

b1
w1

≥ · · · ≥ bn
wn

.

• Consider the following greedy allocation rule xG = (xG1 , . . . , x
G
n ) ∈ X ,

which for given bids b = (b1, . . . , bn) selects a subset of bidders so that∑n
i=1 x

G
i wi ≤ W using the following procedure.

◦ Pick winners in the order < until one does not fit and then halt.
◦ Return either the solution from the first step or the highest bidder,
whichever creates more social surplus.

• The reason for the second step is that the solution in the first step
might be highly suboptimal if there is a very valuable and very large
bidder. Consider, for example, n = 2 with b1 = 2, w1 = 1, b2 = W ,
and w2 = W for a very large W .

• The rule xG is monotone (Exercise).



Greedy allocation for knapsack auctions

• We assume without loss of generality that no bidder i has wi > W . We
also assume that the bidders 1, . . . , n are sorted in the order < so that

b1
w1

≥ · · · ≥ bn
wn

.

• Consider the following greedy allocation rule xG = (xG1 , . . . , x
G
n ) ∈ X ,

which for given bids b = (b1, . . . , bn) selects a subset of bidders so that∑n
i=1 x

G
i wi ≤ W using the following procedure.

◦ Pick winners in the order < until one does not fit and then halt.
◦ Return either the solution from the first step or the highest bidder,
whichever creates more social surplus.

• The reason for the second step is that the solution in the first step
might be highly suboptimal if there is a very valuable and very large
bidder. Consider, for example, n = 2 with b1 = 2, w1 = 1, b2 = W ,
and w2 = W for a very large W .

• The rule xG is monotone (Exercise).



Greedy allocation for knapsack auctions

• We assume without loss of generality that no bidder i has wi > W . We
also assume that the bidders 1, . . . , n are sorted in the order < so that

b1
w1

≥ · · · ≥ bn
wn

.

• Consider the following greedy allocation rule xG = (xG1 , . . . , x
G
n ) ∈ X ,

which for given bids b = (b1, . . . , bn) selects a subset of bidders so that∑n
i=1 x

G
i wi ≤ W using the following procedure.

◦ Pick winners in the order < until one does not fit and then halt.
◦ Return either the solution from the first step or the highest bidder,
whichever creates more social surplus.

• The reason for the second step is that the solution in the first step
might be highly suboptimal if there is a very valuable and very large
bidder. Consider, for example, n = 2 with b1 = 2, w1 = 1, b2 = W ,
and w2 = W for a very large W .

• The rule xG is monotone (Exercise).



Greedy allocation for knapsack auctions

• We assume without loss of generality that no bidder i has wi > W . We
also assume that the bidders 1, . . . , n are sorted in the order < so that

b1
w1

≥ · · · ≥ bn
wn

.

• Consider the following greedy allocation rule xG = (xG1 , . . . , x
G
n ) ∈ X ,

which for given bids b = (b1, . . . , bn) selects a subset of bidders so that∑n
i=1 x

G
i wi ≤ W using the following procedure.

◦ Pick winners in the order < until one does not fit and then halt.

◦ Return either the solution from the first step or the highest bidder,
whichever creates more social surplus.

• The reason for the second step is that the solution in the first step
might be highly suboptimal if there is a very valuable and very large
bidder. Consider, for example, n = 2 with b1 = 2, w1 = 1, b2 = W ,
and w2 = W for a very large W .

• The rule xG is monotone (Exercise).



Greedy allocation for knapsack auctions

• We assume without loss of generality that no bidder i has wi > W . We
also assume that the bidders 1, . . . , n are sorted in the order < so that

b1
w1

≥ · · · ≥ bn
wn

.

• Consider the following greedy allocation rule xG = (xG1 , . . . , x
G
n ) ∈ X ,

which for given bids b = (b1, . . . , bn) selects a subset of bidders so that∑n
i=1 x

G
i wi ≤ W using the following procedure.

◦ Pick winners in the order < until one does not fit and then halt.
◦ Return either the solution from the first step or the highest bidder,
whichever creates more social surplus.

• The reason for the second step is that the solution in the first step
might be highly suboptimal if there is a very valuable and very large
bidder. Consider, for example, n = 2 with b1 = 2, w1 = 1, b2 = W ,
and w2 = W for a very large W .

• The rule xG is monotone (Exercise).



Greedy allocation for knapsack auctions

• We assume without loss of generality that no bidder i has wi > W . We
also assume that the bidders 1, . . . , n are sorted in the order < so that

b1
w1

≥ · · · ≥ bn
wn

.

• Consider the following greedy allocation rule xG = (xG1 , . . . , x
G
n ) ∈ X ,

which for given bids b = (b1, . . . , bn) selects a subset of bidders so that∑n
i=1 x

G
i wi ≤ W using the following procedure.

◦ Pick winners in the order < until one does not fit and then halt.
◦ Return either the solution from the first step or the highest bidder,
whichever creates more social surplus.

• The reason for the second step is that the solution in the first step
might be highly suboptimal if there is a very valuable and very large
bidder.

Consider, for example, n = 2 with b1 = 2, w1 = 1, b2 = W ,
and w2 = W for a very large W .

• The rule xG is monotone (Exercise).



Greedy allocation for knapsack auctions

• We assume without loss of generality that no bidder i has wi > W . We
also assume that the bidders 1, . . . , n are sorted in the order < so that

b1
w1

≥ · · · ≥ bn
wn

.

• Consider the following greedy allocation rule xG = (xG1 , . . . , x
G
n ) ∈ X ,

which for given bids b = (b1, . . . , bn) selects a subset of bidders so that∑n
i=1 x

G
i wi ≤ W using the following procedure.

◦ Pick winners in the order < until one does not fit and then halt.
◦ Return either the solution from the first step or the highest bidder,
whichever creates more social surplus.

• The reason for the second step is that the solution in the first step
might be highly suboptimal if there is a very valuable and very large
bidder. Consider, for example, n = 2 with b1 = 2, w1 = 1, b2 = W ,
and w2 = W for a very large W .

• The rule xG is monotone (Exercise).



Greedy allocation for knapsack auctions

• We assume without loss of generality that no bidder i has wi > W . We
also assume that the bidders 1, . . . , n are sorted in the order < so that

b1
w1

≥ · · · ≥ bn
wn

.

• Consider the following greedy allocation rule xG = (xG1 , . . . , x
G
n ) ∈ X ,

which for given bids b = (b1, . . . , bn) selects a subset of bidders so that∑n
i=1 x

G
i wi ≤ W using the following procedure.

◦ Pick winners in the order < until one does not fit and then halt.
◦ Return either the solution from the first step or the highest bidder,
whichever creates more social surplus.

• The reason for the second step is that the solution in the first step
might be highly suboptimal if there is a very valuable and very large
bidder. Consider, for example, n = 2 with b1 = 2, w1 = 1, b2 = W ,
and w2 = W for a very large W .

• The rule xG is monotone (Exercise).



2-approximation for knapsack auctions I

Theorem 3.10

Assuming truthful bids, the social surplus of the greedy allocation rule xG is
at least one half of the maximum possible social surplus.

• Proof (sketch): Let w1, . . . ,wn be the given sizes, v1, . . . , vn the
valuations (and also the bids), and W be the capacity.

• First, we consider a relaxation of the problem, where we can choose
each bidder i with fraction αi ∈ [0, 1] so that i contributes with αi · vi
to the solution. The greedy algorithm to solve this fractional version:
pick winners in the order < until the capacity W is fully used with the
possibility to pick the last winner fractionally, if needed.

• We show that this algorithm maximizes the surplus over all feasible
solutions to the fractional knapsack problem.

◦ Let 1, . . . , k be the winners selected by the greedy algorithm and
suppose for contradiction that there is another feasible solution
that gives higher social surplus.
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2-approximation for knapsack auctions II

◦ Then our solution can be improved by changing one of the constraints
αi to some larger βi . Since α1 = · · · = αk−1 = 1, we have i ≥ k . Since∑k

l=1 αlwl = W , there is a j ∈ {1, . . . , k} with j < i and βj < αj . We
can assume that these are the only changed coefficients (Exercise).

◦ Then (βi − αi)wi ≤ (αj − βj)wj , as
∑k

l=1 αlwl = W and we add
(βi − αi)wi to the size, while removing (αj − βj)wj .

◦ On the other hand, since the social surplus is now larger, we have
(βi − αi)vi > (αj − βj)vj . By dividing the left side of the second
inequality with the left side of the first inequality and doing the same
for the right sides, we obtain vi/wi > vj/wj , which, since j < i ,
contradicts our choice of the order <.

• Now, assume that in the fractional setting the first k − 1 winners i have
αi = 1 while αk < 1. Then the social surplus achieved by step 1 is
exactly

∑k−1
i=1 αivi =

∑k−1
i=1 vi . The social surplus in step 2 is at least vk .

• Thus, we have social surplus at least max{vk ,
∑k−1

i=1 vi}, at least half of
the optimal fractional solution, which is at least the non-fractional
optimum.
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Multi-parameter mechanism design formally

• In multi-parameter mechanism design, we have the following setting:

◦ n strategic bidders,
◦ a finite set Ω of outcomes,
◦ each bidder i has a private valuation vi(ω) ≥ 0 for every outcome
ω ∈ Ω.

• Each bidder i submits his bids bi(ω) ≥ 0 for each ω ∈ Ω and our goal is
to design a mechanism that selects an outcome ω ∈ Ω so that it
maximizes the social surplus

∑n
i=1 vi(ω).

• The valuations now depend on possible outcomes, so, for example, if
bidders compete for a single item, each bidder can have an opinion
about each other bidder winning the item as well.

• Example (single-item auction): we set Ω = {ω1, . . . , ωn, ω∅} has size
n + 1 and each outcome ωi with i ∈ N corresponds to the winner i of
the item. The last outcome ω∅ corresponds to nobody getting the item.
The valuations are vi(ωj) = 0 for every j ̸= i and vi(ωi) = vi otherwise.
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n + 1 and each outcome ωi with i ∈ N corresponds to the winner i of
the item. The last outcome ω∅ corresponds to nobody getting the item.
The valuations are vi(ωj) = 0 for every j ̸= i and vi(ωi) = vi otherwise.



Multi-parameter mechanism: example

• Consider two bidders 1 and 2 in an auction in which the seller sells two
items t1 and t2 and each bidder is allowed to obtain only one item.

• The set of possible outcomes is

Ω = {(0, 0), (0, 1), (0, 2), (1, 0), (2, 0), (1, 2), (2, 1)},

where an outcome (i , j) corresponds to bidder 1 receiving the item ti (or
nothing if i = 0) and bidder 2 receiving the item tj (or nothing if j = 0).

• The valuations of bidder 1 are v1(i , j) = 0 if i = 0, v1(i , j) = 10 if
i = 1, and v1(i , j) = 5 if i = 2. Similarly, the valuations of bidder 2 are
v2(i , j) = 0 if j = 0, v2(i , j) = 5 if j = 1, and v2(i , j) = 3 if j = 2.

• Thus, we see that both bidders prefer item t1 and also want to buy at
least something.

• The optimal allocation is to sell t1 to bidder 1 and t2 to bidder 2, which
leads to the social surplus 10 + 3 = 13.

• We now state a cornerstone of mechanism design, the VCG mechanism.
It states that we can still do DSIC social surplus maximization.
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The Vickrey–Clarke–Groves (VCG) mechanism

VCG mechanism (Theorem 3.18)

In every multi-parameter mechanism design environment, there is a DSIC
social-surplus-maximizing mechanism.

Figure: William Vickrey, Edward H. Clarke, and Theodore Groves.
Sources: : https://en.wikipedia.org, https://www.demandrevelation.com/, and https://www.researchate.net/

• We postpone the proof of this result to the last lecture.
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VCG mechanism: remarks

• The key idea is to consider the the loss of social surplus inflicted on the
other n − 1 bidders by the presence of bidder i . For example, in
single-item auctions, the winning bidder inflicts a social surplus loss of
the second-highest bid to the others.

• We define the payments to force each bidder to care about the others.
• We will see that the following allocation rule works

x(b) = argmaxω∈Ω

n∑
i=1

bi(ω)

together with this payment formula

pi(b) = max
ω∈Ω


n∑

j=1
j ̸=i

bj(ω)

−
n∑

j=1
j ̸=i

bj(ω
∗),

where ω∗ = x(b) is the outcome chosen by our allocation rule x for
given bids b.
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VCG auction example

• The government wants to construct roads connecting diverse cities, and
he wants cities to pay for the roads.

Sources: https://www.science4all.org/article/auction-design/
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VCG auction example

Sources: https://www.science4all.org/article/auction-design/

• Cities pay their negative externalities on the collectivity. Other cities
would be happier without the biggest city (NYC, say). How much
happier they would be is exactly what NYC must pay.
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VCG auction example

Sources: https://www.science4all.org/article/auction-design/

• If NYC was not there, then road network number 3 (RN3) would have
been chosen, as opposed to RN4. The value of RN3 for the other cities
would be 35 M$, as opposed to the 26 M$ of RN4. Therefore, the
negative externality of NYC is 35− 26 = 9 M$.
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Thank you for your attention and merry Christmas!
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