Algorithmic game theory

Martin Balko

11th lecture

December 13th 2024

• For single-item auctions we have found an awesome auction (Vickrey's auction) with the following three properties:

- For single-item auctions we have found an awesome auction (Vickrey's auction) with the following three properties:
 - DSIC: everybody has dominant strategy "bid truthfully" which guarantees non-negative utility,

- For single-item auctions we have found an awesome auction (Vickrey's auction) with the following three properties:
 - DSIC: everybody has dominant strategy "bid truthfully" which guarantees non-negative utility,
 - o strong performance: maximizing social surplus,

- For single-item auctions we have found an awesome auction (Vickrey's auction) with the following three properties:
 - DSIC: everybody has dominant strategy "bid truthfully" which guarantees non-negative utility,
 - o strong performance: maximizing social surplus,
 - computational efficiency: running in polynomial time.

- For single-item auctions we have found an awesome auction (Vickrey's auction) with the following three properties:
 - DSIC: everybody has dominant strategy "bid truthfully" which guarantees non-negative utility,
 - o strong performance: maximizing social surplus,
 - computational efficiency: running in polynomial time.
- We then generalized single-item auctions to single-parameter environments.

- For single-item auctions we have found an awesome auction (Vickrey's auction) with the following three properties:
 - DSIC: everybody has dominant strategy "bid truthfully" which guarantees non-negative utility,
 - o strong performance: maximizing social surplus,
 - computational efficiency: running in polynomial time.
- We then generalized single-item auctions to single-parameter environments.
 - 1 seller and *n* bidders, the seller collects the bids $b = (b_1, \dots, b_n)$,

- For single-item auctions we have found an awesome auction (Vickrey's auction) with the following three properties:
 - DSIC: everybody has dominant strategy "bid truthfully" which guarantees non-negative utility,
 - o strong performance: maximizing social surplus,
 - computational efficiency: running in polynomial time.
- We then generalized single-item auctions to single-parameter environments.
 - 1 seller and *n* bidders, the seller collects the bids $b = (b_1, \dots, b_n)$,
 - the seller chooses an allocation $x(b) = (x_1(b), \dots, x_n(b))$ from X,

- For single-item auctions we have found an awesome auction (Vickrey's auction) with the following three properties:
 - DSIC: everybody has dominant strategy "bid truthfully" which guarantees non-negative utility,
 - o strong performance: maximizing social surplus,
 - computational efficiency: running in polynomial time.
- We then generalized single-item auctions to single-parameter environments.
 - 1 seller and *n* bidders, the seller collects the bids $b = (b_1, \dots, b_n)$,
 - the seller chooses an allocation $x(b) = (x_1(b), \dots, x_n(b))$ from X,
 - the seller sets payments $p(b) = (p_1(b), \dots, p_n(b))$.

- For single-item auctions we have found an awesome auction (Vickrey's auction) with the following three properties:
 - DSIC: everybody has dominant strategy "bid truthfully" which guarantees non-negative utility,
 - o strong performance: maximizing social surplus,
 - computational efficiency: running in polynomial time.
- We then generalized single-item auctions to single-parameter environments.
 - 1 seller and *n* bidders, the seller collects the bids $b = (b_1, \dots, b_n)$,
 - the seller chooses an allocation $x(b) = (x_1(b), \dots, x_n(b))$ from X,
 - the seller sets payments $p(b) = (p_1(b), \dots, p_n(b))$.
- Is there awesome mechanism (x, p) for single-parameter environments?

- For single-item auctions we have found an awesome auction (Vickrey's auction) with the following three properties:
 - DSIC: everybody has dominant strategy "bid truthfully" which guarantees non-negative utility,
 - o strong performance: maximizing social surplus,
 - computational efficiency: running in polynomial time.
- We then generalized single-item auctions to single-parameter environments.
 - 1 seller and *n* bidders, the seller collects the bids $b = (b_1, \dots, b_n)$,
 - the seller chooses an allocation $x(b) = (x_1(b), \dots, x_n(b))$ from X,
 - the seller sets payments $p(b) = (p_1(b), \dots, p_n(b))$.
- Is there awesome mechanism (x, p) for single-parameter environments?
- We started by looking for DSIC mechanisms

- For single-item auctions we have found an awesome auction (Vickrey's auction) with the following three properties:
 - DSIC: everybody has dominant strategy "bid truthfully" which guarantees non-negative utility,
 - o strong performance: maximizing social surplus,
 - computational efficiency: running in polynomial time.
- We then generalized single-item auctions to single-parameter environments.
 - 1 seller and *n* bidders, the seller collects the bids $b = (b_1, \dots, b_n)$,
 - the seller chooses an allocation $x(b) = (x_1(b), \dots, x_n(b))$ from X,
 - the seller sets payments $p(b) = (p_1(b), \dots, p_n(b))$.
- Is there awesome mechanism (x, p) for single-parameter environments?
- We started by looking for DSIC mechanisms and saw a powerful tool for designing them.

• An allocation rule x is implementable if there is a payment rule p such that (x, p) is DSIC.

- An allocation rule x is implementable if there is a payment rule p such that (x, p) is DSIC.
- An allocation rule x is monotone if, for every bidder i and all bids b_{-i}, the allocation x_i(z; b_{-i}) is nondecreasing in z.

- An allocation rule x is implementable if there is a payment rule p such that (x, p) is DSIC.
- An allocation rule x is monotone if, for every bidder i and all bids b_{-i}, the allocation x_i(z; b_{-i}) is nondecreasing in z.

Myerson's lemma

In a single-parameter environment, the following three claims hold.

- (a) An allocation rule is implementable if and only if it is monotone.
- (b) If an allocation rule x is monotone, then there exists a unique payment rule p such that (x, p) is DSIC (assuming $b_i = 0$ implies $p_i(b) = 0$).
- (c) For every i, the payment rule p is given by the following explicit formula

$$p_i(b_i; b_{-i}) = \int_0^{b_i} z \cdot \frac{\mathrm{d}}{\mathrm{d}z} x_i(z; b_{-i}) \mathrm{d}z.$$

- An allocation rule x is implementable if there is a payment rule p such that (x, p) is DSIC.
- An allocation rule x is monotone if, for every bidder i and all bids b_{-i}, the allocation x_i(z; b_{-i}) is nondecreasing in z.

Myerson's lemma

In a single-parameter environment, the following three claims hold.

- (a) An allocation rule is implementable if and only if it is monotone.
- (b) If an allocation rule x is monotone, then there exists a unique payment rule p such that (x, p) is DSIC (assuming $b_i = 0$ implies $p_i(b) = 0$).
- (c) For every i, the payment rule p is given by the following explicit formula

$$p_i(b_i; b_{-i}) = \int_0^{b_i} z \cdot \frac{\mathrm{d}}{\mathrm{d}z} x_i(z; b_{-i}) \,\mathrm{d}z.$$

• We saw two applications: single-item and sponsored-search auctions.

• So far, we were designing DSIC mechanisms for single-parameter environments that maximize the social surplus $\sum_{i=1}^{n} v_i x_i(b)$.

- So far, we were designing DSIC mechanisms for single-parameter environments that maximize the social surplus $\sum_{i=1}^{n} v_i x_i(b)$.
- We did not care about the revenue $\sum_{i=1}^{n} p_i(b)$.

- So far, we were designing DSIC mechanisms for single-parameter environments that maximize the social surplus $\sum_{i=1}^{n} v_i x_i(b)$.
- We did not care about the revenue $\sum_{i=1}^{n} p_i(b)$.
- This makes sense in some real-world scenarios where revenue is not the first-order objective.

- So far, we were designing DSIC mechanisms for single-parameter environments that maximize the social surplus $\sum_{i=1}^{n} v_i x_i(b)$.
- We did not care about the revenue $\sum_{i=1}^{n} p_i(b)$.
- This makes sense in some real-world scenarios where revenue is not the first-order objective. For instance, in government auctions (e.g., to sell wireless spectrum).

Source: youtube.com

- So far, we were designing DSIC mechanisms for single-parameter environments that maximize the social surplus $\sum_{i=1}^{n} v_i x_i(b)$.
- We did not care about the revenue $\sum_{i=1}^{n} p_i(b)$.
- This makes sense in some real-world scenarios where revenue is not the first-order objective. For instance, in government auctions (e.g., to sell wireless spectrum).

Source: youtube.com

• In single-item auctions, maximizing social surplus is done by Vickrey's auction.

- So far, we were designing DSIC mechanisms for single-parameter environments that maximize the social surplus $\sum_{i=1}^{n} v_i x_i(b)$.
- We did not care about the revenue $\sum_{i=1}^{n} p_i(b)$.
- This makes sense in some real-world scenarios where revenue is not the first-order objective. For instance, in government auctions (e.g., to sell wireless spectrum).

Source: youtube.com

• In single-item auctions, maximizing social surplus is done by Vickrey's auction. In general single-parameter environments, we use Myerson's lemma.

- So far, we were designing DSIC mechanisms for single-parameter environments that maximize the social surplus $\sum_{i=1}^{n} v_i x_i(b)$.
- We did not care about the revenue $\sum_{i=1}^{n} p_i(b)$.
- This makes sense in some real-world scenarios where revenue is not the first-order objective. For instance, in government auctions (e.g., to sell wireless spectrum).

Source: youtube.com

- In single-item auctions, maximizing social surplus is done by Vickrey's auction. In general single-parameter environments, we use Myerson's lemma.
- Today, we try to maximize the revenue.

Revenue maximizing auctions

Source: Reprofoto

Revenue maximization

Revenue maximization

• How to maximize the revenue $\sum_{i=1}^{n} p_i(b)$?

Source: https://merger.com/recurring-revenue/

Revenue maximization

• How to maximize the revenue $\sum_{i=1}^{n} p_i(b)$?

Source: https://merger.com/recurring-revenue/

• The situation then becomes more complicated, but we will see some nice results today.

• Consider single-item auction with 1 bidder with valuation v.

Source: https://auctions.propertysolvers.co.uk/

• Consider single-item auction with 1 bidder with valuation v.

Source: https://auctions.propertysolvers.co.uk/

• the only DSIC auction: the seller posts a price r, then his revenue is either r if $v \ge r$ and 0 otherwise.

• Consider single-item auction with 1 bidder with valuation v.

Source: https://auctions.propertysolvers.co.uk/

- the only DSIC auction: the seller posts a price r, then his revenue is either r if $v \ge r$ and 0 otherwise.
- Maximizing the social surplus is trivial by putting r = 0.

• Consider single-item auction with 1 bidder with valuation v.

Source: https://auctions.propertysolvers.co.uk/

- the only DSIC auction: the seller posts a price r, then his revenue is either r if $v \ge r$ and 0 otherwise.
- Maximizing the social surplus is trivial by putting r = 0.
- However, when maximizing the revenue, it is not clear how we should set *r*, since we do not know the valuation *v*.

New model

• Thus, we need a model to reason about trade-offs between our performance on different inputs.

- Thus, we need a model to reason about trade-offs between our performance on different inputs.
- We introduce some randomness outside of discrete probability spaces, so let us first recall some notions from the probability theory.

- Thus, we need a model to reason about trade-offs between our performance on different inputs.
- We introduce some randomness outside of discrete probability spaces, so let us first recall some notions from the probability theory.
 - If F is a probability distribution drawing some value v, then F(z) is the probability that v has value at most z.

- Thus, we need a model to reason about trade-offs between our performance on different inputs.
- We introduce some randomness outside of discrete probability spaces, so let us first recall some notions from the probability theory.
 - If F is a probability distribution drawing some value v, then F(z) is the probability that v has value at most z.
 - If F is a probability distribution with density f and with support $[0, v_{max}]$, then

$$f(x) = \frac{\mathrm{d}}{\mathrm{d}x}F(x)$$
 and $F(x) = \int_0^x f(z) \mathrm{d}z$.

- Thus, we need a model to reason about trade-offs between our performance on different inputs.
- We introduce some randomness outside of discrete probability spaces, so let us first recall some notions from the probability theory.
 - If F is a probability distribution drawing some value v, then F(z) is the probability that v has value at most z.
 - If F is a probability distribution with density f and with support $[0, v_{max}]$, then

$$f(x) = \frac{\mathrm{d}}{\mathrm{d}x}F(x)$$
 and $F(x) = \int_0^x f(z) \mathrm{d}z.$

 \circ For a random variable X, the expected value of X is

$$\mathbb{E}_{z\sim F}[X(z)] = \int_0^{v_{max}} X(z) \cdot f(z) \, \mathrm{d}z.$$

• The Bayesian model consists of

- The Bayesian model consists of
 - a single-parameter environment (x, p),

- The Bayesian model consists of
 - a single-parameter environment (x, p),
 - for each bidder *i*, the private valuation v_i of *i* is drawn from a probability distribution F_i with density function f_i and with support contained in $[0, v_{max}]$.

- The Bayesian model consists of
 - a single-parameter environment (x, p),
 - for each bidder *i*, the private valuation v_i of *i* is drawn from a probability distribution F_i with density function f_i and with support contained in $[0, v_{max}]$. We assume that the distributions F_1, \ldots, F_n are independent, but not necessarily the same.

- The Bayesian model consists of
 - a single-parameter environment (x, p),
 - for each bidder *i*, the private valuation v_i of *i* is drawn from a probability distribution F_i with density function f_i and with support contained in $[0, v_{max}]$. We assume that the distributions F_1, \ldots, F_n are independent, but not necessarily the same.
- The distributions F_1, \ldots, F_n are known to the mechanism designer.

- The Bayesian model consists of
 - a single-parameter environment (x, p),
 - for each bidder *i*, the private valuation v_i of *i* is drawn from a probability distribution F_i with density function f_i and with support contained in $[0, v_{max}]$. We assume that the distributions F_1, \ldots, F_n are independent, but not necessarily the same.
- The distributions F_1, \ldots, F_n are known to the mechanism designer. The bidders do not know the distributions F_1, \ldots, F_n .

- The Bayesian model consists of
 - a single-parameter environment (x, p),
 - for each bidder *i*, the private valuation v_i of *i* is drawn from a probability distribution F_i with density function f_i and with support contained in $[0, v_{max}]$. We assume that the distributions F_1, \ldots, F_n are independent, but not necessarily the same.
- The distributions F_1, \ldots, F_n are known to the mechanism designer. The bidders do not know the distributions F_1, \ldots, F_n . Since we discuss only DSIC auctions, the bidders do not need to know F_1, \ldots, F_n , as they have dominant strategies.

- The Bayesian model consists of
 - a single-parameter environment (x, p),
 - for each bidder *i*, the private valuation v_i of *i* is drawn from a probability distribution F_i with density function f_i and with support contained in $[0, v_{max}]$. We assume that the distributions F_1, \ldots, F_n are independent, but not necessarily the same.
- The distributions F_1, \ldots, F_n are known to the mechanism designer. The bidders do not know the distributions F_1, \ldots, F_n . Since we discuss only DSIC auctions, the bidders do not need to know F_1, \ldots, F_n , as they have dominant strategies.
- The goal is to maximize, among all DSIC auctions, the expected revenue

$$\mathbb{E}_{\mathbf{v}=(v_1,\ldots,v_n)\sim(F_1\times\cdots\times F_n)}\left\lfloor\sum_{i=1}^n p_i(\mathbf{v})\right\rfloor,$$

- The Bayesian model consists of
 - a single-parameter environment (x, p),
 - for each bidder *i*, the private valuation v_i of *i* is drawn from a probability distribution F_i with density function f_i and with support contained in $[0, v_{max}]$. We assume that the distributions F_1, \ldots, F_n are independent, but not necessarily the same.
- The distributions F_1, \ldots, F_n are known to the mechanism designer. The bidders do not know the distributions F_1, \ldots, F_n . Since we discuss only DSIC auctions, the bidders do not need to know F_1, \ldots, F_n , as they have dominant strategies.
- The goal is to maximize, among all DSIC auctions, the expected revenue

$$\mathbb{E}_{\mathbf{v}=(v_1,\ldots,v_n)\sim(F_1\times\cdots\times F_n)}\left[\sum_{i=1}^n p_i(\mathbf{v})\right],$$

where the expectation is taken with respect to the given distribution $F_1 \times \cdots \times F_n$ over the valuations (v_1, \ldots, v_n) .

• Consider the example with a single bidder in a single-item auction.

• Consider the example with a single bidder in a single-item auction. It is now easier to handle.

- Consider the example with a single bidder in a single-item auction. It is now easier to handle.
- The expected revenue of a posted price r equals $r \cdot (1 F_1(r))$,

- Consider the example with a single bidder in a single-item auction. It is now easier to handle.
- The expected revenue of a posted price r equals $r \cdot (1 F_1(r))$, since $(1 F_1(r))$ is the probability that v is at least r.

- Consider the example with a single bidder in a single-item auction. It is now easier to handle.
- The expected revenue of a posted price r equals $r \cdot (1 F_1(r))$, since $(1 F_1(r))$ is the probability that v is at least r.
- Given a probability distribution F_1 , it is usually a simple matter to maximize this value.

- Consider the example with a single bidder in a single-item auction. It is now easier to handle.
- The expected revenue of a posted price r equals $r \cdot (1 F_1(r))$, since $(1 F_1(r))$ is the probability that v is at least r.
- Given a probability distribution F_1 , it is usually a simple matter to maximize this value.
- For example, if F₁ is the uniform distribution on [0, 1], where F₁(x) = x for every x ∈ [0, 1], then we achieve the maximum revenue by choosing r =

- Consider the example with a single bidder in a single-item auction. It is now easier to handle.
- The expected revenue of a posted price r equals $r \cdot (1 F_1(r))$, since $(1 F_1(r))$ is the probability that v is at least r.
- Given a probability distribution F_1 , it is usually a simple matter to maximize this value.
- For example, if F₁ is the uniform distribution on [0, 1], where F₁(x) = x for every x ∈ [0, 1], then we achieve the maximum revenue by choosing r = 1/2.

- Consider the example with a single bidder in a single-item auction. It is now easier to handle.
- The expected revenue of a posted price r equals $r \cdot (1 F_1(r))$, since $(1 F_1(r))$ is the probability that v is at least r.
- Given a probability distribution F_1 , it is usually a simple matter to maximize this value.
- For example, if F_1 is the uniform distribution on [0, 1], where $F_1(x) = x$ for every $x \in [0, 1]$, then we achieve the maximum revenue by choosing r = 1/2.
- The posted price *r* that makes the expected revenue as high as possible is called the monopoly price.

• Consider a single-item auction with two bidders that have their valuations v_1 and v_2 drawn uniformly from [0, 1].

• Consider a single-item auction with two bidders that have their valuations v_1 and v_2 drawn uniformly from [0, 1].

• Now, there are more DSIC auctions to think of, for example, the Vickrey's auction,

• Consider a single-item auction with two bidders that have their valuations v_1 and v_2 drawn uniformly from [0, 1].

• Now, there are more DSIC auctions to think of, for example, the Vickrey's auction, for which the expected revenue is 1/3 (Exercise).

• Consider a single-item auction with two bidders that have their valuations v_1 and v_2 drawn uniformly from [0, 1].

- Now, there are more DSIC auctions to think of, for example, the Vickrey's auction, for which the expected revenue is 1/3 (Exercise).
- Besides Vickrey's auctions, there are other DSIC auctions that perform better with respect to the expected revenue (Exercise).

• Consider a single-item auction with two bidders that have their valuations v_1 and v_2 drawn uniformly from [0, 1].

- Now, there are more DSIC auctions to think of, for example, the Vickrey's auction, for which the expected revenue is 1/3 (Exercise).
- Besides Vickrey's auctions, there are other DSIC auctions that perform better with respect to the expected revenue (Exercise).
- Today, we describe such optimal auctions in more general settings using Myerson's lemma.

• To characterize DSIC auctions that maximize the expected revenue, we find a more useful formula for the expected revenue.

• To characterize DSIC auctions that maximize the expected revenue, we find a more useful formula for the expected revenue.

Theorem 3.13

• To characterize DSIC auctions that maximize the expected revenue, we find a more useful formula for the expected revenue.

Theorem 3.13

Let (x, p) be a DSIC mechanism in a single-parameter environment forming a Bayesian model with *n* bidders, probability distributions F_1, \ldots, F_n , and density functions f_1, \ldots, f_n .

• To characterize DSIC auctions that maximize the expected revenue, we find a more useful formula for the expected revenue.

Theorem 3.13

Let (x, p) be a DSIC mechanism in a single-parameter environment forming a Bayesian model with *n* bidders, probability distributions F_1, \ldots, F_n , and density functions f_1, \ldots, f_n . Let $F = F_1 \times \cdots \times F_n$.

• To characterize DSIC auctions that maximize the expected revenue, we find a more useful formula for the expected revenue.

Theorem 3.13

Let (x, p) be a DSIC mechanism in a single-parameter environment forming a Bayesian model with *n* bidders, probability distributions F_1, \ldots, F_n , and density functions f_1, \ldots, f_n . Let $F = F_1 \times \cdots \times F_n$. Then

$$\mathbb{E}_{v \sim F}\left[\sum_{i=1}^{n} p_i(v)\right] = \mathbb{E}_{v \sim F}\left[\sum_{i=1}^{n} \varphi_i(v_i) \cdot x_i(v)\right],$$

Maximizing expected revenue

• To characterize DSIC auctions that maximize the expected revenue, we find a more useful formula for the expected revenue.

Theorem 3.13

Let (x, p) be a DSIC mechanism in a single-parameter environment forming a Bayesian model with *n* bidders, probability distributions F_1, \ldots, F_n , and density functions f_1, \ldots, f_n . Let $F = F_1 \times \cdots \times F_n$. Then

$$\mathbb{E}_{\mathbf{v}\sim \mathsf{F}}\left[\sum_{i=1}^{n} p_i(\mathbf{v})\right] = \mathbb{E}_{\mathbf{v}\sim \mathsf{F}}\left[\sum_{i=1}^{n} \varphi_i(\mathbf{v}_i) \cdot x_i(\mathbf{v})\right],$$

where

$$arphi_i(\mathbf{v}_i) = \mathbf{v}_i - rac{1 - F_i(\mathbf{v}_i)}{f_i(\mathbf{v}_i)}$$

is the virtual valuation of bidder *i*.

 In other words, for every DSIC auction, the expected revenue is equal to the expected virtual social surplus ∑ⁿ_{i=1} φ_i(v_i) ⋅ x_i(v).

 In other words, for every DSIC auction, the expected revenue is equal to the expected virtual social surplus Σⁿ_{i=1} φ_i(v_i) · x_i(v). So when maximizing the expected revenue, we end up with maximizing a similar value as before.

- In other words, for every DSIC auction, the expected revenue is equal to the expected virtual social surplus ∑_{i=1}ⁿ φ_i(v_i) · x_i(v). So when maximizing the expected revenue, we end up with maximizing a similar value as before.
- Note that the virtual valuation φ_i(v_i) = v_i ^{1-F_i(v_i)}/_{f_i(v_i)} of a bidder can be negative

- In other words, for every DSIC auction, the expected revenue is equal to the expected virtual social surplus ∑_{i=1}ⁿ φ_i(v_i) · x_i(v). So when maximizing the expected revenue, we end up with maximizing a similar value as before.
- Note that the virtual valuation $\varphi_i(\mathbf{v}_i) = \mathbf{v}_i \frac{1 F_i(\mathbf{v}_i)}{f_i(\mathbf{v}_i)}$ of a bidder can be negative and that it depends on \mathbf{v}_i and F_i , and not on parameters of the others.

- In other words, for every DSIC auction, the expected revenue is equal to the expected virtual social surplus ∑_{i=1}ⁿ φ_i(v_i) · x_i(v). So when maximizing the expected revenue, we end up with maximizing a similar value as before.
- Note that the virtual valuation $\varphi_i(v_i) = v_i \frac{1 F_i(v_i)}{f_i(v_i)}$ of a bidder can be negative and that it depends on v_i and F_i , and not on parameters of the others.
- Example: consider a bidder *i* with valuation *v_i* drawn from the uniform distribution on [0, 1].

- In other words, for every DSIC auction, the expected revenue is equal to the expected virtual social surplus ∑_{i=1}ⁿ φ_i(v_i) · x_i(v). So when maximizing the expected revenue, we end up with maximizing a similar value as before.
- Note that the virtual valuation $\varphi_i(v_i) = v_i \frac{1 F_i(v_i)}{f_i(v_i)}$ of a bidder can be negative and that it depends on v_i and F_i , and not on parameters of the others.
- Example: consider a bidder *i* with valuation v_i drawn from the uniform distribution on [0, 1]. Then $F_i(z) = z$,

- In other words, for every DSIC auction, the expected revenue is equal to the expected virtual social surplus ∑_{i=1}ⁿ φ_i(v_i) · x_i(v). So when maximizing the expected revenue, we end up with maximizing a similar value as before.
- Note that the virtual valuation $\varphi_i(v_i) = v_i \frac{1 F_i(v_i)}{f_i(v_i)}$ of a bidder can be negative and that it depends on v_i and F_i , and not on parameters of the others.
- Example: consider a bidder *i* with valuation v_i drawn from the uniform distribution on [0, 1]. Then $F_i(z) = z$, $f_i(z) = 1$,

- In other words, for every DSIC auction, the expected revenue is equal to the expected virtual social surplus ∑_{i=1}ⁿ φ_i(v_i) · x_i(v). So when maximizing the expected revenue, we end up with maximizing a similar value as before.
- Note that the virtual valuation $\varphi_i(v_i) = v_i \frac{1 F_i(v_i)}{f_i(v_i)}$ of a bidder can be negative and that it depends on v_i and F_i , and not on parameters of the others.
- Example: consider a bidder *i* with valuation v_i drawn from the uniform distribution on [0, 1]. Then $F_i(z) = z$, $f_i(z) = 1$, and $\varphi_i(z) = z (1-z)/1 = 2z 1 \in [-1, 1]$.

- In other words, for every DSIC auction, the expected revenue is equal to the expected virtual social surplus ∑_{i=1}ⁿ φ_i(v_i) · x_i(v). So when maximizing the expected revenue, we end up with maximizing a similar value as before.
- Note that the virtual valuation $\varphi_i(v_i) = v_i \frac{1 F_i(v_i)}{f_i(v_i)}$ of a bidder can be negative and that it depends on v_i and F_i , and not on parameters of the others.
- Example: consider a bidder *i* with valuation v_i drawn from the uniform distribution on [0, 1]. Then $F_i(z) = z$, $f_i(z) = 1$, and $\varphi_i(z) = z (1 z)/1 = 2z 1 \in [-1, 1]$.
- A coarse intuition behind the virtual valuations: the first term v_i in this expression can be thought of as the maximum revenue obtainable from bidder *i* and the second term as the inevitable revenue loss caused by not knowing v_i in advance.

• Since (x, p) is DSIC, we assume $b_i = v_i$ for each bidder *i*.

- Since (x, p) is DSIC, we assume $b_i = v_i$ for each bidder *i*.
- By Myerson's lemma, we have the following payment formula

- Since (x, p) is DSIC, we assume $b_i = v_i$ for each bidder *i*.
- By Myerson's lemma, we have the following payment formula

$$p_i(b_i; b_{-i}) = \int_0^{b_i} z \cdot \frac{d}{dz} x_i(z; b_{-i}) dz.$$

- Since (x, p) is DSIC, we assume $b_i = v_i$ for each bidder *i*.
- By Myerson's lemma, we have the following payment formula

$$p_i(b_i; b_{-i}) = \int_0^{b_i} z \cdot \frac{d}{dz} x_i(z; b_{-i}) dz.$$

• It can be shown that this formula holds for any monotone function $x_i(z; b_{-i})$, if we suitably interpret the derivation $\frac{d}{dz}x_i(z; b_{-i})$.

- Since (x, p) is DSIC, we assume $b_i = v_i$ for each bidder *i*.
- By Myerson's lemma, we have the following payment formula

$$p_i(b_i; b_{-i}) = \int_0^{b_i} z \cdot \frac{d}{dz} x_i(z; b_{-i}) dz.$$

• It can be shown that this formula holds for any monotone function $x_i(z; b_{-i})$, if we suitably interpret the derivation $\frac{d}{dz}x_i(z; b_{-i})$. All arguments in this proof, such as integration by parts, can be made rigorous for bounded monotone functions, but we omit the details.

- Since (x, p) is DSIC, we assume $b_i = v_i$ for each bidder *i*.
- By Myerson's lemma, we have the following payment formula

$$p_i(b_i; b_{-i}) = \int_0^{b_i} z \cdot \frac{d}{dz} x_i(z; b_{-i}) dz.$$

- It can be shown that this formula holds for any monotone function $x_i(z; b_{-i})$, if we suitably interpret the derivation $\frac{d}{dz}x_i(z; b_{-i})$. All arguments in this proof, such as integration by parts, can be made rigorous for bounded monotone functions, but we omit the details.
- We fix a bidder *i* and the bids v_{-i} of others.

- Since (x, p) is DSIC, we assume $b_i = v_i$ for each bidder *i*.
- By Myerson's lemma, we have the following payment formula

$$p_i(b_i; b_{-i}) = \int_0^{b_i} z \cdot \frac{d}{dz} x_i(z; b_{-i}) dz.$$

- It can be shown that this formula holds for any monotone function $x_i(z; b_{-i})$, if we suitably interpret the derivation $\frac{d}{dz}x_i(z; b_{-i})$. All arguments in this proof, such as integration by parts, can be made rigorous for bounded monotone functions, but we omit the details.
- We fix a bidder *i* and the bids *v*_{-*i*} of others. By the payment formula, the expected payment of *i* for *v*_{-*i*} is determined by *x_i* and equals

- Since (x, p) is DSIC, we assume $b_i = v_i$ for each bidder *i*.
- By Myerson's lemma, we have the following payment formula

$$p_i(b_i; b_{-i}) = \int_0^{b_i} z \cdot \frac{d}{dz} x_i(z; b_{-i}) dz.$$

- It can be shown that this formula holds for any monotone function $x_i(z; b_{-i})$, if we suitably interpret the derivation $\frac{d}{dz}x_i(z; b_{-i})$. All arguments in this proof, such as integration by parts, can be made rigorous for bounded monotone functions, but we omit the details.
- We fix a bidder *i* and the bids v_{-i} of others. By the payment formula, the expected payment of *i* for v_{-i} is determined by x_i and equals

$$\mathbb{E}_{v_i \sim F_i}[p_i(v)] = \int_0^{v_{max}} p_i(v) f_i(v_i) dv_i$$

=
$$\int_0^{v_{max}} \left(\int_0^{v_i} z \cdot \frac{d}{dz} x_i(z; v_{-i}) dz \right) f_i(v_i) dv_i.$$

• After reversing the integration order (Fubini's theorem), we obtain

• After reversing the integration order (Fubini's theorem), we obtain

$$\int_{0}^{v_{max}} \left(\int_{0}^{v_i} z \cdot \frac{dx_i(z; v_{-i})}{dz} \ dz \right) f_i(v_i) \ dv_i$$

• After reversing the integration order (Fubini's theorem), we obtain $\int_{0}^{v_{max}} \left(\int_{0}^{v_{i}} z \cdot \frac{dx_{i}(z; v_{-i})}{dz} dz \right) f_{i}(v_{i}) dv_{i} = \int_{0}^{v_{max}} \left(\int_{z}^{v_{max}} f_{i}(v_{i}) dv_{i} \right) z \cdot \frac{dx_{i}(z; v_{-i})}{dz} dz.$

- After reversing the integration order (Fubini's theorem), we obtain $\int_{0}^{v_{max}} \left(\int_{0}^{v_i} z \cdot \frac{dx_i(z; v_{-i})}{dz} \, dz \right) f_i(v_i) \, dv_i = \int_{0}^{v_{max}} \left(\int_{z}^{v_{max}} f_i(v_i) \, dv_i \right) z \cdot \frac{dx_i(z; v_{-i})}{dz} \, dz.$
 - We have used the fact that $z \leq v_i$.

- After reversing the integration order (Fubini's theorem), we obtain $\int_{0}^{v_{max}} \left(\int_{0}^{v_i} z \cdot \frac{dx_i(z; v_{-i})}{dz} \, dz \right) f_i(v_i) \, dv_i = \int_{0}^{v_{max}} \left(\int_{z}^{v_{max}} f_i(v_i) \, dv_i \right) z \cdot \frac{dx_i(z; v_{-i})}{dz} \, dz.$
 - We have used the fact that $z \le v_i$. Since f_i is the density function, the inner integral can be simplified and we get

- After reversing the integration order (Fubini's theorem), we obtain $\int_{0}^{v_{max}} \left(\int_{0}^{v_i} z \cdot \frac{dx_i(z; v_{-i})}{dz} \, dz \right) f_i(v_i) \, dv_i = \int_{0}^{v_{max}} \left(\int_{z}^{v_{max}} f_i(v_i) \, dv_i \right) z \cdot \frac{dx_i(z; v_{-i})}{dz} \, dz.$
 - We have used the fact that $z \le v_i$. Since f_i is the density function, the inner integral can be simplified and we get

$$\int_0^{v_{max}} (1-F_i(z)) \cdot z \cdot \frac{dx_i(z;v_{-i})}{dz} dz.$$

- After reversing the integration order (Fubini's theorem), we obtain $\int_{0}^{v_{max}} \left(\int_{0}^{v_i} z \cdot \frac{dx_i(z; v_{-i})}{dz} \, dz \right) f_i(v_i) \, dv_i = \int_{0}^{v_{max}} \left(\int_{z}^{v_{max}} f_i(v_i) \, dv_i \right) z \cdot \frac{dx_i(z; v_{-i})}{dz} \, dz.$
 - We have used the fact that $z \le v_i$. Since f_i is the density function, the inner integral can be simplified and we get

$$\int_0^{v_{max}} (1-F_i(z)) \cdot z \cdot \frac{dx_i(z;v_{-i})}{dz} dz.$$

• We apply integration by parts,

- After reversing the integration order (Fubini's theorem), we obtain $\int_{0}^{v_{max}} \left(\int_{0}^{v_i} z \cdot \frac{dx_i(z; v_{-i})}{dz} \, dz \right) f_i(v_i) \, dv_i = \int_{0}^{v_{max}} \left(\int_{z}^{v_{max}} f_i(v_i) \, dv_i \right) z \cdot \frac{dx_i(z; v_{-i})}{dz} \, dz.$
 - We have used the fact that $z \le v_i$. Since f_i is the density function, the inner integral can be simplified and we get

$$\int_0^{v_{max}} (1-F_i(z)) \cdot z \cdot \frac{dx_i(z;v_{-i})}{dz} dz.$$

• We apply integration by parts, that is $\int fg' = fg - \int f'g$,

- After reversing the integration order (Fubini's theorem), we obtain $\int_{0}^{v_{max}} \left(\int_{0}^{v_i} z \cdot \frac{dx_i(z; v_{-i})}{dz} \, dz \right) f_i(v_i) \, dv_i = \int_{0}^{v_{max}} \left(\int_{z}^{v_{max}} f_i(v_i) \, dv_i \right) z \cdot \frac{dx_i(z; v_{-i})}{dz} \, dz.$
 - We have used the fact that $z \le v_i$. Since f_i is the density function, the inner integral can be simplified and we get

$$\int_0^{v_{max}} (1-F_i(z)) \cdot z \cdot \frac{dx_i(z;v_{-i})}{dz} dz.$$

• We apply integration by parts, that is $\int fg' = fg - \int f'g$, choosing $f(z) = (1 - F_i(z)) \cdot z$ and $g'(z) = \frac{d}{dz}x_i(z; v_{-i})$, we get

- After reversing the integration order (Fubini's theorem), we obtain $\int_{0}^{v_{max}} \left(\int_{0}^{v_i} z \cdot \frac{dx_i(z; v_{-i})}{dz} \, dz \right) f_i(v_i) \, dv_i = \int_{0}^{v_{max}} \left(\int_{z}^{v_{max}} f_i(v_i) \, dv_i \right) z \cdot \frac{dx_i(z; v_{-i})}{dz} \, dz.$
 - We have used the fact that $z \le v_i$. Since f_i is the density function, the inner integral can be simplified and we get

$$\int_0^{v_{max}} (1-F_i(z)) \cdot z \cdot \frac{dx_i(z;v_{-i})}{dz} dz.$$

• We apply integration by parts, that is $\int fg' = fg - \int f'g$, choosing $f(z) = (1 - F_i(z)) \cdot z$ and $g'(z) = \frac{d}{dz} x_i(z; v_{-i})$, we get

$$[(1-F_i(z))\cdot z\cdot x_i(z;v_{-i})]_0^{v_{max}} - \int_0^{v_{max}} x_i(z;v_{-i})\cdot (1-F_i(z)-zf_i(z)) dz.$$

- After reversing the integration order (Fubini's theorem), we obtain $\int_{0}^{v_{max}} \left(\int_{0}^{v_i} z \cdot \frac{dx_i(z; v_{-i})}{dz} \, dz \right) f_i(v_i) \, dv_i = \int_{0}^{v_{max}} \left(\int_{z}^{v_{max}} f_i(v_i) \, dv_i \right) z \cdot \frac{dx_i(z; v_{-i})}{dz} \, dz.$
 - We have used the fact that $z \le v_i$. Since f_i is the density function, the inner integral can be simplified and we get

$$\int_0^{v_{max}} (1-F_i(z)) \cdot z \cdot \frac{dx_i(z;v_{-i})}{dz} dz.$$

• We apply integration by parts, that is $\int fg' = fg - \int f'g$, choosing $f(z) = (1 - F_i(z)) \cdot z$ and $g'(z) = \frac{d}{dz}x_i(z; v_{-i})$, we get

$$[(1-F_i(z))\cdot z\cdot x_i(z;v_{-i})]_0^{v_{max}} - \int_0^{v_{max}} x_i(z;v_{-i})\cdot (1-F_i(z)-zf_i(z)) dz.$$

• The first term is zero, as it equals to 0 for z = 0 and also for $z = v_{max}$, as v_{max} is a finite number.

• Thus, so far we derived that the expected revenue of *i* for v_{-i} is

$$0 - \int_0^{v_{max}} x_i(z; v_{-i}) \cdot (1 - F_i(z) - zf_i(z)) dz.$$

• Thus, so far we derived that the expected revenue of *i* for v_{-i} is

$$0 - \int_0^{v_{max}} x_i(z; v_{-i}) \cdot (1 - F_i(z) - zf_i(z)) dz.$$

• By the definition of $\varphi_i(\mathbf{v}_i)$, the second term can be rewritten as

• Thus, so far we derived that the expected revenue of *i* for v_{-i} is

$$0 - \int_0^{v_{max}} x_i(z; v_{-i}) \cdot (1 - F_i(z) - zf_i(z)) dz.$$

• By the definition of $\varphi_i(\mathbf{v}_i)$, the second term can be rewritten as

$$\int_0^{v_{max}} \left(z - \frac{1 - F_i(z)}{f_i(z)}\right) x_i(z; v_{-i}) f_i(z) dz$$

• Thus, so far we derived that the expected revenue of *i* for v_{-i} is

$$0 - \int_0^{v_{max}} x_i(z; v_{-i}) \cdot (1 - F_i(z) - zf_i(z)) dz.$$

• By the definition of $\varphi_i(\mathbf{v}_i)$, the second term can be rewritten as

$$\int_0^{v_{max}} \left(z - \frac{1 - F_i(z)}{f_i(z)}\right) x_i(z; v_{-i}) f_i(z) \, dz = \int_0^{v_{max}} \varphi_i(z) x_i(z; v_{-i}) f_i(z) \, dz.$$

• Thus, so far we derived that the expected revenue of *i* for v_{-i} is

$$0 - \int_0^{v_{max}} x_i(z; v_{-i}) \cdot (1 - F_i(z) - zf_i(z)) dz.$$

• By the definition of $\varphi_i(v_i)$, the second term can be rewritten as

$$\int_{0}^{v_{max}} \left(z - \frac{1 - F_i(z)}{f_i(z)}\right) x_i(z; v_{-i}) f_i(z) \ dz = \int_{0}^{v_{max}} \varphi_i(z) x_i(z; v_{-i}) f_i(z) \ dz.$$

$$\mathbb{E}_{\mathbf{v}_i \sim F_i} \left[p_i(\mathbf{v}_i; \mathbf{v}_{-i}) \right] = \mathbb{E}_{\mathbf{v}_i \sim F_i} \left[\varphi_i(\mathbf{v}_i) \cdot \mathbf{x}_i(\mathbf{v}_i; \mathbf{v}_{-i}) \right].$$

• Thus, so far we derived that the expected revenue of *i* for v_{-i} is

$$0 - \int_0^{v_{max}} x_i(z; v_{-i}) \cdot (1 - F_i(z) - zf_i(z)) dz.$$

• By the definition of $\varphi_i(v_i)$, the second term can be rewritten as

$$\int_{0}^{v_{max}} \left(z - \frac{1 - F_i(z)}{f_i(z)}\right) x_i(z; v_{-i}) f_i(z) \ dz = \int_{0}^{v_{max}} \varphi_i(z) x_i(z; v_{-i}) f_i(z) \ dz.$$

• This is an expected value where $z \sim F_i$ and thus, for every v_{-i} ,

$$\mathbb{E}_{\mathbf{v}_i \sim F_i} \left[p_i(\mathbf{v}_i; \mathbf{v}_{-i}) \right] = \mathbb{E}_{\mathbf{v}_i \sim F_i} \left[\varphi_i(\mathbf{v}_i) \cdot \mathbf{x}_i(\mathbf{v}_i; \mathbf{v}_{-i}) \right].$$

• Taking the expectation with respect to v_{-i} , this is true also for $v \sim F$.

• Thus, so far we derived that the expected revenue of *i* for v_{-i} is

$$0 - \int_0^{v_{max}} x_i(z; v_{-i}) \cdot (1 - F_i(z) - zf_i(z)) dz.$$

• By the definition of $\varphi_i(v_i)$, the second term can be rewritten as

$$\int_{0}^{v_{max}} \left(z - \frac{1 - F_i(z)}{f_i(z)}\right) x_i(z; v_{-i}) f_i(z) \ dz = \int_{0}^{v_{max}} \varphi_i(z) x_i(z; v_{-i}) f_i(z) \ dz.$$

$$\mathbb{E}_{\mathbf{v}_i \sim F_i} \left[p_i(\mathbf{v}_i; \mathbf{v}_{-i}) \right] = \mathbb{E}_{\mathbf{v}_i \sim F_i} \left[\varphi_i(\mathbf{v}_i) \cdot \mathbf{x}_i(\mathbf{v}_i; \mathbf{v}_{-i}) \right].$$

- Taking the expectation with respect to v_{-i} , this is true also for $v \sim F$.
- Finally, applying the linearity of expectation twice, we get the final form

• Thus, so far we derived that the expected revenue of *i* for v_{-i} is

$$0 - \int_0^{v_{max}} x_i(z; v_{-i}) \cdot (1 - F_i(z) - zf_i(z)) dz.$$

• By the definition of $\varphi_i(v_i)$, the second term can be rewritten as

$$\int_{0}^{v_{max}} \left(z - \frac{1 - F_i(z)}{f_i(z)}\right) x_i(z; v_{-i}) f_i(z) \ dz = \int_{0}^{v_{max}} \varphi_i(z) x_i(z; v_{-i}) f_i(z) \ dz.$$

$$\mathbb{E}_{\mathbf{v}_i \sim F_i} \left[p_i(\mathbf{v}_i; \mathbf{v}_{-i}) \right] = \mathbb{E}_{\mathbf{v}_i \sim F_i} \left[\varphi_i(\mathbf{v}_i) \cdot \mathbf{x}_i(\mathbf{v}_i; \mathbf{v}_{-i}) \right].$$

- Taking the expectation with respect to v_{-i} , this is true also for $v \sim F$.
- Finally, applying the linearity of expectation twice, we get the final form $\mathbb{E}_{v \sim F} \left[\sum_{i=1}^{n} p_i(v) \right]$

• Thus, so far we derived that the expected revenue of *i* for v_{-i} is

$$0 - \int_0^{v_{max}} x_i(z; v_{-i}) \cdot (1 - F_i(z) - zf_i(z)) dz.$$

• By the definition of $\varphi_i(v_i)$, the second term can be rewritten as

$$\int_{0}^{v_{max}} \left(z - \frac{1 - F_i(z)}{f_i(z)}\right) x_i(z; v_{-i}) f_i(z) \ dz = \int_{0}^{v_{max}} \varphi_i(z) x_i(z; v_{-i}) f_i(z) \ dz.$$

$$\mathbb{E}_{\mathbf{v}_i \sim F_i} \left[p_i(\mathbf{v}_i; \mathbf{v}_{-i}) \right] = \mathbb{E}_{\mathbf{v}_i \sim F_i} \left[\varphi_i(\mathbf{v}_i) \cdot \mathbf{x}_i(\mathbf{v}_i; \mathbf{v}_{-i}) \right].$$

- Taking the expectation with respect to v_{-i} , this is true also for $v \sim F$.
- Finally, applying the linearity of expectation twice, we get the final form

$$\mathbb{E}_{v \sim F}\left[\sum_{i=1}^{n} p_{i}(v)\right] = \sum_{i=1}^{n} \mathbb{E}_{v \sim F}\left[p_{i}(v)\right]$$

• Thus, so far we derived that the expected revenue of *i* for v_{-i} is

$$0 - \int_0^{v_{max}} x_i(z; v_{-i}) \cdot (1 - F_i(z) - zf_i(z)) dz.$$

• By the definition of $\varphi_i(v_i)$, the second term can be rewritten as

$$\int_{0}^{v_{max}} \left(z - \frac{1 - F_i(z)}{f_i(z)}\right) x_i(z; v_{-i}) f_i(z) \ dz = \int_{0}^{v_{max}} \varphi_i(z) x_i(z; v_{-i}) f_i(z) \ dz.$$

$$\mathbb{E}_{\mathbf{v}_i \sim F_i} \left[p_i(\mathbf{v}_i; \mathbf{v}_{-i}) \right] = \mathbb{E}_{\mathbf{v}_i \sim F_i} \left[\varphi_i(\mathbf{v}_i) \cdot \mathbf{x}_i(\mathbf{v}_i; \mathbf{v}_{-i}) \right].$$

- Taking the expectation with respect to v_{-i} , this is true also for $v \sim F$.
- Finally, applying the linearity of expectation twice, we get the final form

$$\mathbb{E}_{v \sim F}\left[\sum_{i=1}^{n} p_{i}(v)\right] = \sum_{i=1}^{n} \mathbb{E}_{v \sim F}\left[p_{i}(v)\right] = \sum_{i=1}^{n} \mathbb{E}_{v \sim F}\left[\varphi_{i}(v_{i})x_{i}(v)\right]$$

• Thus, so far we derived that the expected revenue of *i* for v_{-i} is

$$0 - \int_0^{v_{max}} x_i(z; v_{-i}) \cdot (1 - F_i(z) - zf_i(z)) dz.$$

• By the definition of $\varphi_i(v_i)$, the second term can be rewritten as

$$\int_{0}^{v_{max}} \left(z - \frac{1 - F_i(z)}{f_i(z)}\right) x_i(z; v_{-i}) f_i(z) \ dz = \int_{0}^{v_{max}} \varphi_i(z) x_i(z; v_{-i}) f_i(z) \ dz.$$

$$\mathbb{E}_{\mathbf{v}_i \sim F_i} \left[p_i(\mathbf{v}_i; \mathbf{v}_{-i}) \right] = \mathbb{E}_{\mathbf{v}_i \sim F_i} \left[\varphi_i(\mathbf{v}_i) \cdot \mathbf{x}_i(\mathbf{v}_i; \mathbf{v}_{-i}) \right].$$

- Taking the expectation with respect to v_{-i} , this is true also for $v \sim F$.
- Finally, applying the linearity of expectation twice, we get the final form

$$\mathbb{E}_{v \sim F}\left[\sum_{i=1}^{n} p_{i}(v)\right] = \sum_{i=1}^{n} \mathbb{E}_{v \sim F}\left[p_{i}(v)\right] = \sum_{i=1}^{n} \mathbb{E}_{v \sim F}\left[\varphi_{i}(v_{i})x_{i}(v)\right] = \mathbb{E}_{v \sim F}\left[\sum_{i=1}^{n} \varphi_{i}(v_{i})x_{i}(v)\right]$$

• Thus, so far we derived that the expected revenue of *i* for v_{-i} is

$$0 - \int_0^{v_{max}} x_i(z; v_{-i}) \cdot (1 - F_i(z) - zf_i(z)) dz.$$

• By the definition of $\varphi_i(v_i)$, the second term can be rewritten as

$$\int_{0}^{v_{max}} \left(z - \frac{1 - F_i(z)}{f_i(z)}\right) x_i(z; v_{-i}) f_i(z) \ dz = \int_{0}^{v_{max}} \varphi_i(z) x_i(z; v_{-i}) f_i(z) \ dz.$$

$$\mathbb{E}_{\mathbf{v}_i \sim F_i} \left[p_i(\mathbf{v}_i; \mathbf{v}_{-i}) \right] = \mathbb{E}_{\mathbf{v}_i \sim F_i} \left[\varphi_i(\mathbf{v}_i) \cdot \mathbf{x}_i(\mathbf{v}_i; \mathbf{v}_{-i}) \right].$$

- Taking the expectation with respect to v_{-i} , this is true also for $v \sim F$.
- Finally, applying the linearity of expectation twice, we get the final form

$$\mathbb{E}_{\mathbf{v}\sim F}\left[\sum_{i=1}^{n}p_{i}(\mathbf{v})\right] = \sum_{i=1}^{n}\mathbb{E}_{\mathbf{v}\sim F}\left[p_{i}(\mathbf{v})\right] = \sum_{i=1}^{n}\mathbb{E}_{\mathbf{v}\sim F}\left[\varphi_{i}(\mathbf{v}_{i})x_{i}(\mathbf{v})\right] = \mathbb{E}_{\mathbf{v}\sim F}\left[\sum_{i=1}^{n}\varphi_{i}(\mathbf{v}_{i})x_{i}(\mathbf{v})\right]$$

• By Theorem 3.13, "maximizing expected revenue = maximizing expected virtual social surplus".

• By Theorem 3.13, "maximizing expected revenue = maximizing expected virtual social surplus". We characterize auctions that do that.

- By Theorem 3.13, "maximizing expected revenue = maximizing expected virtual social surplus". We characterize auctions that do that.
- We start with single-item auctions.

- By Theorem 3.13, "maximizing expected revenue = maximizing expected virtual social surplus". We characterize auctions that do that.
- We start with single-item auctions. We assume that there is a probability distribution F such that $F_1 = \cdots = F_n = F$

- By Theorem 3.13, "maximizing expected revenue = maximizing expected virtual social surplus". We characterize auctions that do that.
- We start with single-item auctions. We assume that there is a probability distribution F such that F₁ = ··· = F_n = F (thus all virtual valuations φ₁, ..., φ_n are equal to a function φ).

- By Theorem 3.13, "maximizing expected revenue = maximizing expected virtual social surplus". We characterize auctions that do that.
- We start with single-item auctions. We assume that there is a probability distribution F such that $F_1 = \cdots = F_n = F$ (thus all virtual valuations $\varphi_1, \ldots, \varphi_n$ are equal to a function φ). We also assume that F is regular,

- By Theorem 3.13, "maximizing expected revenue = maximizing expected virtual social surplus". We characterize auctions that do that.
- We start with single-item auctions. We assume that there is a probability distribution F such that F₁ = ··· = F_n = F (thus all virtual valuations φ₁, ..., φ_n are equal to a function φ). We also assume that F is regular, that is, φ(v) is strictly increasing in v.

- By Theorem 3.13, "maximizing expected revenue = maximizing expected virtual social surplus". We characterize auctions that do that.
- We start with single-item auctions. We assume that there is a probability distribution F such that F₁ = ··· = F_n = F (thus all virtual valuations φ₁, ..., φ_n are equal to a function φ). We also assume that F is regular, that is, φ(v) is strictly increasing in v.
- All this holds if F is the uniform probability distribution F(v) = v on [0, 1],

- By Theorem 3.13, "maximizing expected revenue = maximizing expected virtual social surplus". We characterize auctions that do that.
- We start with single-item auctions. We assume that there is a probability distribution F such that F₁ = ··· = F_n = F (thus all virtual valuations φ₁, ..., φ_n are equal to a function φ). We also assume that F is regular, that is, φ(v) is strictly increasing in v.
- All this holds if F is the uniform probability distribution F(v) = v on [0, 1], as then φ(v) = v − (1 − F(v))/f(v) = 2v − 1.

- By Theorem 3.13, "maximizing expected revenue = maximizing expected virtual social surplus". We characterize auctions that do that.
- We start with single-item auctions. We assume that there is a probability distribution F such that F₁ = ··· = F_n = F (thus all virtual valuations φ₁, ..., φ_n are equal to a function φ). We also assume that F is regular, that is, φ(v) is strictly increasing in v.
- All this holds if F is the uniform probability distribution F(v) = v on [0, 1], as then φ(v) = v − (1 − F(v))/f(v) = 2v − 1.
- We show that for such auctions the Vickrey auction with reserved price maximizes expected revenue.

- By Theorem 3.13, "maximizing expected revenue = maximizing expected virtual social surplus". We characterize auctions that do that.
- We start with single-item auctions. We assume that there is a probability distribution F such that F₁ = ··· = F_n = F (thus all virtual valuations φ₁, ..., φ_n are equal to a function φ). We also assume that F is regular, that is, φ(v) is strictly increasing in v.
- All this holds if F is the uniform probability distribution F(v) = v on [0,1], as then φ(v) = v − (1 − F(v))/f(v) = 2v − 1.
- We show that for such auctions the Vickrey auction with reserved price maximizes expected revenue.
- In a Vickrey auction with reserve price *r*, the item is given to the highest bidder, unless all bids are less than *r*, in which case no one gets the item. The winner (if any) is charged the second-highest bid or *r*, whichever is larger.

Proposition 3.14

Let F be a regular probability distribution with density f and the virtual valuation φ and let F_1, \ldots, F_n be independent probability distributions on valuations of n bidders such that $F = F_1 = \cdots = F_n$ (and thus $\varphi = \varphi_1 = \cdots = \varphi_n$).

Proposition 3.14

Proposition 3.14

Let F be a regular probability distribution with density f and the virtual valuation φ and let F_1, \ldots, F_n be independent probability distributions on valuations of n bidders such that $F = F_1 = \cdots = F_n$ (and thus $\varphi = \varphi_1 = \cdots = \varphi_n$). Then, Vickrey auction with reserve price $\varphi^{-1}(0)$ maximizes the expected revenue.

• Proof:

Proposition 3.14

Let F be a regular probability distribution with density f and the virtual valuation φ and let F_1, \ldots, F_n be independent probability distributions on valuations of n bidders such that $F = F_1 = \cdots = F_n$ (and thus $\varphi = \varphi_1 = \cdots = \varphi_n$). Then, Vickrey auction with reserve price $\varphi^{-1}(0)$ maximizes the expected revenue.

• Proof: By Theorem 3.13, we want to maximize the expected virtual social surplus.

Proposition 3.14

Let F be a regular probability distribution with density f and the virtual valuation φ and let F_1, \ldots, F_n be independent probability distributions on valuations of n bidders such that $F = F_1 = \cdots = F_n$ (and thus $\varphi = \varphi_1 = \cdots = \varphi_n$). Then, Vickrey auction with reserve price $\varphi^{-1}(0)$ maximizes the expected revenue.

Proof: By Theorem 3.13, we want to maximize the expected virtual social surplus. To do so, we can choose x(b) ∈ X for each input b, while we do not have any control over F and φ.

Proposition 3.14

- Proof: By Theorem 3.13, we want to maximize the expected virtual social surplus. To do so, we can choose x(b) ∈ X for each input b, while we do not have any control over F and φ.
- In a single-item auction, the feasibility constraint is $\sum_{i=1}^{n} x_i(b) \leq 1$,

Proposition 3.14

- Proof: By Theorem 3.13, we want to maximize the expected virtual social surplus. To do so, we can choose x(b) ∈ X for each input b, while we do not have any control over F and φ.
- In a single-item auction, the feasibility constraint is ∑ⁿ_{i=1} x_i(b) ≤ 1, so we give the item to bidder *i* with the highest φ(b_i).

Proposition 3.14

- Proof: By Theorem 3.13, we want to maximize the expected virtual social surplus. To do so, we can choose x(b) ∈ X for each input b, while we do not have any control over F and φ.
- In a single-item auction, the feasibility constraint is ∑_{i=1}ⁿ x_i(b) ≤ 1, so we give the item to bidder *i* with the highest φ(b_i). If every bidder has a negative virtual valuation, then we do not award the item to anyone.

Proposition 3.14

- Proof: By Theorem 3.13, we want to maximize the expected virtual social surplus. To do so, we can choose x(b) ∈ X for each input b, while we do not have any control over F and φ.
- In a single-item auction, the feasibility constraint is ∑_{i=1}ⁿ x_i(b) ≤ 1, so we give the item to bidder *i* with the highest φ(b_i). If every bidder has a negative virtual valuation, then we do not award the item to anyone.
- It remains to show that this allocation rule x is monotone, as then, by Myerson's lemma, it can be extended to a DSIC auction (x, p).

Proposition 3.14

- Proof: By Theorem 3.13, we want to maximize the expected virtual social surplus. To do so, we can choose x(b) ∈ X for each input b, while we do not have any control over F and φ.
- In a single-item auction, the feasibility constraint is ∑_{i=1}ⁿ x_i(b) ≤ 1, so we give the item to bidder *i* with the highest φ(b_i). If every bidder has a negative virtual valuation, then we do not award the item to anyone.
- It remains to show that this allocation rule x is monotone, as then, by Myerson's lemma, it can be extended to a DSIC auction (x, p). Since F is regular, the function φ is strictly increasing.

Proposition 3.14

- Proof: By Theorem 3.13, we want to maximize the expected virtual social surplus. To do so, we can choose x(b) ∈ X for each input b, while we do not have any control over F and φ.
- In a single-item auction, the feasibility constraint is $\sum_{i=1}^{n} x_i(b) \leq 1$, so we give the item to bidder *i* with the highest $\varphi(b_i)$. If every bidder has a negative virtual valuation, then we do not award the item to anyone.
- It remains to show that this allocation rule x is monotone, as then, by Myerson's lemma, it can be extended to a DSIC auction (x, p). Since F is regular, the function φ is strictly increasing. Thus, x is monotone and we get Vickrey's auction with a reserve price φ⁻¹(0).

Proposition 3.14

- Proof: By Theorem 3.13, we want to maximize the expected virtual social surplus. To do so, we can choose x(b) ∈ X for each input b, while we do not have any control over F and φ.
- In a single-item auction, the feasibility constraint is $\sum_{i=1}^{n} x_i(b) \leq 1$, so we give the item to bidder *i* with the highest $\varphi(b_i)$. If every bidder has a negative virtual valuation, then we do not award the item to anyone.
- It remains to show that this allocation rule x is monotone, as then, by Myerson's lemma, it can be extended to a DSIC auction (x, p). Since F is regular, the function φ is strictly increasing. Thus, x is monotone and we get Vickrey's auction with a reserve price φ⁻¹(0).

• The Vickrey auction with reserve price is used by eBay.

• The Vickrey auction with reserve price is used by eBay.

A

ddress 🙆 http://	cgi.ebay.com	/ws/eBayISAP	1.dl?ViewItem&item=3002	44862874	
ebY	Sign in	or register		Search	Ac
Categories v	Motors	Express	Stores		
Back to h	ome page	Listed	in category: <u>Everythin</u> g	Else > Weird Stuff > Totally Bizarre	
A real live	e ghost	Trappe	d in a box!		
Bidder or sel	ler of this	item? <u>Sign</u>	in for your status		
		FREE	Current bid:	US \$38.37	
		10.00	Your maximum bid	US \$ Place Bid >	
				(Enter US \$39.37 or more)	
			End time:	Aug-03-08 20:28:12 PDT (6 days)	
	1	143	Shipping costs:	Free US Postal Service First Class Mail [®] Service to <u>United States</u> (more services)	
			Ships to:	Worldwide	
Manulanar	atura		Item location:	Marion County, South Carolina, United States	
View larger picture			History:	24 bids	
			High bidder:	0***h (92 🖈)	

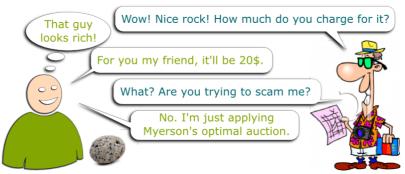
Source: https://goodgearguide.com.au

• The theory was developed by Roger Myerson.

- The theory was developed by Roger Myerson.
- The result can be extended to single-parameter environments.

- The theory was developed by Roger Myerson.
- The result can be extended to single-parameter environments. With more work we can prove a version for distributions that are not regular.

- The theory was developed by Roger Myerson.
- The result can be extended to single-parameter environments. With more work we can prove a version for distributions that are not regular.
- Very roughly, if the seller believes that bidders have high valuations, he should set a high reserve price accordingly.



Source: https://www.science4all.org/article/auction-design/

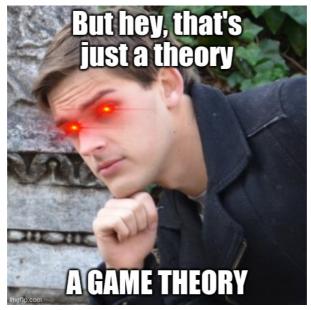
Optimal auctions more generally

Optimal auctions more generally

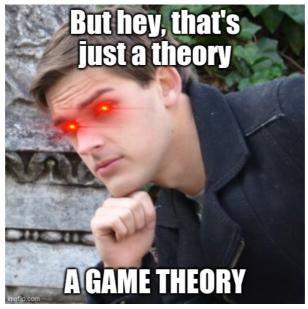
• There are also optimal DISC auctions even if we relax the conditions by not insisting on F_1, \ldots, F_n being identical. However, such optimal auctions can get weird, and they does not generally resemble any auctions used in practice (Exercise).



Source: https://www.science4all.org/article/auction-design/



Source: https://www.reddit.com/



Source: https://www.reddit.com/

Thank you for your attention.