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What we learned last time

• For single-item auctions we have found an awesome auction (Vickrey’s
auction) with the following three properties:

◦ DSIC: everybody has dominant strategy “bid truthfully” which
guarantees non-negative utility,

◦ strong performance: maximizing social surplus,
◦ computational efficiency: running in polynomial time.

• We then generalized single-item auctions to single-parameter
environments.

◦ 1 seller and n bidders, the seller collects the bids b = (b1, . . . bn),
◦ the seller chooses an allocation x(b) = (x1(b), . . . , xn(b)) from X ,
◦ the seller sets payments p(b) = (p1(b), . . . , pn(b)).

• Is there awesome mechanism (x , p) for single-parameter environments?

• We started by looking for DSIC mechanisms and saw a powerful tool
for designing them.
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Myerson’s lemma

• An allocation rule x is implementable if there is a payment rule p such
that (x , p) is DSIC.

• An allocation rule x is monotone if, for every bidder i and all bids b−i ,
the allocation xi(z ; b−i) is nondecreasing in z .

Myerson’s lemma

In a single-parameter environment, the following three claims hold.

(a) An allocation rule is implementable if and only if it is monotone.

(b) If an allocation rule x is monotone, then there exists a unique payment
rule p such that (x , p) is DSIC (assuming bi = 0 implies pi(b) = 0).

(c) For every i , the payment rule p is given by the following explicit formula

pi(bi ; b−i) =

∫ bi

0

z · d

dz
xi(z ; b−i) dz .

• We saw two applications: single-item and sponsored-search auctions.
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Social surplus maximization

• So far, we were designing DSIC mechanisms for single-parameter
environments that maximize the social surplus

∑n
i=1 vixi(b).

• We did not care about the revenue
∑n

i=1 pi(b).

• This makes sense in some real-world scenarios where revenue is not the
first-order objective. For instance, in government auctions (e.g., to sell
wireless spectrum).

Source: youtube.com

• In single-item auctions, maximizing social surplus is done by Vickrey’s
auction. In general single-parameter environments, we use Myerson’s
lemma.

• Today, we try to maximize the revenue.
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Revenue maximizing auctions

Source: Reprofoto



Revenue maximization

• How to maximize the revenue
∑n

i=1 pi(b)?

Source: https://merger.com/recurring-revenue/

• The situation then becomes more complicated, but we will see some
nice results today.
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Why is it more complicated?

• Consider single-item auction with 1 bidder with valuation v .

Source: https://auctions.propertysolvers.co.uk/

• the only DSIC auction: the seller posts a price r , then his revenue is
either r if v ≥ r and 0 otherwise.

• Maximizing the social surplus is trivial by putting r = 0.

• However, when maximizing the revenue, it is not clear how we should
set r , since we do not know the valuation v .
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New model

• Thus, we need a model to reason about trade-offs between our
performance on different inputs.

• We introduce some randomness outside of discrete probability spaces,
so let us first recall some notions from the probability theory.

◦ If F is a probability distribution drawing some value v , then F (z)
is the probability that v has value at most z .

◦ If F is a probability distribution with density f and with support
[0, vmax ], then

f (x) =
d

dx
F (x) and F (x) =

∫ x

0

f (z) dz .

◦ For a random variable X , the expected value of X is

Ez∼F [X (z)] =

∫ vmax

0

X (z) · f (z) dz .
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Bayesian model

• The Bayesian model consists of

◦ a single-parameter environment (x , p),
◦ for each bidder i , the private valuation vi of i is drawn from a
probability distribution Fi with density function fi and with support
contained in [0, vmax ]. We assume that the distributions F1, . . . ,Fn

are independent, but not necessarily the same.

• The distributions F1, . . . ,Fn are known to the mechanism designer. The
bidders do not know the distributions F1, . . . ,Fn. Since we discuss only
DSIC auctions, the bidders do not need to know F1, . . . ,Fn, as they
have dominant strategies.

• The goal is to maximize, among all DSIC auctions, the expected
revenue

Ev=(v1,...,vn)∼(F1×···×Fn)

[
n∑

i=1

pi(v)

]
,

where the expectation is taken with respect to the given distribution
F1 × · · · × Fn over the valuations (v1, . . . , vn).
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Example: single-bidder single-item auction

• Consider the example with a single bidder in a single-item auction. It is
now easier to handle.

• The expected revenue of a posted price r equals r · (1− F1(r)), since
(1− F1(r)) is the probability that v is at least r .

• Given a probability distribution F1, it is usually a simple matter to
maximize this value.

• For example, if F1 is the uniform distribution on [0, 1], where F1(x) = x
for every x ∈ [0, 1], then we achieve the maximum revenue by choosing
r = 1/2.

• The posted price r that makes the expected revenue as high as possible
is called the monopoly price.
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Example: two-bidders single-item auction

• Consider a single-item auction with two bidders that have their
valuations v1 and v2 drawn uniformly from [0, 1].

• Now, there are more DSIC auctions to think of, for example, the
Vickrey’s auction, for which the expected revenue is 1/3 (Exercise).

• Besides Vickrey’s auctions, there are other DSIC auctions that perform
better with respect to the expected revenue (Exercise).

• Today, we describe such optimal auctions in more general settings using
Myerson’s lemma.
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Maximizing expected revenue

• To characterize DSIC auctions that maximize the expected revenue, we
find a more useful formula for the expected revenue.

Theorem 3.13

Let (x , p) be a DSIC mechanism in a single-parameter environment forming
a Bayesian model with n bidders, probability distributions F1, . . . ,Fn, and
density functions f1, . . . , fn. Let F = F1 × · · · × Fn. Then

Ev∼F

[
n∑

i=1

pi(v)

]
= Ev∼F

[
n∑

i=1

φi(vi) · xi(v)

]
,

where

φi(vi) = vi −
1− Fi(vi)

fi(vi)

is the virtual valuation of bidder i .
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Maximizing expected revenue: remarks

• In other words, for every DSIC auction, the expected revenue is equal
to the expected virtual social surplus

∑n
i=1 φi(vi) · xi(v). So when

maximizing the expected revenue, we end up with maximizing a similar
value as before.

• Note that the virtual valuation φi(vi) = vi − 1−Fi (vi )
fi (vi )

of a bidder can be
negative and that it depends on vi and Fi , and not on parameters of
the others.

• Example: consider a bidder i with valuation vi drawn from the uniform
distribution on [0, 1]. Then Fi(z) = z , fi(z) = 1, and
φi(z) = z − (1− z)/1 = 2z − 1 ∈ [−1, 1].

• A coarse intuition behind the virtual valuations: the first term vi in this
expression can be thought of as the maximum revenue obtainable from
bidder i and the second term as the inevitable revenue loss caused by
not knowing vi in advance.
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Maximizing expected revenue: proof I

• Since (x , p) is DSIC, we assume bi = vi for each bidder i .

• By Myerson’s lemma, we have the following payment formula

pi(bi ; b−i) =

∫ bi

0

z · d

dz
xi(z ; b−i) dz .

• It can be shown that this formula holds for any monotone function
xi(z ; b−i), if we suitably interpret the derivation d

dz
xi(z ; b−i). All

arguments in this proof, such as integration by parts, can be made
rigorous for bounded monotone functions, but we omit the details.

• We fix a bidder i and the bids v−i of others. By the payment formula,
the expected payment of i for v−i is determined by xi and equals

Evi∼Fi
[pi(v)] =

∫ vmax

0

pi(v)fi(vi) dvi

=

vmax∫
0

 vi∫
0

z · d

dz
xi(z ; v−i) dz

 fi(vi) dvi .
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Maximizing expected revenue: proof II

• After reversing the integration order (Fubini’s theorem), we obtain
vmax∫
0

 vi∫
0

z · dxi(z ; v−i)

dz
dz

 fi(vi) dvi =

vmax∫
0

 vmax∫
z

fi(vi) dvi

 z ·dxi(z ; v−i)

dz
dz .

• We have used the fact that z ≤ vi . Since fi is the density function, the
inner integral can be simplified and we get∫ vmax

0

(1− Fi(z)) · z ·
dxi(z ; v−i)

dz
dz .

• We apply integration by parts, that is
∫
fg ′ = fg −

∫
f ′g , choosing

f (z) = (1− Fi(z)) · z and g ′(z) = d
dz
xi(z ; v−i), we get

[(1− Fi(z)) · z · xi(z ; v−i)]
vmax

0 −
∫ vmax

0

xi(z ; v−i) · (1−Fi(z)−zfi(z)) dz .

• The first term is zero, as it equals to 0 for z = 0 and also for z = vmax ,
as vmax is a finite number.
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Maximizing expected revenue: proof III

• Thus, so far we derived that the expected revenue of i for v−i is

0−
∫ vmax

0

xi(z ; v−i) · (1− Fi(z)− zfi(z)) dz .

• By the definition of φi(vi), the second term can be rewritten as∫ vmax

0

(
z − 1− Fi(z)

fi(z)

)
xi(z ; v−i)fi(z) dz =

∫ vmax

0

φi(z)xi(z ; v−i)fi(z) dz .

• This is an expected value where z ∼ Fi and thus, for every v−i ,

Evi∼Fi
[pi(vi ; v−i)] = Evi∼Fi

[φi(vi) · xi(vi ; v−i)] .

• Taking the expectation with respect to v−i , this is true also for v ∼ F .

• Finally, applying the linearity of expectation twice, we get the final form

E
v∼F

[
n∑

i=1

pi(v)

]
=

n∑
i=1

E
v∼F

[pi(v)] =
n∑

i=1

E
v∼F

[φi(vi)xi(v)] = E
v∼F

[
n∑

i=1

φi(vi)xi(v)

]
.
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Maximizing expected virtual social surplus

• By Theorem 3.13, “maximizing expected revenue = maximizing
expected virtual social surplus”. We characterize auctions that do that.

• We start with single-item auctions. We assume that there is a
probability distribution F such that F1 = · · · = Fn = F (thus all virtual
valuations φ1, . . . , φn are equal to a function φ). We also assume that
F is regular, that is, φ(v) is strictly increasing in v .

• All this holds if F is the uniform probability distribution F (v) = v on
[0, 1], as then φ(v) = v − (1− F (v))/f (v) = 2v − 1.

• We show that for such auctions the Vickrey auction with reserved price
maximizes expected revenue.

• In a Vickrey auction with reserve price r , the item is given to the
highest bidder, unless all bids are less than r , in which case no one gets
the item. The winner (if any) is charged the second-highest bid or r ,
whichever is larger.
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Vickrey with reserve price is optimal

Proposition 3.14

Let F be a regular probability distribution with density f and the virtual
valuation φ and let F1, . . . ,Fn be independent probability distributions on
valuations of n bidders such that F = F1 = · · · = Fn (and thus
φ = φ1 = · · · = φn). Then, Vickrey auction with reserve price φ−1(0)
maximizes the expected revenue.

• Proof: By Theorem 3.13, we want to maximize the expected virtual
social surplus. To do so, we can choose x(b) ∈ X for each input b,
while we do not have any control over F and φ.

• In a single-item auction, the feasibility constraint is
∑n

i=1 xi(b) ≤ 1, so
we give the item to bidder i with the highest φ(bi). If every bidder has
a negative virtual valuation, then we do not award the item to anyone.

• It remains to show that this allocation rule x is monotone, as then, by
Myerson’s lemma, it can be extended to a DSIC auction (x , p). Since F
is regular, the function φ is strictly increasing. Thus, x is monotone
and we get Vickrey’s auction with a reserve price φ−1(0).
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Reserve price and maximizing revenue

• The theory was developed by Roger Myerson.

• The result can be extended to single-parameter environments. With
more work we can prove a version for distributions that are not regular.

• Very roughly, if the seller believes that bidders have high valuations, he
should set a high reserve price accordingly.

Source: https://www.science4all.org/article/auction-design/
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Optimal auctions more generally

• There are also optimal DISC auctions even if we relax the conditions by
not insisting on F1, . . . ,Fn being identical. However, such optimal
auctions can get weird, and they does not generally resemble any
auctions used in practice (Exercise).
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