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What we learned last time

e For single-item auctions we have found an awesome auction (Vickrey's
auction) with the following three properties:
o DSIC: everybody has dominant strategy “bid truthfully” which
guarantees non-negative utility,
o strong performance: maximizing social surplus,
o computational efficiency: running in polynomial time.

e We then generalized single-item auctions to single-parameter
environments.

o 1 seller and n bidders, the seller collects the bids b = (b, ... b,),
o the seller chooses an allocation x(b) = (xi(b), ..., x,(b)) from X,
o the seller sets payments p(b) = (p1(b), ..., pa(b)).

e Is there awesome mechanism (x, p) for single-parameter environments?

e We started by looking for DSIC mechanisms and saw a powerful tool
for designing them.
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e An allocation rule x is implementable if there is a payment rule p such
that (x, p) is DSIC.

e An allocation rule x is monotone if, for every bidder / and all bids b_;,
the allocation x;(z; b_;) is nondecreasing in z.

Myerson's lemma
In a single-parameter environment, the following three claims hold.
(a) An allocation rule is implementable if and only if it is monotone.

(b) If an allocation rule x is monotone, then there exists a unique payment
rule p such that (x, p) is DSIC (assuming b; = 0 implies p;(b) = 0).

(c) For every i, the payment rule p is given by the following explicit formula

b,‘ d
pi(bi; b_;) = /o Zz: &x,-(z; b_;) dz.

e We saw two applications: single-item and sponsored-search auctions.
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e So far, we were designing DSIC mechanisms for single-parameter
environments that maximize the social surplus Y 7_; vixi(b).

e We did not care about the revenue Y7, pi(b).

e This makes sense in some real-world scenarios where revenue is not the
first-order objective. For instance, in government auctions (e.g., to sell
wireless spectrum).

Source: youtube.com

e In single-item auctions, maximizing social surplus is done by Vickrey's
auction. In general single-parameter environments, we use Myerson's
lemma.

e Today, we try to maximize the revenue.
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Source: https://merger.com /recurring-revenue/
/ / /

e The situation then becomes more complicated, but we will see some
nice results today.
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Why is it more complicated?

e Consider single-item auction with 1 bidder with valuation v.

Source: https://auctions.propertysolvers.co.uk/

e the only DSIC auction: the seller posts a price r, then his revenue is
either r if v > r and 0 otherwise.

e Maximizing the social surplus is trivial by putting r = 0.

e However, when maximizing the revenue, it is not clear how we should
set r, since we do not know the valuation v.
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so let us first recall some notions from the probability theory.
o If F is a probability distribution drawing some value v, then F(z)
is the probability that v has value at most z.
o If F is a probability distribution with density f and with support
[0, Vimax], then
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o For a random variable X, the expected value of X is

BerlX(2) = [ X)) dz.
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Bayesian model

e The Bayesian model consists of

o a single-parameter environment (x, p),

o for each bidder /, the private valuation v; of i is drawn from a
probability distribution F; with density function f; and with support
contained in [0, Vx| We assume that the distributions Fq, ..., F,
are independent, but not necessarily the same.

e The distributions Fi, ..., F, are known to the mechanism designer. The
bidders do not know the distributions Fq, ..., F,. Since we discuss only
DSIC auctions, the bidders do not need to know Fi, ..., F,, as they
have dominant strategies.

e The goal is to maximize, among all DSIC auctions, the expected

revenue
IEv:(vl,...7v,7)~(F1><~~-><F,7) [Z p,(V)] )
i=1

where the expectation is taken with respect to the given distribution
Fi x -+ x F, over the valuations (v, ..., V,).
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Example: single-bidder single-item auction

Consider the example with a single bidder in a single-item auction. It is
now easier to handle.

The expected revenue of a posted price r equals r - (1 — Fy(r)), since
(1 — Fy(r)) is the probability that v is at least r.

Given a probability distribution F1, it is usually a simple matter to
maximize this value.

For example, if F; is the uniform distribution on [0, 1], where F;(x) = x
for every x € [0, 1], then we achieve the maximum revenue by choosing
r=1/2.

The posted price r that makes the expected revenue as high as possible
is called the monopoly price.




IS
Example: two-bidders single-item auction



Example: two-bidders single-item auction

e Consider a single-item auction with two bidders that have their
valuations v; and v, drawn uniformly from [0, 1].

\V
@2 T

¢




Example: two-bidders single-item auction

e Consider a single-item auction with two bidders that have their
valuations v; and v, drawn uniformly from [0, 1].

6\”“‘) T

¢

e Now, there are more DSIC auctions to think of, for example, the
Vickrey's auction,




Example: two-bidders single-item auction

e Consider a single-item auction with two bidders that have their
valuations v; and v, drawn uniformly from [0, 1].

6\'“? T

¢

e Now, there are more DSIC auctions to think of, for example, the
Vickrey's auction, for which the expected revenue is 1/3 (Exercise).




Example: two-bidders single-item auction

e Consider a single-item auction with two bidders that have their
valuations v; and v, drawn uniformly from [0, 1].

@'“‘) T

¢

e Now, there are more DSIC auctions to think of, for example, the
Vickrey's auction, for which the expected revenue is 1/3 (Exercise).

e Besides Vickrey's auctions, there are other DSIC auctions that perform
better with respect to the expected revenue (Exercise).




Example: two-bidders single-item auction

e Consider a single-item auction with two bidders that have their
valuations v; and v, drawn uniformly from [0, 1].
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e Now, there are more DSIC auctions to think of, for example, the
Vickrey's auction, for which the expected revenue is 1/3 (Exercise).

e Besides Vickrey's auctions, there are other DSIC auctions that perform
better with respect to the expected revenue (Exercise).

e Today, we describe such optimal auctions in more general settings using
Myerson's lemma.
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e To characterize DSIC auctions that maximize the expected revenue, we
find a more useful formula for the expected revenue.

Theorem 3.13

Let (x, p) be a DSIC mechanism in a single-parameter environment forming
a Bayesian model with n bidders, probability distributions F4, ..., F,, and
density functions f,...,f,. Let F = F; X --- X F,. Then

E, r Z pi(v)| =E,¢ Z wi(vi) - Xi(V)] )
i=1 i=1
where 1— Fi(v)
— FilVi
pilvi) = Vi = ==

fi(Vi)
is the virtual valuation of bidder /.
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Maximizing expected revenue: remarks

e In other words, for every DSIC auction, the expected revenue is equal
to the expected virtual social surplus Y7, ¢i(v;) - x;(v). So when
maximizing the expected revenue, we end up with maximizing a similar
value as before.

e Note that the virtual valuation ¢;(v;) = v; — %V()") of a bidder can be

negative and that it depends on v; and F;, and not on parameters of

the others.

e Example: consider a bidder / with valuation v; drawn from the uniform
distribution on [0, 1]. Then Fi(z) = z, fi(z) =1, and
vi(z)=z—(1-2)/1=2z—-1€[-1,1].

e A coarse intuition behind the virtual valuations: the first term v; in this
expression can be thought of as the maximum revenue obtainable from
bidder i and the second term as the inevitable revenue loss caused by
not knowing v; in advance.
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b; d
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e It can be shown that this formula holds for any monotone function
xi(z; b_;), if we suitably interpret the derivation < x;(z; b_;). All
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e We fix a bidder i and the bids v_; of others. By the payment formula,
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Byr ()] = | p)E() dv
0
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e We have used the fact that z < v;. Since f; is the density function, the
inner integral can be simplified and we get

/Ovmax(l —Fi(2))-z- —dX,'(Z;V—i) dz.

e We apply integration by parts, that is [ fg’ = fg — [ f'g, choosing

f(z) = (1= Fi(2)) -z and g'(z) = Lx(z; v_;), we get

(L= F(2))- 2 x(z: v )]l — /0 " iz v) - (1= Fi(2) — 26(2)) dz.

e The first term is zero, as it equals to 0 for z = 0 and also for z = v,,ax,
as Vpax is a finite number.
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Maximizing expected virtual social surplus

e By Theorem 3.13, “maximizing expected revenue = maximizing
expected virtual social surplus”. We characterize auctions that do that.

e We start with single-item auctions. We assume that there is a
probability distribution F such that F; = --- = F, = F (thus all virtual
valuations 1, ..., ¢, are equal to a function ). We also assume that
F is regular, that is, ¢(v) is strictly increasing in v.

e All this holds if F is the uniform probability distribution F(v) = v on
[0,1], as then o(v) =v — (1 — F(v))/f(v) =2v — 1.

e We show that for such auctions the Vickrey auction with reserved price
maximizes expected revenue.

e In a Vickrey auction with reserve price r, the item is given to the
highest bidder, unless all bids are less than r, in which case no one gets
the item. The winner (if any) is charged the second-highest bid or r,
whichever is larger.
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is regular, the function ¢ is strictly increasing. Thus, x is monotone
and we get Vickrey's auction with a reserve price ¢ 1(0).
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valuations of n bidders such that F = F; = --- = F, (and thus
@ =1 =---=p,). Then, Vickrey auction with reserve price ©1(0)

maximizes the expected revenue.

e Proof: By Theorem 3.13, we want to maximize the expected virtual
social surplus. To do so, we can choose x(b) € X for each input b,
while we do not have any control over F and ¢.

e In a single-item auction, the feasibility constraint is Y7 ; x;(b) <1, so
we give the item to bidder / with the highest (b;). If every bidder has
a negative virtual valuation, then we do not award the item to anyone.

e It remains to show that this allocation rule x is monotone, as then, by
Myerson's lemma, it can be extended to a DSIC auction (x, p). Since F
is regular, the function ¢ is strictly increasing. Thus, x is monotone
and we get Vickrey's auction with a reserve price ¢ 1(0). O






e The Vickrey auction with reserve price is used by eBay.



e The Vickrey auction with reserve price is used by eBay.

Address 1{] Pt e o ebany comjwseBay [SAP T diFviewTtembRem=3002 44362674

= ar d
L Y U{, ® Search i &
& J{ Sign in or register

Categories ¥ | Motars | Express | Stores

4 Back lo hame page Listad In catagory: Euarything Else > Walrd Stuff > Totally Bizaws

A real live ghost! Trapped in a box!

Bidder or seller of this item? Sign in for your status

Current bid Us $38.37
h 4

Yeur maximum bid. US$ m
(Entet US $39.37 or more)

End time Aug 0308 20:26:12 PDT (6 days)

Shipping costs Free
US Postal Service First Class Mail®
Semice to Un
{more services)

Ships to: Warldwids

y ’ leir location Marion County, South Carolina, United States
e farger piclure History 24 bids
Hegh bidder. oUhi92 %)

Source: https://goodgearguide.com.au
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Reserve price and maximizing revenue

e The theory was developed by Roger Myerson.

e The result can be extended to single-parameter environments. With
more work we can prove a version for distributions that are not regular.

e Very roughly, if the seller believes that bidders have high valuations, he
should set a high reserve price accordingly.

Y (Wow! Nice rock! How much do you charge for it? |

A\ <8

For you my friend, it'll be 20%. | -,

“That guy
looks rich!

LWhat? Are you trying to scam me?
{  No.I'm just applying
. Myerson's optimal auction. |

Source: https://www.science4all.org/article/auction-design/
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Optimal auctions more generally

e There are also optimal DISC auctions even if we relax the conditions by
not insisting on Fq, ..., F, being identical. However, such optimal
auctions can get weird, and they does not generally resemble any
auctions used in practice (Exercise).

LWOW! Nice rock! How much do you charge for it?

[The gentleman in purple will pay 5% for it

W,
C_LC\ LI'II give you 6% for it!

s { To you, I'll sell it
'| only for 10$ |
G What? Is that just

@ because I'm a tourist?

No. It's because I know you can afford more than the gentleman in purple,
and Roger told me that I should thus charge you more.

Source: https://www.science4all.org/article/auction-design/



Buthey, that's
just a theory

Source: https://www.reddit.com



https://www.reddit

Thank you for your attention.



