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Mechanism design

e Designing games toward desired objectives.

e We try to design rules of the game so that strategic behavior by
participants leads to a desirable outcome.

Source: Innovations in Defense Acquisition: Asymmetric Information and Incentive Contract Design
e We start with single item auctions.

e We then extend these desired properties to a more general setting of
single-parameter environments using so-called Myerson's lemma.
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THE MACKLOWE COLLECTION

Source: https://www.widewalls.ch
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Single item auctions

e There is a seller selling a single good (a painting, for example) to some
number n of bidders who are potentially interested in buying the item.

e Each bidder / has a valuation v; that he is willing to pay for the item.
The other bidders nor the seller know v;.

e Each bidder i privately communicates a bid b; to the seller. The seller
then decides who receives the item (if any) and the selling price p.

e If a bidder loses the auction, then his utility u; is 0. If the bidder wins
the auction at price p, then his utility is u; = v; — p.

e Our goal is to design a mechanism how to decide the allocation of the
item to a bidder in a way that cannot be strategically manipulated.

e To do so, we need to appropriately implement the rules for the seller
how to decide the winner and the selling price.
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How not to design a single item auction

e Not every choice of the rules leads to a desirable auction.

e Consider selling the item for free to bidder / with the highest bid b;.
o This is not a very good choice, as then the bidders will benefit
from exaggerating their valuations v; by reporting b; that is much
larger than v;.
o So this into a game of “who can name the highest number”.

e Consider selling the item to bidder i with the highest bid b; for the
selling price b;.

o This looks much more reasonable and such auctions are common
in practice. However, there are still some drawbacks.

o It is difficult for the bidders to figure out how to bid. If bidder i
wins and pays b; = v;, then his utility is v; — b; = 0, the same as if
he loses the bid. So he should be declaring lower bid b; than v;,
but what is the value b; he should bid?
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We now formalize the conditions that our auction should satisfy.

e A dominant strategy for bidder / is a strategy that maximizes the utility
of bidder /, no matter what the other bidders do.

The social surplus is Y, v;x;, where x; = 1 if bidder i wins and x; = 0
otherwise subject to Y7 ; x; < 1 (the seller sells only a single item).

We want our auction to be awesome, that is, it should satisfy:

o Strong incentive guarantees: The auction is dominant-strategy
incentive-compatible (DSIC), that is, it satisfies the following two
properties. Every bidder has a dominant strategy: bid truthfully,
that is, set his bid b; to his valuation v;. Moreover, the utility of
every truth-telling bidder is guaranteed to be non-negative.

o Strong performance guarantees: If all bidders bid truthfully then
the auction maximizes the social surplus.

o Computational efficiency: The auction can be implemented in
polynomial time.
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Why do we want this?

e Let us justify why do we insist on these three conditions.

o Strong incentive guarantees: DSIC property makes it easy to
choose a bid for each bidder (bid b; = v;). It is also easy for the
seller to reason about the auction’s outcome, he can only assume
that bidders will bid truthfully.

o Strong performance guarantees: DSIC by itself is not enough
(giving the item for free to a random bidder or giving the item to
nobody is DSIC). This property successfully identifies the bidder
with the highest valuation even though if this is private
information. That is, we solve the surplus-maximization
optimization problem.

o Computational efficiency: should be obviously desirable.

e So this is the auction that we want. Is it attainable though?
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Vickrey's auction: remarks

e First described by William Vickrey in 1961 though it had been used by
stamp collectors since 1893.

Sources: https://en.wikipedia.org and https://ichef.bbci.co.uk/
e Vickrey's auction is used also in, for example, network routing.
e Vickrey posthumously received a Nobel prize in Economic Sciences.
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Now that we have suceeded in single-item auction setting, can we
design awesome mechanisms in more general settings? We consider the
following environments.
In a single-parameter environment, there are n bidders, each bidder /
has a private valuation v; (a value “per unit of the goods”). There is a
feasible set X C R” (feasible outcomes) containing vectors
x = (x1,...,X), where x; denotes the part of the outcome that bidder
i is interested in.
The sealed-bid auction in this environment then proceeds in three steps.
o Collect bids b = (by, ..., b,), where b; is the bid of bidder i.
o Allocation rule: Choose a feasible outcome allocation x = x(b)
from X as a function of the bids b.
o Payment rule: Choose payments p(b) = (p1(b), ..., pa(b)) € R"
as a function of the bids b.
The pair (x, p) then forms a mechanism.

The utility u;(b) of bidder i is u;(b) = v; - x;(b) — p;(b).
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e We consider only payments p;(b) € [0, b; - x;(b)| for every bidder i and
all bids b.

o Since p;(b) > 0, the seller never pays the bidders.

o The condition p;(b) < b; - x;(b) says that we never charge a bidder
more than his value b; per good (that they told us) times the
amount x;(b) of stuff that we gave them.

o It ensures that a truthtelling bidder receives non-negative utility.

e The basic dilemma of mechanism design is that the mechanism
designer wants to optimize some global objective such as the social

surplus D71 vi - x;(b).

e We now illustrate single-parameter environments with a few specific
examples.
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e Singe-parameter environments comprise single-item auctions.
e In single-item auctions, n bidders compete for a single item of the seller.
e Each bidder either gets the item or not, but only one bidder can get it.

Source: https://www.widewalls.ch

e This can be modelled by setting x; € {0, 1} for each bidder i and
choosing the feasible set X = {(x,...,x,) € {0,1}": Y7 x; < 1}.

e The goal is to design the auction so that the bidder with the highest
valuation v; wins.
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e Consider the following real-world motivation.

e A Web search results page contains a list of organic search results and
a list of k sponsored links, which have been paid for by advertisers.

e Every time a search query is typed into a search engine, an auction is
run in real-time to decide which sponsored links are shown, in what
order, and how they are charged.

e The positions for sale are the k “slots” for sponsored links and slots
with higher positions on the search page are more valuable than lower
ones, since people generally scan the page from top to bottom.

e The bidders are the advertisers who have a standing bid on the keyword
that was searched on.
We have two assumptions: first, the more the slot is on the top, the
higher the probability a; that the slot is clicked on, and, second, the
click-through rates do not depend on the occupant of the slot.
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e Formally, we have n bidders competing for k positions.
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e Each position j has a click-through-rate o, where ag > -+~ > ay > 0.

e The feasible set X consists of vectors (xi, ..., Xx,), where each x; lies in
{a1,..., 04,0} and if x; = x;, then x; = 0 = X;.

e The value of slot j to bidder i is then v;q;.

The goal is to maximize the social surplus.
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Designing awesome mechanisms

e We would like to design sensible mechanisms (x, p) for a given
single-parameter environment that are, ideally, awesome.

e In particular, we should ensure that (x, p) has the DSIC property. Thus,
we want to identify allocation rules x for which we can find payment
rules p such that (x, p) is DSIC.

e An allocation rule x for a single-parameter environment is
implementable if there is a payment rule p such that (x, p) is DSIC.
o The allocation rule “give the item to the bidder with the highest
bid" is implementable in the case of single-item auctions, as the
second-price rule provides DSIC mechanism.
o The situation is much less clear for the allocation rule “give the
item to the bidder with the second highest bid".

e An allocation rule x is monotone if, for every bidder / and all bids b_;
of the other bidders, the allocation x;(z; b_;) to i is nondecreasing in
his bid z.

o The first rule above is monotone while the other one is not.
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e These two notions coincide! Follows from Myerson's lemma, a powerful
tool for designing DSIC mechanisms.

Figure: Roger Myerson (born 1951) receiving a Nobel prize in economics.

Sources: https://en.wikipedia.org and https://twitter.com
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Myerson's lemma (Theorem 3.8)
In a single-parameter environment, the following three claims hold.
(a) An allocation rule is implementable if and only if it is monotone.

(b) If an allocation rule x is monotone, then there exists a unique payment
rule p such that the mechanism (x, p) is DSIC (assuming that b; = 0
implies p;(b) = 0).

(c) The payment rule p is given by the following explicit formula

b; d
pi(bi; b_;) = /0 z- &X,'(Z; b_;)dz

for every i € {1,...,n}.

e We will see the proof next week, now we show some applications.



BN
Appliactions of Myerson's lemma |



Appliactions of Myerson's lemma |

e We start with single-item auctions.



Appliactions of Myerson's lemma |

e We start with single-item auctions.
e Let bidder i and bids b_; of the other bidders be fixed and set
B = maxje1,..np\(i} bj-



Appliactions of Myerson's lemma |

e We start with single-item auctions.
e Let bidder i and bids b_; of the other bidders be fixed and set

B = maxjcq1,...m\(iy bj-  If we allocate the item to the highest bidder,

then the allocation function x;( - ; b_;) is 0 up to B and 1 thereafter.
i (z;0-;)

Bidder i is
the highest
bidder:




Appliactions of Myerson's lemma |

e We start with single-item auctions.
e Let bidder i and bids b_; of the other bidders be fixed and set

B = maxjcq1,...m\(iy bj-  If we allocate the item to the highest bidder,

then the allocation function x;( - ; b_;) is 0 up to B and 1 thereafter.
i (z;0-;)

Bidder i is
the highest
bidder:

0 B v ?

Clearly, this allocation rule is monotone.



Appliactions of Myerson's lemma |

e We start with single-item auctions.
e Let bidder i and bids b_; of the other bidders be fixed and set
B = maxjcq1,...m\(iy bj-  If we allocate the item to the highest bidder,

then the allocation function x;( - ; b_;) is 0 up to B and 1 thereafter.
i (z;0-;)

Bidder i is
the highest
bidder:

0 B‘ v; *
Clearly, this allocation rule is monotone.

e If / is the highest bidder, then b; > B and the (unique) payment
formula from Myerson's lemma becomes p;(b;; b_;) = B and the utility

of iis v; - x;(b;; b_;) — B =v; — B.



Appliactions of Myerson's lemma |

e We start with single-item auctions.
e Let bidder i and bids b_; of the other bidders be fixed and set
B = maxjcq1,...m\(iy bj-  If we allocate the item to the highest bidder,

then the allocation function x;( - ; b_;) is 0 up to B and 1 thereafter.
i (z;0-;)

Bidder i is
the highest
bidder:

0 I
Clearly, this allocation rule is monotone.

e If / is the highest bidder, then b; > B and the (unique) payment
formula from Myerson's lemma becomes p;(b;; b_;) = B and the utility
of iis v; - x;(b;; b_;) — B = v; — B. Otherwise, b; < B and the payment
function and the utility of / is zero.



Appliactions of Myerson's lemma |

e We start with single-item auctions.
e Let bidder i and bids b_; of the other bidders be fixed and set
B = maxjcq1,...m\(iy bj-  If we allocate the item to the highest bidder,

then the allocation function x;( - ; b_;) is 0 up to B and 1 thereafter.
i (z;0-;)

Bidder i is
the highest
bidder:

0 B v ?

Clearly, this allocation rule is monotone.

e If / is the highest bidder, then b; > B and the (unique) payment
formula from Myerson's lemma becomes p;(b;; b_;) = B and the utility
of iis v; - x;(b;; b_;) — B = v; — B. Otherwise, b; < B and the payment
function and the utility of / is zero.

e If v; > B, then his utility is positive and the utility of all other bidders is
zero.



Appliactions of Myerson's lemma |

e We start with single-item auctions.
e Let bidder i and bids b_; of the other bidders be fixed and set
B = maxjcq1,...m\(iy bj-  If we allocate the item to the highest bidder,

then the allocation function x;( - ; b_;) is 0 up to B and 1 thereafter.
i (z;0-;)

Bidder i is
the highest
bidder:

0 B v ?

Clearly, this allocation rule is monotone.

e If / is the highest bidder, then b; > B and the (unique) payment
formula from Myerson's lemma becomes p;(b;; b_;) = B and the utility
of iis v; - x;(b;; b_;) — B = v; — B. Otherwise, b; < B and the payment
function and the utility of / is zero.

e If v; > B, then his utility is positive and the utility of all other bidders is
zero. It follows from the form of p; that the utility of / is maximized
when Vi = b,'.



Appliactions of Myerson's lemma |

e We start with single-item auctions.
e Let bidder i and bids b_; of the other bidders be fixed and set
B = maxjcq1,...m\(iy bj-  If we allocate the item to the highest bidder,

then the allocation function x;( - ; b_;) is 0 up to B and 1 thereafter.
i (z;0-;)

Bidder i is
the highest
bidder:

0 R
Clearly, this allocation rule is monotone.

e If / is the highest bidder, then b; > B and the (unique) payment
formula from Myerson's lemma becomes p;(b;; b_;) = B and the utility
of iis v; - x;(b;; b_;) — B = v; — B. Otherwise, b; < B and the payment
function and the utility of / is zero.

e If v; > B, then his utility is positive and the utility of all other bidders is
zero. It follows from the form of p; that the utility of / is maximized
when v; = b;. Altogether, we obtain the second-price payment rule.



IS
Appliactions of Myerson's lemma I



Appliactions of Myerson's lemma ||

e We continue with sponsored-search auctions.



Appliactions of Myerson's lemma I

e We continue with sponsored-search auctions.
e Let x be the allocation rule that assigns the ith best slot to the ith
highest bidder.



Appliactions of Myerson's lemma I

e We continue with sponsored-search auctions.

e Let x be the allocation rule that assigns the ith best slot to the ith
highest bidder. The rule x is then monotone, as one can easily verify,
and, assuming truthful bids, x is also maximizing social surplus.



Appliactions of Myerson's lemma I

e We continue with sponsored-search auctions.

e Let x be the allocation rule that assigns the ith best slot to the ith
highest bidder. The rule x is then monotone, as one can easily verify,
and, assuming truthful bids, x is also maximizing social surplus.

e By Myerson's lemma, there is a unique and explicit formula for a
payment rule p such that the mechanism (x, p) is DSIC.



Appliactions of Myerson's lemma I

e We continue with sponsored-search auctions.

e Let x be the allocation rule that assigns the ith best slot to the ith
highest bidder. The rule x is then monotone, as one can easily verify,
and, assuming truthful bids, x is also maximizing social surplus.

e By Myerson's lemma, there is a unique and explicit formula for a
payment rule p such that the mechanism (x, p) is DSIC.

e Assume without loss of generality that bidder / bids the ith highest bid,
thatis, by > --- > b,,.



Appliactions of Myerson's lemma I

e We continue with sponsored-search auctions.

e Let x be the allocation rule that assigns the ith best slot to the ith
highest bidder. The rule x is then monotone, as one can easily verify,
and, assuming truthful bids, x is also maximizing social surplus.

e By Myerson's lemma, there is a unique and explicit formula for a
payment rule p such that the mechanism (x, p) is DSIC.

e Assume without loss of generality that bidder / bids the ith highest bid,
that is, by > --- > b,. Consider bidder 1.



Appliactions of Myerson's lemma I

e We continue with sponsored-search auctions.

e Let x be the allocation rule that assigns the ith best slot to the ith
highest bidder. The rule x is then monotone, as one can easily verify,
and, assuming truthful bids, x is also maximizing social surplus.

e By Myerson's lemma, there is a unique and explicit formula for a
payment rule p such that the mechanism (x, p) is DSIC.

e Assume without loss of generality that bidder / bids the ith highest bid,
that is, by > --- > b,. Consider bidder 1. Imagine that he increases his
bid z from 0 to b;, while other bids are fixed.



Appliactions of Myerson's lemma I

e We continue with sponsored-search auctions.

e Let x be the allocation rule that assigns the ith best slot to the ith
highest bidder. The rule x is then monotone, as one can easily verify,
and, assuming truthful bids, x is also maximizing social surplus.

e By Myerson's lemma, there is a unique and explicit formula for a
payment rule p such that the mechanism (x, p) is DSIC.

e Assume without loss of generality that bidder / bids the ith highest bid,
that is, by > --- > b,. Consider bidder 1. Imagine that he increases his
bid z from 0 to b;, while other bids are fixed. The allocation function
x1(z; b_1) increases from 0 to «; as z increases from 0 to by, with a
jump of o — ajy; at the point where z becomes the jth highest bid in
the profile (z; b_1), namely bj,4.



Appliactions of Myerson's lemma I

e We continue with sponsored-search auctions.

e Let x be the allocation rule that assigns the ith best slot to the ith
highest bidder. The rule x is then monotone, as one can easily verify,
and, assuming truthful bids, x is also maximizing social surplus.

e By Myerson's lemma, there is a unique and explicit formula for a
payment rule p such that the mechanism (x, p) is DSIC.

e Assume without loss of generality that bidder / bids the ith highest bid,
that is, by > --- > b,. Consider bidder 1. Imagine that he increases his
bid z from 0 to b;, while other bids are fixed. The allocation function
x1(z; b_1) increases from 0 to «; as z increases from 0 to by, with a
jump of o — ajy; at the point where z becomes the jth highest bid in
the profile (z; b_1), namely bj,4.

e In general, for ith highest bidder, Myerson's lemma gives the payment
formula (for a1 = 0)

k
pi(b) = > bjia(aj — ajua).

j=i
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Thank you for your attention.



