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◦ The notes are still under construction. Comments are welcome.
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Game theory

• study of mathematical models of strategic interaction among rational
decision-makers.

Zdroj: https://quantamagazine.org

• We focus on the algorithmic side of the game theory.

• Several real-word applications.

• More than ten game theorists have won the Nobel Prize in economics.
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Sylabus

• Preliminary plan:

◦ Finding Nash equilibria

◦ Nash equilibria and Nash’s Theorem,
◦ zero-sum games,
◦ bimatrix games and the Lemke–Howson algorithm,
◦ other notions of equilibria,
◦ regret minimization.

◦ Mechanism design,

◦ auctions (Vickrey),
◦ Myerson’s lemma and its applications,
◦ revenue maximization.
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Normal-form games

• We use the following most fundamental representation of games.

• A normal-form game is a triple (P ,A, u), where

◦ P is a finite set of n players,
◦ A = A1 × · · · × An is a set of action profiles, where Ai is a set of
actions available to player i ,

◦ and u = (u1, . . . , un) is an n-tuple, where each ui : A → R is the
utility function for player i .

• Knowing the utility function, all players i simultaneously choose an
action ai from Ai . The resulting action profile a = (a1, . . . , an) is then
evaluated using the utility function.

• The ith coordinate ui(a) of u(a) is the gain of player i on a.
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Normal-form games: Rock-Paper-Scissors

Rock Paper Scissors

Rock (0,0) (-1,1) (1,-1)

Paper (1,-1) (0,0) (-1,1)

Scissors (-1,1) (1,-1) (0,0)

Sources: https://en.wikipedia.org/
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Normal-form games: Rock-Paper-Scissors-Lizard-Spock

Rock Paper Scissors Lizard Spock

Rock (0,0) (-1,1) (1,-1) (1,-1) (-1,1)

Paper (1,-1) (0,0) (-1,1) (-1,1) (1,-1)

Scissors (-1,1) (1,-1) (0,0) (1,-1) (-1,1)

Lizard (-1,1) (1,-1) (-1,1) (0,0) (1,-1)

Spock (1,-1) (-1,1) (1,-1) (-1,1) (0,0)

Sources: https://bigbangtheory.fandom.com/

• “Scissors cuts Paper, Paper covers Rock, Rock crushes Lizard, Lizard
poisons Spock, Spock smashes Scissors, Scissors decapitates Lizard,
Lizard eats Paper, Paper disproves Spock, Spock vaporizes Rock (and
as it always has) Rock crushes Scissors.”
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Normal-form games: Chess

Source: https://edition.cnn.com/

• Chess as a normal-form game: Each action of player i ∈ {black,white}
is a list of all possible situations that can happen on the board together
with the move player i would make in that situation. Then we can
simulate the whole game of chess in one round.
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Strategies

• Each player i follows a certain strategy (a prescription how he chooses
his actions from Ai).

• A pure strategy si of player i is an action from Ai .

◦ “select a single action and play it”,
◦ a pure-strategy profile is an n-tuple (s1, . . . , sn), where si ∈ Ai for
each player i .

• A mixed strategy si of player i is a probability distribution over Ai .

◦ that is, si assigns a value si(ai) ∈ [0, 1] to each ai ∈ Ai so that∑
ai∈Ai

si(ai) = 1.

◦ si(ai) = “probability that i chooses ai as his action”.
◦ We let Si be the set of all mixed strategies of player i .
◦ a mixed-strategy profile is an n-tuple (s1, . . . , sn), where si ∈ Si for
each player i .

• Every pure strategy is a mixed strategy.
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Expected payoff

• The goal of each player is to maximize his expected payoff.

• In G = (P ,A, u), the expected payoff for player i of the mixed-strategy
profile s = (s1, . . . , sn) is

ui(s) =
∑

a=(a1,...,an)∈A

ui(a) ·
n∏

j=1

sj(aj).

◦ that is, ui(s) is the expected value of ui under the product
distribution

∏n
j=1 sj .

• It satisfies the linearity of the expected payoff (Exercise):

ui(s) =
∑
ai∈Ai

si(ai) · ui(ai ; s−i),

where s−i = (s1, . . . , si−1, si+1, . . . , sn) and
(s ′i ; s−i) = (s1, . . . , si−1, s

′
i , si+1, . . . , sn) for any s ′i ∈ Si .
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Example: expected payoff in Rock-Paper-Scissors

• Consider the Rock-Paper-Scissors game where each player i uses a
strategy si that assigns each action the probability 1/3.

Rock Paper Scissors

Rock (0,0) (-1,1) (1,-1)

Paper (1,-1) (0,0) (-1,1)

Scissors (-1,1) (1,-1) (0,0)

• By definition, the expected payoff of player 1 on s = (s1, s2) is

u1(s) = 1 ·
(
1

3
· 1
3
+

1

3
· 1
3
+

1

3
· 1
3

)
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1

3
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3
+
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3
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3

)
+ 0 ·
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1

3
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3
+

1
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= 0.

• By linearity, u1(s) =
1
3
· 0 + 1

3
· 0 + 1

3
· 0 = 0.
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Examples of normal-form games

• We now give four more examples of normal-form games.

• Several of these are used later in the lecture and the tutorials.

• We focus here only on two-player games, that is, P = {1, 2}.
• These games are called bimatrix games, as they can be represented
with two real matrices.

• Player 1 will be the “row player” while player 2 will be the “column
player”.
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Prisoner’s dilemma

• Two prisoners, are being held in solitary confinement and cannot
communicate with the other. Each can either betray the other one by
testifying or cooperate with the other one by remaining silent.

Testify Remain silent

Testify (-2,-2) (0,-3)

Remain silent (-3,0) (-1,-1)

Sources: Serena Maylon (MtG)

• Paradoxically, the only stable solution is when both testify.
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Matching pennies

• We introduce an easier variant of the Rock-Paper-Scissors game.

• Each of the two players has a penny and chooses either Heads of Tails.
If the pennies match, then player 1 wins and keeps both pennies.
Otherwise, player 2 keeps both pennies.

Heads Tails

Heads (1,-1) (-1,1)

Tails (-1,1) (1,-1)

Sources: https://www.fourstateshomepage.com/

• Like Rock-Papers-Scissors, this is a zero-sum game (whatever one
player gets, the other one loses). Prisoner’s dilemma is not.
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Battle of sexes

• A husband and wife wish to spend an evening together rather than
separately, but cannot decide which event to attend. The husband
wishes to go to a football match while the wife wants to go to opera.

Football Opera

Football (2,1) (0,0)

Opera (0,0) (1,2)

Sources: https://media.istockphoto.com/

• This game displays both cooperation and competition.
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Game of chicken

• Two drivers drive towards each other on a collision course: one must
swerve, or both die in the crash. However, if one driver swerves and the
other does not, the one who swerved will be called a “chicken”

Turn Go straight

Turn (0,0) (-1,1)

Go straight (1,-1) (-10,-10)

Sources: https://peakd.com/

• What is the best strategy for the players?
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Nash equilibrium

• In game theory, we typically study rules for predicting how a game will
be played, called solution concepts.

• We now introduce perhaps the most influential solution concept, which
captures a notion of stability.

• The best response of player i to a strategy profile s−i is a mixed
strategy s∗i such that ui(s

∗
i ; s−i) ≥ ui(s

′
i ; s−i) for each s ′i ∈ Si .

◦ If i knew what strategies the others follow, he would choose this
one. It maximizes his expected payoff if others play s−i .

• For a normal-form game G = (P ,A, u) of n players, a Nash equilibrium
(NE) in G is a strategy profile (s1, . . . , sn) such that si is a best
response of player i to s−i for every i ∈ P .

◦ A stable solution concept: no player would like to change his
strategy if he knew the strategies of the other players.

◦ Introduced by Nash and by Von Neumann and Morgenstern.
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Nash equilibria: remarks

• Neither best responses nor Nash equilibria are determined uniquely.

• Example 1: In the Rock-Paper-Scissors game, there is a unique mixed
Nash equilibrium (both players play everything with probability 1/3).

• Example 2: In the Battle of sexes game, there are three Nash equilibria,
two pure and one mixed.

• Do Nash equilibria always exist in every game? Is there always a stable
solution concept?

• Yes, they do! Shown by Nash in 1950.

• Maybe the most influential result in game theory. Later, Nash received
a Nobel prize for economics.
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Nash’s Theorem

Nash’s Theorem (Theorem 2.16)

Every normal-form game has a Nash equilibrium.

Figure: John Forbes Nash Jr. (1928–2015) and his depiction in the movie A
Beautiful mind.

Sources: https://britannica.com and https://medium.com
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Preparations for the proof of Nash’s theorem

• The proof is essentially topological, as its main ingredient is a
fixed-point theorem. We use a theorem due to Brouwer.

• For d ∈ N, a subset X of Rd is compact if X is closed and bounded.

• We say that a subset Y of Rd is convex if every line segment
containing two points from Y is fully contained in Y . Formally: for all
x , y from Y , tx + (1− t)y ∈ Y for every t ∈ [0, 1].

• For n affinely independent points x1, . . . , xn ∈ Rd , an (n − 1)-simplex
∆n on x1, . . . , xn is the set of convex combinations of the points
x1, . . . , xn. Each simplex is a compact convex set in Rd .

Lemma (Lemma 2.18)

For n, d1, . . . , dn ∈ N, let K1, . . . ,Kn be compact sets, each Ki lying in Rdi .
Then, K1 × · · · × Kn is a compact set in Rd1+···+dn .



Preparations for the proof of Nash’s theorem

• The proof is essentially topological, as its main ingredient is a
fixed-point theorem.

We use a theorem due to Brouwer.

• For d ∈ N, a subset X of Rd is compact if X is closed and bounded.

• We say that a subset Y of Rd is convex if every line segment
containing two points from Y is fully contained in Y . Formally: for all
x , y from Y , tx + (1− t)y ∈ Y for every t ∈ [0, 1].

• For n affinely independent points x1, . . . , xn ∈ Rd , an (n − 1)-simplex
∆n on x1, . . . , xn is the set of convex combinations of the points
x1, . . . , xn. Each simplex is a compact convex set in Rd .

Lemma (Lemma 2.18)

For n, d1, . . . , dn ∈ N, let K1, . . . ,Kn be compact sets, each Ki lying in Rdi .
Then, K1 × · · · × Kn is a compact set in Rd1+···+dn .



Preparations for the proof of Nash’s theorem

• The proof is essentially topological, as its main ingredient is a
fixed-point theorem. We use a theorem due to Brouwer.

• For d ∈ N, a subset X of Rd is compact if X is closed and bounded.

• We say that a subset Y of Rd is convex if every line segment
containing two points from Y is fully contained in Y . Formally: for all
x , y from Y , tx + (1− t)y ∈ Y for every t ∈ [0, 1].

• For n affinely independent points x1, . . . , xn ∈ Rd , an (n − 1)-simplex
∆n on x1, . . . , xn is the set of convex combinations of the points
x1, . . . , xn. Each simplex is a compact convex set in Rd .

Lemma (Lemma 2.18)

For n, d1, . . . , dn ∈ N, let K1, . . . ,Kn be compact sets, each Ki lying in Rdi .
Then, K1 × · · · × Kn is a compact set in Rd1+···+dn .



Preparations for the proof of Nash’s theorem

• The proof is essentially topological, as its main ingredient is a
fixed-point theorem. We use a theorem due to Brouwer.

• For d ∈ N, a subset X of Rd is compact if X is closed and bounded.

• We say that a subset Y of Rd is convex if every line segment
containing two points from Y is fully contained in Y . Formally: for all
x , y from Y , tx + (1− t)y ∈ Y for every t ∈ [0, 1].

• For n affinely independent points x1, . . . , xn ∈ Rd , an (n − 1)-simplex
∆n on x1, . . . , xn is the set of convex combinations of the points
x1, . . . , xn. Each simplex is a compact convex set in Rd .

Lemma (Lemma 2.18)

For n, d1, . . . , dn ∈ N, let K1, . . . ,Kn be compact sets, each Ki lying in Rdi .
Then, K1 × · · · × Kn is a compact set in Rd1+···+dn .



Preparations for the proof of Nash’s theorem

• The proof is essentially topological, as its main ingredient is a
fixed-point theorem. We use a theorem due to Brouwer.

• For d ∈ N, a subset X of Rd is compact if X is closed and bounded.

• We say that a subset Y of Rd is convex if every line segment
containing two points from Y is fully contained in Y .

Formally: for all
x , y from Y , tx + (1− t)y ∈ Y for every t ∈ [0, 1].

• For n affinely independent points x1, . . . , xn ∈ Rd , an (n − 1)-simplex
∆n on x1, . . . , xn is the set of convex combinations of the points
x1, . . . , xn. Each simplex is a compact convex set in Rd .

Lemma (Lemma 2.18)

For n, d1, . . . , dn ∈ N, let K1, . . . ,Kn be compact sets, each Ki lying in Rdi .
Then, K1 × · · · × Kn is a compact set in Rd1+···+dn .



Preparations for the proof of Nash’s theorem

• The proof is essentially topological, as its main ingredient is a
fixed-point theorem. We use a theorem due to Brouwer.

• For d ∈ N, a subset X of Rd is compact if X is closed and bounded.

• We say that a subset Y of Rd is convex if every line segment
containing two points from Y is fully contained in Y . Formally: for all
x , y from Y , tx + (1− t)y ∈ Y for every t ∈ [0, 1].

• For n affinely independent points x1, . . . , xn ∈ Rd , an (n − 1)-simplex
∆n on x1, . . . , xn is the set of convex combinations of the points
x1, . . . , xn. Each simplex is a compact convex set in Rd .

Lemma (Lemma 2.18)

For n, d1, . . . , dn ∈ N, let K1, . . . ,Kn be compact sets, each Ki lying in Rdi .
Then, K1 × · · · × Kn is a compact set in Rd1+···+dn .



Preparations for the proof of Nash’s theorem

• The proof is essentially topological, as its main ingredient is a
fixed-point theorem. We use a theorem due to Brouwer.

• For d ∈ N, a subset X of Rd is compact if X is closed and bounded.

• We say that a subset Y of Rd is convex if every line segment
containing two points from Y is fully contained in Y . Formally: for all
x , y from Y , tx + (1− t)y ∈ Y for every t ∈ [0, 1].

• For n affinely independent points x1, . . . , xn ∈ Rd , an (n − 1)-simplex
∆n on x1, . . . , xn is the set of convex combinations of the points
x1, . . . , xn.

Each simplex is a compact convex set in Rd .

Lemma (Lemma 2.18)

For n, d1, . . . , dn ∈ N, let K1, . . . ,Kn be compact sets, each Ki lying in Rdi .
Then, K1 × · · · × Kn is a compact set in Rd1+···+dn .



Preparations for the proof of Nash’s theorem

• The proof is essentially topological, as its main ingredient is a
fixed-point theorem. We use a theorem due to Brouwer.

• For d ∈ N, a subset X of Rd is compact if X is closed and bounded.

• We say that a subset Y of Rd is convex if every line segment
containing two points from Y is fully contained in Y . Formally: for all
x , y from Y , tx + (1− t)y ∈ Y for every t ∈ [0, 1].

• For n affinely independent points x1, . . . , xn ∈ Rd , an (n − 1)-simplex
∆n on x1, . . . , xn is the set of convex combinations of the points
x1, . . . , xn. Each simplex is a compact convex set in Rd .

Lemma (Lemma 2.18)

For n, d1, . . . , dn ∈ N, let K1, . . . ,Kn be compact sets, each Ki lying in Rdi .
Then, K1 × · · · × Kn is a compact set in Rd1+···+dn .



Preparations for the proof of Nash’s theorem

• The proof is essentially topological, as its main ingredient is a
fixed-point theorem. We use a theorem due to Brouwer.

• For d ∈ N, a subset X of Rd is compact if X is closed and bounded.

• We say that a subset Y of Rd is convex if every line segment
containing two points from Y is fully contained in Y . Formally: for all
x , y from Y , tx + (1− t)y ∈ Y for every t ∈ [0, 1].

• For n affinely independent points x1, . . . , xn ∈ Rd , an (n − 1)-simplex
∆n on x1, . . . , xn is the set of convex combinations of the points
x1, . . . , xn. Each simplex is a compact convex set in Rd .

Lemma (Lemma 2.18)

For n, d1, . . . , dn ∈ N, let K1, . . . ,Kn be compact sets, each Ki lying in Rdi .
Then, K1 × · · · × Kn is a compact set in Rd1+···+dn .



Brouwer’s Fixed Point Theorem

Brouwer’s Fixed Point Theorem (Thoerem 2.17)

For each d ∈ N, let K be a non-empty compact convex set in Rd and
f : K → K be a continuous mapping. Then, there exists a fixed point
x0 ∈ K for f , that is, f (x0) = x0.

Figure: L. E. J. Brouwer (1881–1966).
Source: https://arxiv.org/pdf/1612.06820.pdf
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Figure: John Forbes Nash Jr. receiving a Nobel prize for economics.
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