
Algorithmic game theory (NDMI098)
Lecture notes

Martin Balko

October 20, 2024

2

Contents

1 Introduction 5
1.1 Preface . 5
1.2 Algorithmic game theory . 6

2 Finding Nash equilibria 7
2.1 Games in normal form . 8

2.1.1 Examples of normal-form games . 10
2.2 Basic solution concepts . 11

2.2.1 Nash equilibrium . 12
2.2.2 Nash’s theorem . 13
2.2.3 Pareto optimality . 15
2.2.4 Exercises . 16

2.3 Nash equilibria in zero-sum games . 17
2.3.1 The Minimax Theorem . 19

2.4 Nash equilibria in bimatrix games . 21
2.4.1 Best response condition . 21
2.4.2 Finding Nash equilibria by support enumeration 22
2.4.3 Preliminaries from geometry . 23
2.4.4 Best response polytopes . 24
2.4.5 Lemke–Howson algorithm . 27
2.4.6 The class PPAD . 31
2.4.7 Exercises . 34

2.5 Other notions of equilibria . 35
2.5.1 ε-Nash equilibria . 36
2.5.2 Correlated equilibria . 38
2.5.3 Exercises . 41

2.6 Regret minimization . 42
2.6.1 External regret . 43
2.6.2 No-regret dynamics . 47
2.6.3 New proof of the Minimax Theorem . 48
2.6.4 Coarse correlated equilibria . 49
2.6.5 Swap regret and correlated equilibria . 51
2.6.6 Exercises . 54

2.7 Games in extensive form . 55
2.7.1 Strategies and equilibria in extensive games 57
2.7.2 Sequence form . 58
2.7.3 Computing equilibria in two-player extensive games 59
2.7.4 Exercises . 61

3 Mechanism design 63
3.1 Mechanism design basics . 64

3.1.1 Vickrey’s auction . 64
3.1.2 Myerson’s lemma . 66
3.1.3 Some applications of Myerson’s lemma 69
3.1.4 Knapsack auctions . 71
3.1.5 Exercises . 73

4 CONTENTS

3.2 Revenue-Maximizing Auctions . 73
3.2.1 Maximizing expected revenue . 75
3.2.2 Maximizing expected virtual social surplus 76
3.2.3 The Bulow–Klemperer Theorem . 77
3.2.4 Exercises . 78

3.3 Multi-parameter mechanism design . 79
3.3.1 The Revelation Principle . 82
3.3.2 Exercises . 82

1 Introduction

Contents of this chapter

1.1 Preface 5 1.2 Algorithmic game theory . . . 6

1.1 Preface
These are notes to a lecture Algorithmic game theory (NDMI098) taught by M. Balko at Charles
University in Prague. This text should serve as an introductory text on the game theory with
emphasis on algorithmic perspective on this field. The notes cover the material presented in
the course relatively concisely, although some parts might go beyond the usual scope of the
course. The current version of the notes are still under construction, as the course is being
held for the first time in the winter term 2018/2019, so it is possible that some parts might still
change significantly.

Literature. There are several great sources on algorithmic game theory available and the
current version of the notes is mostly based on these.

Perhaps the most comprehensive source on algorithmic theory is the following book edited
by Nisan, Roughgarden, Tardos, and Vazirani [NRTV07]. This great book is a result of the effort
of more than 40 of the top researchers in the area who have written chapters that go from the
foundations to the state of the art, covering game-theory basics, algorithm mechanism design,
quantifying the inefficiency of equilibria, and applications of game theory.

• Noam Nisan, Tim Roughgarden, Éva Tardos, and Vijay V. Vazirani, editors. Algorithmic
game theory. Cambridge University Press, Cambridge, 2007

A large portion of this text, especially parts about mechanism design, is based on the
following book by Roughgarden [Rou16]. This book grew out of the Stanford University course
on algorithmic game theory taught by Tim Roughgarden, and it gives a very nice and accessible
introduction to many of the most important concepts in the field.

• Tim Roughgarden. Twenty lectures on algorithmic game theory. Cambridge University
Press, Cambridge, 2016

A very good introductory text on game theory is a beautiful thin book by Leyton-Brown and
Shoham [LBS08].

• Kevin Leyton-Brown and Yoav Shoham. Essentials of game theory, volume 3 of Synthesis
Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers,
Williston, VT, 2008. A concise, multidisciplinary introduction

Some parts about the Minimax theorem are taken from an excellent book by Matoušek and
Gärtner [MG06] about linear programming. This book can also serve as a very nice introduction
to linear programming.

• Jiří Matoušek and Bernd Gärtner. Understanding andUsing Linear Programming. Springer-
Verlag New York, Inc., 2006

6 INTRODUCTION

On exercises. At the end of most of the sections, the reader can find a collection of exercises.
Solving them might help the reader in understanding the material covered. We classify the
exercises according to difficulty. This classification is based on points listed next to the problem
statements. Generally, the higher the number of points is, the harder the exercise. Finding a
solution for one-point exercises should be quite easy, solving an exercise worth three points
and more might require some bright idea or a bit more work.

A note for Czech students. Since the Czech terminology is sometimes slightly different
than word-for-word translation, we use footnotes throughout these notes to illustrate Czech
translation of some selected terms. We try to list more possibilities whenever the translation is
not uniquely determined.

Finally, if you spot any mistake in these lecture notes or if you have suggestions of how to
improve the exposition, please, feel free to send any comments to balko@kam.mff.cuni.cz. I
would really appreciate it.

Acknowledgement. I would like to thank Ondřej Mička, Anton Dandarov, Jan Kuchařík, David
Klement, Vladimír Drechsler, Viktoria Patapeika, Jan Kaifer, Jakub Komárek, Jakub Kubík, Jan
Plot, Patrik Zavoral, and Tomáš Čížek for carefully reading the lecture notes and for their
valuable comments.

1.2 Algorithmic game theory
Game theory is the study of formal models of strategic environments and strategic interaction
between rational decision-makers. The start of modern game theory was the proof of the
existence of mixed-strategy equilibria in two-person zero-sum games by John von Neumann.
Game theory developed extensively in the 1950s by many scholars and found many applications
in diverse areas such as economics and biology. Game theory has been recognized as an
important tool in various fields, for example, more than ten game theorists have won the Nobel
Prize in economics.

In these notes we focus on algorithmic game theory, a relatively new field that lies in the
intersection of game theory and computer science. The main objective of algorithmic game
theory is to design effective algorithms in strategic environments.

In the first part of these notes, we focus on algorithmic theory’s earliest research goals—
algorithms for computing equilibria (Nash, correlated, and several others). Informally, an
equilibrium is a “steady state” of a system where no participant, assuming everything else
stays the same, has anything to gain by changing only his own strategy. We also consider
online learning algorithms and show that we can use them to efficiently approximate certain
equilibria.

The second part of these notes is devoted to mechanism design, a subarea of game theory
that deals with designing games toward desired objectives. The players have unknown and
private utilities and the goal is to design rules so that strategic behavior by participants leads
to a desirable outcome. This area, which is sometimes called reverse game theory, has broad
applications ranging from economics and politics (markets, auctions, voting procedures) to
networked-systems (internet interdomain routing, sponsored search auctions).

2 Finding Nash equilibria

Contents of this chapter

2.1 Games in normal form 8
2.1.1 Examples of normal-

form games 10
2.2 Basic solution concepts 11

2.2.1 Nash equilibrium . . . 12
2.2.2 Nash’s theorem 13
2.2.3 Pareto optimality . . . 15
2.2.4 Exercises 16

2.3 Nash equilibria in zero-sum
games 17
2.3.1 The Minimax Theorem 19

2.4 Nash equilibria in bimatrix games 21
2.4.1 Best response condition 21
2.4.2 Finding Nash equilibria

by support enumeration 22
2.4.3 Preliminaries from ge-

ometry 23
2.4.4 Best response polytopes 24
2.4.5 Lemke–Howson algo-

rithm 27
2.4.6 The class PPAD 31
2.4.7 Exercises 34

2.5 Other notions of equilibria . . 35
2.5.1 ε-Nash equilibria . . . 36
2.5.2 Correlated equilibria . 38
2.5.3 Exercises 41

2.6 Regret minimization 42
2.6.1 External regret 43
2.6.2 No-regret dynamics . . 47
2.6.3 New proof of the Mini-

max Theorem 48
2.6.4 Coarse correlated equi-

libria 49
2.6.5 Swap regret and corre-

lated equilibria 51
2.6.6 Exercises 54

2.7 Games in extensive form . . . 55
2.7.1 Strategies and equilib-

ria in extensive games . 57
2.7.2 Sequence form 58
2.7.3 Computing equilibria

in two-player extensive
games 59

2.7.4 Exercises 61

In this chapter, we introduce basic concepts in game theory. We state the most fundamental
definitions and illustrate them on specific examples of games. We introduce some basic solution
concepts such as Nash equilibrium and Pareto optimality and prove the famous Nash’s theorem
about the existence of Nash equilibria in every game with a finite number of players, each
having a finite number of actions.

In the rest of this chapter, we deal with the problem of finding Nash equilibria efficiently.
We first prove the Minimax theorem, showing that it is possible to do so in so-called zero-sum
games, which are games of two players, where the gain of one player equals the loss of the
other one. Then we focus on bimatrix games, present the Lemke–Howson algorithm for finding
a Nash equilibrium in a bimatrix game, introduce the complexity class PPAD, and argue that
this is the right class for studying the complexity of finding Nash equilibria in bimatrix games.

Since, as we will see, there is good evidence suggesting that finding Nash equilibria is a
computationally difficult task, we relax the definition of a Nash equilibrium and consider some
of its variants. Namely, we focus on approximate Nash equilibria and correlated equilibria and
show that both these solution concepts can be found efficiently.

Afterward, we consider online learning algorithms and study simple learning algorithms
that minimize so-called external regret. We show that such algorithms can be used to prove the
Minimax theorem and also can be used in a procedure called no-regret dynamics that can find
so-called coarse correlated equilibria that form a superset of correlated equilibria and are even
easier to compute. Similarly, we present a version of this procedure for so-called swap regret
that can be used to approximate correlated equilibria.

8 FINDING NASH EQUILIBRIA

Finally, we conclude the chapter with a short description of games in extensive form, that is,
games represented by trees and we discuss how to compute Nash equilibria there.

2.1 Games in normal form
The normal form of a game, also known as strategic or matrix form, is a representation of the
game using a (high-dimensional) matrix. It is the most familiar representation of games and
arguably the most fundamental, as most other representations of games can be reduced to
it. A game written in this way includes all perceptible and conceivable strategies, and their
corresponding payoffs, for each player.

Definition 2.1 (Normal-form game). A (finite, n-player) normal-form game1 is a triple (P,A, u),
where

• P is a finite set of n players,

• A = A1 × · · · × An is a set of action profiles, where Ai is a set of actions available to
player i,

• and u = (u1, . . . , un) is an n-tuple, where each ui : A → R is the utility function (or
payoff function2) for player i.

That is, each normal-form game G = (P,A, u) can be represented by a real n-dimensional
matrix M = (Ma)a∈A, where Ma = u(a). Knowing the utility function, all players simulta-
neously choose an action from the set of their available actions. The resulting action profile
a = (a1, . . . , an) is then evaluated using the utility function. The ith coordinate ui(a) of u(a)
denotes the gain (or loss) of player i on the action profile a. This value can be interpreted as a
measure of the player’s i level of happiness at state a.

For example, the normal form of the well-known game Rock-Paper-Scissors can be captured
by the following two-dimensional matrix.

Example 2.2 (Rock-Paper-Scissors). We have two players, that is, P = {1, 2}. Both players have
the same set of actions A1 = {Rock,Paper, Sccissors} = A2 and the utility function assigns a
value from {−1, 0, 1} to each player, depending on the action chosen. For example, we have
u(Paper,Rock) = (1,−1), because player 1 wins by choosing Paper if player 2 chooses Rock. A
normal form of this game is depicted in Table 2.1.

Rock Paper Scissors

Rock (0,0) (-1,1) (1,-1)

Paper (1,-1) (0,0) (-1,1)

Scissors (-1,1) (1,-1) (0,0)

Table 2.1: A normal form of the game Rock-paper-scissors.

Example 2.3 (Chess). To illustrate that the normal-form games are very general, we sketch how
to represent chess as a normal-form game. Each action of player i ∈ {black,white} is a list of all
possible situations that can happen on the board together with the move player i would make
in that situation. This is possible as the game of chess is finite. Now, if each player i chooses
his action ai, then we can simulate the whole game of chess the players would play and check
what is the result (ublack(ablack, awhite), uwhite(ablack, awhite)) of that game. Of course, the resulting
matrix A is astronomically large and not practical to use.

1 Hra v normální formě.
2 Výplatní funkce či užitková funkce.

Each player i in a normal-form gameG = (P,A, u) of n players can follow a certain strategy.
A strategy is a prescription for how he chooses an action from Ai that he plays. One possible
strategy is to always select a single action and play it. This is so-called pure strategy.

Definition 2.4 (Pure strategy). The set of pure strategies3 of player i is the set Ai of available
actions for i. A pure-strategy profile4 is an n-tuple (s1, . . . , sn), where si ∈ Ai for each player i.

In other words, a pure-strategy profile is a choice of pure strategy for each player. We note
that sometimes authors do not distinguish between pure strategies and actions in the literature.

Another type of strategy, developed largely by Von Neumann, is a mixed strategy where
player i selects an action from Ai according to some probability distribution on Ai.

Definition 2.5 (Mixed strategy). The set Si of mixed strategies5 of player i is the set Π(Ai),
where Π(X) is a set of all probability distributions on a set X . Similarly as in the case of pure
strategies, a mixed-strategy profile6 is an n-tuple (s1, . . . , sn), where si ∈ Si for each player i.

That is, the set Si contains infinitely many mixed strategies for player i. Note that a pure
strategy is a degenerate case of a mixed strategy in which the action to be played is assigned
probability 1. For a mixed strategy si of player i and action ai ∈ Ai, we use si(ai) to denote
the probability that the action ai is played by player i under mixed strategy si.

The set {ai ∈ Ai : si(ai) > 0} is called the support7 of si. A mixed strategy si is fully mixed
if the support of si is the entire set Ai, that is, if si assigns every action from Ai a positive
probability. A fully-mixed-strategy profile is a strategy profile, where the strategy of every player
is fully mixed.

With the notion of mixed strategies, the goal of each player in G is to maximize his expected
payoff. The expected payoff of player i is defined as the expected value of ui under the product
distribution

∏n
j=1 sj .

Definition 2.6 (Expected payoff of a mixed strategy). In a normal-form game G = (P,A, u) of
n players, the expected payoff (or expected utility)8 for player i of the mixed-strategy profile
s = (s1, . . . , sn) is

ui(s) =
∑

a=(a1,...,an)∈A

ui(a)

n∏
j=1

sj(aj).

That is, given the strategy profile s, we calculate the average of the payoffs of all out-
comes a ∈ A, weighted by the probabilities of each outcome under s. The expected pay-
off is the unique extension of the payoff function ui that is linear in the mixed strategy of
each player. To capture this formally, we use a bit unfortunate but established notation
s−i to denote the strategy profile s = (s1, . . . , sn) without the strategy of player i. That is,
s−i = (s1, . . . , si−1, si+1, . . . , sn). For a strategy s′i ∈ Si of player i, we use ui(s′i; s−i) to de-
note the number ui(s1, . . . , si−1, s

′
i, si+1, . . . , sn). Thus, in particular, ui(si; s−i) = ui(s). The

linearity of the expected payoff then means

ui(s) =
∑

ai∈Ai

si(ai)ui(ai; s−i) (2.1)

for every player i ∈ P and every mixed-strategy profile s = (s1, . . . , sn). We leave the proof
of (2.1) to the reader; see Exercise 2.1.

Example 2.7 (Payoffs in the Rock-Paper-Scissors game). To illustrate these definitions, consider
the pure strategy profile s = (Paper, Scissors) in the Rock-Paper-Scissors game. This profile
corresponds to the situation when the first player always chooses Paper, while the second player

3 Čistá strategie či ryzí strategie.
4 Profil čisty̌ch strategií či čistý strategický profil.
5 Smíšená strategie.
6 Profil smíšených strategií či smíšený strategický profil.
7 Doména smíšené strategie.
8 Střední hodnota výplatní (či užitkové) funkce.

10 FINDING NASH EQUILIBRIA

always selects Scissors. Obviously, player 1 always loses in this profile and thus u1(s) = −1 and
u2(s) = 1.

Now, for i ∈ {1, 2}, let si ∈ Si = Π(Ai) be the mixed strategy, where player i chooses each
action from Ai independently at random with probability 1/3. Then each player wins with
probability 1/3 in the mixed-strategy profile (s1, s2) and neither player can increase his expected
payoff, which is 0, via a unilateral deviation, as, for example,

u1(s) = 1 ·
(
1

3
· 1
3
+

1

3
· 1
3
+

1

3
· 1
3

)
+ (−1) ·

(
1

3
· 1
3
+

1

3
· 1
3
+

1

3
· 1
3

)
+ 0 ·

(
1

3
· 1
3
+

1

3
· 1
3
+

1

3
· 1
3

)
= 0.

2.1.1 Examples of normal-form games
Here, we provide more examples of normal-form games and list some possible types of such
games. Several of these examples are used later to help understand further definitions and
concepts in subsequent sections. We focus here only on normal-form games with two players,
that is, we will have P = {1, 2}. These games are called bimatrix games9, as each such game
can be represented with a two-dimensional matrix, that is, with a table. In the examples below,
player 1 is the “row player” while player 2 corresponds to the “column player”.

The following game called Prisoner’s dilemma and illustrated in Example 2.8, is a standard
example in game theory, which shows that two rational individuals might not cooperate, even
if it appears that it is in their best interests to do so.

Example 2.8 (Prisoner’s dilemma). Two prisoners, 1 and 2, are being held in solitary confinement
and cannot communicate with each other. Each one of them is given an opportunity to either
betray the other prisoner by testifying that the other committed the crime, or to cooperate with
the other by remaining silent. If they both testify, each of them serves two years in prison. If 1
testifies but 2 remains silent, 1 will be set free and 2 will serve three years in prison (and vice
versa). If they both remain silent, both of them will only serve 1 year in prison. The matrix of this
game is illustrated in Table 2.2.

Testify Remain silent

Testify (-2,-2) (0,-3)

Remain silent (-3,0) (-1,-1)

Table 2.2: A normal form of the game Prisoner’s dilemma.

Even if it appears that the best interest of both prisoners is to cooperate together and remain
silent, the only stable solution of this game is, quite paradoxically, when both prisoners testify.
Otherwise, one of them can change his action to Testify and improve his payoff. In the Prisoner’s
dilemma example, the precise payoff numbers are not so important, the example works also in
the more general setting illustrated in Table 2.3 as long the condition a < b < c < d holds.

Testify Remain silent

Testify (b,b) (d,a)

Remain silent (a,d) (c,c)

Table 2.3: A normal form of the generalized game Prisoner’s dilemma. Here, a < b < c < d.

9 Maticové hry.

Definition 2.9 (Zero-sum game). A bimatrix game G = (P,A, u) is a zero-sum game10 if for
every action profile a ∈ A we have u1(a) + u2(a) = 0.

In other words, in each state of the game, the gain of the first player equals the loss of the
second player and vice versa. Rock-Paper-Scissors is a classical example of a zero-sum game.
An even simpler example of a zero-sum game is the gameMatching pennies. In this game, both
players have only two possible actions; see Example 2.10.

Example 2.10 (Matching pennies). Each of the two players has a penny and chooses either Heads
of Tails. Then both players simultaneously reveal the chosen side of their coin and compare them.
If the pennies match, then player 1 wins and keeps both pennies. Otherwise, player 2 keeps both
pennies.

Heads Tails

Heads (1,-1) (-1,1)

Tails (-1,1) (1,-1)

Table 2.4: A normal form of the game Matching pennies.

We use this game later to illustrate the concepts of mixed strategies and Nash equilibrium.
Another classical example is the game Battle of sexes; see Example 2.11. This game displays

elements of both coordination and competition.

Example 2.11 (Battle of sexes11). A husband and wife wish to spend an evening together rather
than separately, but cannot decide which event to attend. The husband wishes to go to a football
match while the wife wants to go to the opera (or the other way around, if you prefer). If they
cannot communicate, where should they go? The matrix form of this game is depicted in Table 2.5.

Football Opera

Football (2,1) (0,0)

Opera (0,0) (1,2)

Table 2.5: A normal form of the game Battle of Sexes.

Our last example is the Game of chicken, also known as the Hawk-dove game or Snowdrift
game.

Example 2.12 (Game of chicken12). Drivers 1 and 2 drive towards each other on a collision
course: one must swerve, or both die in the crash. However, if one driver swerves and the other
does not, the one who swerves will be called a “chicken"; see Table 2.6 for the matrix form of this
game.

2.2 Basic solution concepts
In this section, we discuss how to reason in normal-form games. We already know what
strategies are, now the objective is to maximize the player’s expected payoff using appropriate
strategies. In case of games with at least two players, the situation becomes more complicated,
as the best strategy depends on the choices of the other players. Therefore, in game theory,
we typically identify and study rules for predicting how a game will be played, called solution
10 Hra s nulovým součtem.
11 Souboj pohlaví či Manželský spor.
12 Hra na kuře.

12 FINDING NASH EQUILIBRIA

Swerve Straight

Swerve (0,0) (-1,1)

Straight (1,-1) (-10,-10)

Table 2.6: A normal form of the Game of chicken.

concepts13. Formally, a solution concept is a mapping from the set of all normal-form games
that maps each game G to a set of strategy profiles of G. In this section, we describe the most
commonly used solutions concepts: Nash’s equilibrium and Pareto optimality.

2.2.1 Nash equilibrium
In a normal-form game G = (P,A, u) of n players, assume first that player i in G knows what
actions all the other players chose. Under this assumption, it is easy for player i to choose an
action that maximizes his payoff. Such an action is called the best response of i to the actions
chosen by other players.

Definition 2.13 (Best response). The best response14 of player i to the strategy profile s−i is a
mixed strategy s∗i such that ui(s∗i ; s−i) ≥ ui(s′i; s−i) for each strategy s′i ∈ Si of i.

Informally, if a player could “cheat” and look at what strategies the other players have, he
would like to switch his strategy to best response. For example, in the Matching pennies game
(Example 2.10), the best response of player 1 to the action Heads played by player 2 is the action
Heads, after which player 1 can keep the pennies. The best response of prisoner 1 to the other
prisoner being silent in the Prisoner’s dilemma game is to testify, since then prisoner 1 is set
free.

Although in both these examples the best response was determined uniquely, in general
this is not the case. In fact, there is always either exactly one best response or the number of
best responses is infinite. The reason for this fact is that if s1i and s2i are two best responses of
player i, then the linearity of expectation implies that the mixed strategy ts1i + (1− t)s2i is also
a best response of i for every t ∈ [0, 1].

In general, the situation for player i is more complicated, as he does not knowwhat strategies
the other players selected, since players choose strategies simultaneously. We can, however,
use the notion of best response to define one of the most important solutions concepts in
game theory with diverse applications.

Definition 2.14 (Nash equilibrium). For a normal-form game G = (P,A, u) of n players, a
Nash equilibrium15 in G is a strategy profile (s1, . . . , sn) such that si is a best response of player
i to s−i for every i ∈ P .

That is, Nash equilibrium is a stable solution concept, meaning that no player would like to
change his strategy if he knew the strategies of the other players. The notion of Nash equilibria
for normal-form games was introduced by Nash [Nas50] in 1950 and it is the most influential
concept in game theory to this date. Von Neumann and Morgenstern [vNMKR44] introduced
the concept of Nash equilibria even sooner, but their analysis was restricted to zero-sum games.

Since every Nash equilibrium is a strategy profile, it can be pure, mixed, or fully mixed.
For example, there are no pure Nash equilibria in the Matching pennies game, as there is no
pure strategy profile (s1, s2) such that s1 is a best response to s2 and vice versa. There is a
unique mixed Nash equilibrium in this game: both players choose Heads or Tails with equal
probability.

To give another example, the Battle of sexes game (Example 2.11) has two pure Nash equilib-
ria: (Football, Football), where the husband (player 1) and the wife (player 2) go to the football
13 Koncept řešení.
14 Nejlepší odpověď.
15 Nashova rovnováha či Nashovo ekvilibrium.

match, and (Opera,Opera), where they both go to opera. Are these two the only Nash equilibria
of this game?

No, we show that there is a third, fully mixed, Nash equilibrium. Assume that the husband’s
mixed strategy s1 is to choose the action Football at random with probability p = s1(Football)
and the action Opera with probability 1−p = s1(Opera). Similarly, assume that the wife’s mixed
strategy s2 is to choose Opera with probability q = s2(Opera) and Football with probability
1− q = s2(Football).

Proposition 2.15. In the game Battle of sexes, the strategy profile (s1, s2) is a Nash equilibrium
if and only if (p, q) = (1, 0), (p, q) = (0, 1), or (p, q) = (2/3, 2/3).

Proof. For the husband, the expected payoff of going to the football match under the mixed
strategy profile s = (s1, s2) is

u1(Football; s−1) = qu1(Football,Opera) + (1− q)u1(Football, Football) = q · 0 + (1− q) · 2
= 2− 2q

and the expected payoff of going to opera is

u1(Opera; s−1) = qu1(Opera,Opera) + (1− q)u1(Opera, Football) = q · 1 + (1− q) · 0 = q.

Thus, husband’s expected payoff equals

u1(s) = p ·u1(Football; s−1)+ (1− p) ·u1(Opera; s−1) = p(2− 2q)+ (1− p)q = q− p(3q− 2).

The function u1(s) is strictly increasing in p if u1(Football; s−1) > u1(Opera; s−1). This occurs
when q < 2/3 and in this case the husband’s best response is p = 1 and the couple goes to
football. If q > 2/3, then u1(s) is strictly decreasing in p and the husband’s best response is
p = 0, in which case the couple goes to opera. If q = 2/3, then u1(s) does not depend on p,
and any p ∈ [0, 1] is a best response for the husband. In this case, they both might go to either
of the two events. By symmetry, q = 0 is a best response for the wife if p > 2/3 and q = 1 if
p < 2/3. For p = 2/3, any q ∈ [0, 1] is a best response for the wife.

Altogether, we see that the strategy profile (s1, s2) is a Nash equilibrium if and only if
(p, q) = (1, 0), (p, q) = (0, 1), or (p, q) = (2/3, 2/3). The first two strategy profiles are the pure
Nash equilibria we have seen from the start. The third fully-mixed-strategy profile corresponds
to the situation in which the players go to their preferred event more often than the other.

2.2.2 Nash’s theorem
Now that we have introduced the notion of Nash equilibria and illustrated it on a few examples,
a natural question is whether they always exist in every game. In 1950, Nash [Nas50] showed
that, indeed, every normal-form game has a mixed Nash equilibrium.

Theorem 2.16 (Nash’s theorem [Nas50, Nas51]). Every normal-form game has a Nash equilib-
rium.

This is perhaps the most influential result in game theory and it won Nash the Nobel
Memorial Prize in Economic Sciences in 1994. Before Nash, Von Neumann and Morgen-
stern [vNMKR44] showed that a mixed-strategy Nash equilibrium exists for any zero-sum
game with a finite set of actions. However, Nash’s theorem guarantees the existence of at least
one mixed Nash equilibrium in each normal-form game for any finite number of players. The
notion of mixed strategies is crucial for this result, since, as we have seen in the game Matching
pennies, some games might have no pure Nash equilibrium.

In the rest of this section, we show a proof of Theorem 2.16. The proof is essentially topo-
logical, as its main ingredient is a fixed-point theorem due to Brouwer [Bro11]. Nash’s orig-
inal proof [Nas50] uses Kakutani’s Fixed Point Theorem [Kak41]. Here, we follow the proof
from [Nas51]. The proof itself is rather short, however, we need to state some definitions first.

14 FINDING NASH EQUILIBRIA

For a positive integer d, a subset X of Rd is compact if X is closed and bounded. We say
that a subset Y of Rd is convex if every line segment containing two points from Y is fully
contained in Y . That is, for any two points x, y from Y , tx+ (1− t)y ∈ Y for every t ∈ [0, 1].
For n affinely independent points x1, . . . , xn from Rd, an (n−1)-simplex ∆n = ∆n(x1, . . . , xn)
with the vertex set {x1, . . . , xn} is the set of convex combinations of the points x1, . . . , xn. That
is,

∆n =

{
n∑

i=1

tixi : ti ∈ [0, 1],

n∑
i=1

ti = 1

}
.

It is not difficult to observe that each simplex is a compact convex set in Rd.
The following theorem is a famous result, called Brouwer’s Fixed Point Theorem, which has

been used across numerous fields of mathematics. It is a fundamental result in the topology of
Euclidean spaces and, as we will see, it also plays a central role in game theory. Here, we state
its extended version for compact and convex sets.

Theorem 2.17 (Brouwer’s Fixed Point Theorem). For a positive integer d, let K be a non-empty
compact convex set in Rd. Let f : K → K be a continuous mapping. Then, there exists a fixed
point x0 ∈ K for f , that is, f(x0) = x0.

The proof of this result is far from being trivial and we do not state it here.
We also use the following simple lemma, which states that the Cartesian product of compact

sets in Rd is compact and which is a special case of Tychonoff’s theorem. Again, we do not
state the proof here, although it is not difficult and we leave it as an exercise.

Lemma 2.18. For positive integers n and d1, . . . , dn, let K1, . . . ,Kn be compact sets, each Ki

lying in Rdi . Then, the Cartesian product K1 × · · · ×Kn is a compact set in Rd1+···+dn .

Now, we are ready to present the proof of Nash’s theorem about the existence of mixed
Nash equilibria in every normal-form game.

Proof of Theorem 2.16. Let G = (P,A, u) be a normal-form game of n players. For each player
i ∈ P , let Si be the of mixed strategies for player i. We will use Brouwer’s Fixed Point theorem
for a suitable continuous mapping f defined on the set S = S1×· · ·×Sn of all mixed strategies
for G so that the obtained fixed point for f in S is the Nash equilibrium for G. In order to do
so, we first need to verify that S is compact and convex.

Without loss of generality, for each i ∈ P , we regard the actions from the set Ai as vertices
of an (|Ai| − 1)-simplex in R|Ai|. Then each Si is a simplex in R|Ai| with the vertex set Ai of
possible actions for i. In particular, each set Si is a compact and convex set in R|Ai|. Thus, by
Lemma 2.18, the set S is a compact set inRm, wherem = |A1|+· · ·+|An|. It is easy to show that
S is also convex, as for any two mixed-strategy profiles s = (s1, . . . , sn), s

′ = (s′1, . . . , s
′
n) ∈ S

and t ∈ [0, 1], the point ts+ (1− t)s′ = (ts1 + (1− t)s′1, . . . , tsn + (1− t)s′n) is also a mixed-
strategy profile for G and thus lies in S.

It remains to define the appropriate continuous mapping f : S → S for which the fixed
points are Nash equilibria. Let s ∈ S be a given mixed strategy profile for G. For every player
i ∈ P and every action ai ∈ Ai, we first define a mapping φi,ai

: S → R by setting

φi,ai
(s) = max{0, ui(ai; s−i)− ui(s)}.

Using the definition of ui, one can show that this mapping is continuous. Its image is positive
if and only if player i can improve his payoff by selecting the action ai instead of using the
strategy si in the strategy profile s. Using the functions φi,ai

, we define a new strategy profile
s′ ∈ S by setting

s′i(ai) =
si(ai) + φi,ai(s)∑

bi∈Ai
(si(bi) + φi,bi(s))

=
si(ai) + φi,ai(s)

1 +
∑

bi∈Ai
φi,bi(s)

(2.2)

for all i ∈ P and ai ∈ Ai. Observe that each s′i(ai) lies in [0, 1] and
∑

ai∈Ai
s′i(ai) = 1. Thus, s′

is indeed a strategy profile forG. Intuitively, s′ is a strategy profile obtained from s by increasing

probabilities at actions that are better responses to s. Finally, we define the function f by setting
f(s) = s′.

The function f is continuous, since the functions φi,ai
are continuous. Thus, Theorem 2.17

implies that there is a strategy profile in S that is a fixed point for f . To finish the proof, we
show that a strategy profile s ∈ S is a Nash equilibrium of G if and only if s is a fixed point
for f .

First, if s is a Nash equilibrium for G, then all functions φi,ai are constant zero functions,
and thus f(s) = s, so s is a fixed point for f . For the other direction, assume that a strategy
profile s = (s1, . . . , sn) ∈ S is a fixed point for f . Consider an arbitrary player i ∈ P . There
is an action a′i ∈ Ai from the support of si such that ui(a′i; s−i) ≤ ui(s), as otherwise ui(s) <∑

ai∈Ai
si(ai)ui(ai; s−i), which is impossible by (2.1), that is, by the linearity of the expected

payoff. Since ui(a′i; s−i) ≤ ui(s), we have φi,a′
i
(s) = 0 from the definition of φi,a′

i
. Plugging

this into (2.2), we obtain

s′i(a
′
i) =

si(a
′
i)

1 +
∑

bi∈Ai
φi,bi(s)

.

Since s is a fixed point for f , we get s′i(a′i) = si(a
′
i) and, since a′i is in the support of si, we have

si(a
′
i) > 0. Thus, the denominator in the above expression is 1. This means that φi,bi(s) = 0 for

every bi ∈ Ai, and thus player i cannot improve his expected payoff by moving to a pure strategy.
In other words, ui(s) ≥ ui(bi; s−i) for every bi ∈ Ai. Combining this estimate with (2.1), we
obtain

ui(s
′′
i ; s−i) =

∑
bi∈Ai

s′′i (bi)ui(bi; s−i) ≤
∑
bi∈Ai

s′′i (bi)ui(s) = ui(s)

for every mixed-strategy s′′i ∈ Si. Therefore si is a best response of player i to s−i and s is a
mixed Nash equilibrium of G.

Note that the proof is not constructive, it just says that a Nash equilibrium exists, but does
not tell us how to find one. The problem of finding Nash equilibria of a given game efficiently
is discussed in the rest of this chapter.

Nash’s theorem is stated for normal-form games, so only for games with a finite number
of players, where each player has a finite number of actions. Both these assumptions are
necessary, as games with an infinite number of players or with a finite number of players who
have access to an infinite number of actions may not have Nash equilibria. A simple example
of such a game is a two-player game, where each player selects a positive integer and a player
who selected larger number gets payoff 1 while the other gets 0. In case of a tie, both players
get 0. An example with infinite number of players, each with a finite number of actions, is
given by the so-called Banach-Mazur game. In this game G = (P,A, u), we have P = N and
each player i has Ai = {0, 1}. The payoffs u are defined so that if an action profile a from A is
eventually constant, then all players receive a payoff of 1. If a is not eventually constant, then
all players receive a payoff of 0.

2.2.3 Pareto optimality
Another notion of optimality in normal-form games concerns the view of an outside observer
of the game. Which outcomes of the game should the observer consider better than others? In
general, it is difficult to answer this question, since we cannot say that the interests of some
players are more important than the interests of other players; consider the game Battle of sexes
from Example 2.11 as an illustration. One solution concept that is used to capture the notion of
optimality from the view of an outside observer is Pareto optimality (or Pareto efficiency) in
which a state is considered to be optimal if no player can be made better off without making
any other player worse off.

A strategy profile s in a normal-form gameG = (P,A, u) Pareto dominates16 strategy profile
s′, written s′ ≺ s, if, for every player i ∈ P , ui(s) ≥ ui(s′), and there exists a player j ∈ P such
that uj(s) > uj(s

′). This relation ≺ between strategy profiles is a partial ordering of the set
16 Pareto dominuje či dominuje podle Pareta.

16 FINDING NASH EQUILIBRIA

S of all strategy profiles of G. The outcomes of G that are considered best are the maximal
elements of S in ≺.

Definition 2.19. A strategy profile s ∈ S is Pareto optimal17 if there does not exist another
strategy profile s′ ∈ S that Pareto dominates s.

The concept is named after an Italian engineer and economist Vilfredo Pareto, who used it
in his studies of economic efficiency and income distribution. Note that there is at least one
Pareto optimal strategy profile in every normal-form game, but it might not be unique. For
example, in zero-sum games, all strategy profiles are Pareto optimal. If there is more than one
Pareto optimal profile, then such profiles are pairwise incomparable in ≺.

The example with zero-sum games shows that a Pareto optimal strategy profile might not
be a Nash equilibrium. In the other direction, the Prisoner’s dilemma game from Example 2.8
shows that Nash equilibria might not be Pareto optimal. We already mentioned that there is
a unique Nash equilibrium in this game where both prisoners testify; the reader might try to
prove this rigorously in Exercise 2.2. However, this strategy profile is not Pareto optimal, as
each prisoner can remain silent instead, which does not make the other prisoner worse off. In
fact, both prisoners can get a better payoff if they both remain silent. This example shows that
sometimes a Nash equilibrium might not seem optimal to the outside observer of the game.

2.2.4 Exercises
Exercise 2.1. Verify that the expected payoff of a mixed strategy in a normal-form game G =
(P,A, u) of n players is linear. That is, prove that ui(s) =

∑
ai∈Ai

si(ai)ui(ai; s−i) for every
player i ∈ P and every mixed-strategy profile s = (s1, . . . , sn). [1]

Exercise 2.2. Compute mixed Nash equilibria in the following games:

(a) Prisoner’s dilemma (Example 2.8), [1]

(b) Rock-Paper-Scissors (Example 2.2), [2]

(c) Game of chicken (Example 2.12), [2]

and formally show that no other Nash equilibria exist in these games.

Exercise 2.3. Watch the scene from A Beautiful Mind where the John Nash character played
by Russell Crowe explains what a Nash equilibrium is. Assume that the scenario described is
modeled as a game with four players (the men), each with the same five actions (the women).
Explain why the solution proposed in the movie is not a Nash equilibrium. [1]

Exercise 2.4. Consider the following game of n ≥ 2 players. Every player selects, independently,
a number from {1, . . . , 1000}. The goal of each player is to have his number closest to half of the
average of all the selected numbers.

We define two variants of this game, depending on the tie-breaking rule. In the first rule,
all players that are closest to the half of the average split evenly the payoff of 1. In the second
tie-breaking rule, each player that is closest to the half of the average receives a payoff of 1.

How would you play each of these games? Find all pure Nash equilibria of the game under

(a) the first tie-breaking rule, [2]

(b) the second tie-breaking rule. [2]

Exercise 2.5. There are n ≥ 2 people on the street who all notice an injured man. Each one of
them has two possible actions, either helping the injured man or not. If nobody helps the man,
everybody gets a payoff 0. If somebody helps, all get a payoff 1, but anybody who offered help has
to subtract c from his payoff, where 0 < c < 1. Find a symmetric Nash equilibrium of this game,
that is, a mixed equilibrium where all players use the same strategy. What is the probability the
man is helped at all? Is it good for the injured man to have more witnesses around? [3]
17 Pareto optimální či optimální podle Pareta.

Exercise 2.6 (Iterated dominance equilibrium). Let G = (P,A, u) be a normal-form game of n
players. For player i, we say that a strategy si ∈ Si is strictly dominated by a strategy s′i ∈ Si if,
for every s−i ∈ S−i, we have ui(si; s−i) < ui(s

′
i; s−i). Consider the following iterated process

that will help us find Nash equilibria in some games.
Set A0

i = Ai and S0
i = Si for every player i ∈ P . For t ≥ 1 and i ∈ P , let At

i be the set of
pure strategies from At−1

i that are not strictly dominated by a strategy from St−1
i and let St

i be
the set of mixed strategies with support contained in At

i. Let T be the first step when the sets
AT

i and ST
i are no longer shrinking for any i ∈ P . If each player i ∈ P is left with one strategy

ai ∈ AT
i , we call a1 × · · · × an an iterated dominance equilibrium of G.

(a) Show that every iterated dominance equilibrium is a Nash equilibrium. [2]

(b) Find an example of a two-person game in normal form game with a pure Nash equilibrium
that is not iterated dominance equilibrium. [1]

Exercise 2.7. Use iterated elimination of strictly dominated strategies (introduced in Exercise 2.6)
to find the unique Nash equilibrium in the following normal-form game of 2 players (see Ta-
ble 2.7) by first reducing the game to a 2× 2 game.

c1 c2 c3 c4

r1 (5, 2) (22, 4) (4, 9) (7, 6)

r2 (16, 4) (18, 5) (1, 10) (10, 2)

r3 (15, 12) (16, 9) (18, 10) (11, 3)

r4 (9, 15) (23, 9) (11, 5) (5, 13)

Table 2.7: The game from Exercise 2.7.

Exercise 2.8 (Dominant strategy equilibrium). Let G = (P,A, u) be a normal-form game of
n players. An action profile a∗ ∈ A is dominant strategy equilibrium in G if, for every player
i ∈ P , we have ui(a∗i ; a−i) ≥ ui(ai; a−i) for every ai ∈ Ai and a−i ∈ A−i.

(a) Is every dominant strategy equilibrium in G a Nash equilibrium in G? [1]

(b) Does every dominant strategy equilibrium in G Pareto dominate all other strategy pro-
files? [1]

(c) Let s be a strategy profile that Pareto dominates all other strategy profiles. Does that mean
that s is a dominant strategy equilibrium in G? [1]

Exercise 2.9. Consider the game in which two players choose non-negative integers of size at
most 1000. Player 1 chooses an even integer, while player 2 chooses an odd integer. When the
players announce their number, the player who chose the lower number wins the number he
announced in dollars. Find all pure Nash equilibria of this game. [3]

2.3 Nash equilibria in zero-sum games
By Nash’s theorem (Theorem 2.16), we know that Nash equilibria exist in every normal-form
game. This is a very reassuring fact since any game can thus reach a state in which no player
has an incentive to change his strategy. This gives us a prediction about the rational strategic
behavior of the players. Unfortunately, as we have already mentioned, the proof of Nash’s
theorem is not constructive and does not tell us how to find a Nash equilibrium. In the rest
of Chapter 2, we deal with the problem of finding an efficient algorithm for finding a Nash
equilibrium of a given game. We start by dealing with zero-sum games and show that for such
games Nash equilibria can be found efficiently using linear programming and that, in fact, such
an equilibrium “solves” the game.

18 FINDING NASH EQUILIBRIA

Let G = (P,A, u) be a zero-sum game. We recall that this means that there are two players
1 and 2 and every action profile a ∈ A satisfies u1(a) + u2(a) = 0. Thus, whatever one player
gains, the other one loses. Examples of such games include the Rock-Paper-Scissors game
(Example 2.2) and the Matching pennies game (Example 2.10).

Let A1 = {1, . . . ,m} and A2 = {1, . . . , n} be actions available for player 1 and 2, re-
spectively. Since u1(a) = −u2(a), the game G can be represented with an m × n payoff
matrix M = (mi,j) such that mi,j = u1(i, j) = −u2(i, j). For a mixed-strategy profile
(s1, s2), we use xi and yj to denote the probabilities s1(i) and s2(j), respectively, for every
i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. That is, we represent the mixed strategies s1 and s2 with
vectors x = (x1, . . . , xm) and y = (y1, . . . , yn), respectively, that have non-negative coordi-
nates and satisfy

∑m
i=1 xi = 1 and

∑n
j=1 yj = 1. We call the vectors x and y the mixed strategy

vectors18 for s and we sometimes refer to x and y as strategies. So we might, for example, use
(x, y) to denote the mixed strategy profile s = (s1, s2). With this notation, the sets S1 and
S2 of mixed strategies of players 1 and 2, respectively, are the simplices ∆(e1, . . . , em) and
∆(f1, . . . , fn), respectively, where ei ∈ Rm and fi ∈ Rn are vectors with the ith coordinate 1
and all others zero.

Using this representation of G, the expected payoff of player 1 equals

u1(s) =
∑

a=(i,j)∈A

u1(a)s1(i)s2(j) =

m∑
i=1

n∑
j=1

mi,jxiyj = x⊤My.

For player 2, we obviously have u2(s) = −u1(s). Thus, player’s 2 best response to a strategy x
of 1, is a vector y ∈ S2 that minimizes x⊤My. Similarly, player’s 1 best response to a strategy y
of 2 is x ∈ S1 that maximizes x⊤My. The best expected payoff of 2 that player 2 can achieve
against player’s 1 strategy x equals β(x) = miny∈S2 x

⊤My. Analogously, for player 1, the best
expected payoff to player’s 2 strategy y is α(y) = maxx∈S1

x⊤My. Note that we used the
fact that the simplices S1 and S2 are compact and thus the values β(x) and α(y) are well-
defined. With this notion, a strategy profile (x, y) is a Nash equilibrium if and only if it satisfies
β(x) = x⊤My = α(y).

Assume player 1 expects player 2 to select a best response to every strategy x he can come
up with. Player 1 then chooses a mixed strategy x from S1 that maximizes his expected payoff
under this, rather pessimistic, assumption. This strategy, which is called worst-case optimal for
1, satisfies β(x) = maxx∈S1

β(x). Analogously, assuming player 2 is similarly pessimistic, the
worst-case optimal strategy for 2 is a mixed strategy y ∈ S2 that satisfies α(y) = miny∈S2

α(y).
The following result shows that in order to achieve a Nash equilibrium in a zero-sum game,

both players must select their worst-case optimal strategies.

Lemma 2.20. (a) For all mixed strategies x ∈ S1 and y ∈ S2, we have β(x) ≤ x⊤My ≤ α(y).

(b) If a strategy profile (x∗, y∗) is a Nash equilibrium, then both strategies x∗ and y∗ are
worst-case optimal for players 1 and 2, respectively.

(c) Any mixed strategies x∗ ∈ S1 and y∗ ∈ S2 satisfying β(x∗) = α(y∗) form a Nash equilib-
rium (x∗, y∗).

Proof. (a) This part follows immediately from the definitions of the functions β and α.

(b) Part (a) implies that β(x) ≤ α(y∗) for every x ∈ S1. Since (x∗, y∗) is a Nash equilibrium,
we have β(x∗) = α(y∗). This together with the previous fact implies β(x) ≤ β(x∗)
for every x ∈ S1. In other words, x∗ is a worst-case optimal strategy for player 1. An
analogous argument shows that y∗ is a worst-case optimal strategy for player 2.

(c) If β(x∗) = α(y∗), then part (a) implies β(x∗) = (x∗)⊤My∗ = α(y∗). Thus, (x∗, y∗) is a
Nash equilibrium.

18 Vektory smíšených strategií.

2.3.1 The Minimax Theorem
The following result, called the Minimax theorem, was proved by Von Neumann in 1928 [vN28].
This theorem was a starting point of game theory Von Neumann is even quoted as saying “As
far as I can see, there could be no theory of games . . . without that theorem . . . I thought there
was nothing worth publishing until the Minimax Theorem was proved.".

Theorem 2.21 (The Minimax Theorem [vN28]). For every zero-sum game, worst-case optimal
strategies for both players exist and can be efficiently computed using linear programming.
Moreover, there is a number v such that, for any worst-case optimal strategies x∗ and y∗ of
players 1 and 2, respectively, the strategy profile (x∗, y∗) is a Nash equilibrium and β(x∗) =
(x∗)⊤My∗ = α(y∗) = v.

In a certain sense, the Minimax theorem tells us everything about zero-sum games. In
particular, it implies that every zero-sum game G has a Nash equilibrium. This also follows
from Nash’s theorem. However, the Minimax theorem historically predates Nash’s result and
also tells us much more: Nash equilibria can be found efficiently in zero-sum games. On top
of that, there is a unique value v = (x∗)⊤M(y∗) of the payoff that is attained in any Nash
equilibrium (x∗, y∗). This value v is called the value of the game G.

Informally, the Minimax theorem tells us that there are no secrets involved in zero-sum
games. Both players declaring their mixed strategies in advance changes nothing. Each player i
can choose a worst-case optimal strategy and his expected payoff is always at least v, no matter
which strategy the other player chooses. On the other hand, if the other player chooses his
worst-case optimal strategy, then player i cannot hope for an expected payoff larger than v.

To explain the name “Minimax Theorem”, note that if we write out the definitions of the
functions β and α and the definitions of the worst-case optimal strategies x∗ and y∗, then the
equality β(x∗) = v = α(y∗) becomes

max
x∈S1

min
y∈S2

x⊤My = v = min
y∈S2

max
x∈S1

x⊤My.

Before we proceed with the proof of the Minimax theorem we mention some basic defini-
tions and results from the theory of linear programming. In particular, we state the Duality
theorem, which is crucial in the proof. We barely touch the surface of the theory about linear
programming and an interested reader might find more in the literature; a nice introduction to
linear programming is a book by Matoušek and Gärtner [MG06].

A linear program is an optimization problem with a linear objective function and linear
constraints. Every linear program can be expressed in the following canonical form P : given
vectors c ∈ Rm and b ∈ Rn and an n ×m real matrix A, we want to maximize c⊤x subject
to the constraints Ax ≤ b and x ≥ 0. The problem of solving a linear program can be solved
efficiently, that is, in polynomial time with respect to the size of the problem. In practice,
the so-called simplex algorithm is quite efficient and can be guaranteed to find the global
optimum if certain precautions against cycling are taken. It has been proved to solve “random"
instances in a cubic number of steps, which is similar to its behavior on practical problems.
Unfortunately, the worst-case behavior of the simplex algorithm is rather poor, as there are
families of linear programming problems for which the simplex method takes an exponential
number of steps. However, there are algorithms for solving linear programs even in the worst
case, the first such algorithm found was so-called ellipsoid algorithm.

In the context of duality, the linear program P is called the primal linear program. When
solving P , we are trying to find a linear combination of the n inequalities of the system Ax ≤ b
with some coefficients y1, . . . , yn ≥ 0 so that the resulting inequality has the jth coefficient
at least cj for every j ∈ {1, . . . ,m} and the right hand is as small as possible. This leads to
so-called dual linear program D: given vectors c ∈ Rm and b ∈ Rn and an n×m real matrix
A, we want to minimize b⊤y subject to constraints A⊤y ≥ c and y ≥ 0.

Theorem 2.22 (The Duality Theorem). If both linear programs P andD have feasible solutions,
then they both have optimal solutions. Moreover, if x∗ and y∗ are optimal solutions of P and D,
respectively, then c⊤x∗ = b⊤y∗. That is, the maximum of P equals the minimum of D.

20 FINDING NASH EQUILIBRIA

The Duality Theorem is arguably the most important result in the theory of linear programs.
There are several ways how to prove the Duality Theorem, for example, it is possible to derive
it from the correctness of the simplex method or use the so-called Farkas lemma. We do not
show the proof here, instead, we refer the reader to [MG06], where both variants of the proof
are presented.

The Duality theorem holds for general linear programs, where some of the constraints
contain equalities or opposite inequalities, not only for those in the canonical form. However,
we need to construct the dual program in an appropriate way. Here, we state a general recipe,
taken from [MG06], how to construct a dual program from a general linear program; see
Table 2.8. Of course, it is possible to rewrite a given linear program to its canonical form by
introducing new variables and then apply the Duality theorem (Theorem 2.22), so the recipe
from Table 2.8 might be considered as a simpler shortcut. For minimization linear programs,
the dual is defined as the reverse operation (from the right column to the left). In particular,
the dual of the dual is the original primal.

Primal linear program Dual linear program

Variables x1, . . . , xm y1, . . . , yn

Matrix A ∈ Rn×m A⊤ ∈ Rm×n

Right-hand side b ∈ Rn c ∈ Rm

Objective function max c⊤x min b⊤y

Constraints ith constraint has ≤ yi ≥ 0

≥ yi ≤ 0

= yi ∈ R

xj ≥ 0 jth constraint has ≥
xj ≤ 0 ≤
xj ∈ R =

Table 2.8: A recipe for making dual programs [MG06].

Now, having the Duality Theorem in hand, we can finally proceed with the proof of the
Minimax Theorem.

Proof of the Minimax theorem (Theorem 2.21). Let x = (x1, . . . , xm) be a fixed mixed strategy
vector of player 1. The best response of player 2 to x is the optimal solution of the following
linear program P with variables y1, . . . , yn: minimize x⊤My subject to constraints

∑n
j=1 yj = 1

and y1, . . . , yn ≥ 0. Thus, for a given fixed x we can compute the value β(x) using linear
programming.

However, in order to find his worst-case optimal strategy, and thus to maximize β(x) over
x ∈ S1, player 1 cannot use linear programming directly, since β(x) = miny∈S2 x

⊤My is not a
linear function. First, we use the recipe for constructing dual programs from Table 2.8 (from
right to left) to derive the dual D of the program P . The dual linear program D then has only a
single variable x0 and looks as follows: maximize x0 subject to constraints 1x0 ≤M⊤x. That
is, the coordinates x1, . . . , xm of x are treated as fixed numbers, the only variable is x0. By the
duality Theorem (Theorem 2.22), the programs P and D have the same optimal value β(x).

Now, consider the following linear program D′ with variables x0, x1, . . . , xm: maximize x0
subject to constraints 1x0 −M⊤x ≤ 0,

∑m
i=1 xi = 1, and x ≥ 0. This is a linear program,

since constraints in D are linear in x1, . . . , xm. Assume (x∗0, x∗1, . . . , x∗m) is an optimal solution
for D′ and let x∗ = (x∗1, . . . , x

∗
m). Then x∗0 = β(x∗) = maxx∈S1

β(x), since the coordinates
x1, . . . , xm of x are considered as variables in D′. So x∗ is a worst-case optimal strategy for
player 1 and also together with x∗0 provides an optimal solution for D′.

By symmetry, applying the same reasoning for player 2, we obtain the following linear
program P ′ with with variables y0, y1, . . . , yn: minimize y0 subject to constraints 1y0−My ≥ 0,∑n

j=1 yj = 1, and y ≥ 0. Here, y = (y1, . . . , yn). Again, if (y∗0 , y∗1 , . . . , y∗n) is an optimal solution
of P ′ and y∗ = (y∗1 , . . . , y

∗
n), then y∗0 = α(y∗) = miny∈S2

α(y). Similarly as before, y∗ is a worst-
case optimal strategy for player 2 and also together with y∗0 provides an optimal solution for
P ′.

As the final step, we note that the programs D′ and P ′ are dual to each other, as the
recipe from Table 2.8 shows. Thus, the programs D′ and P ′ have the same optimal value
β(x∗) = x∗0 = y∗0 = α(y∗) and we have proved that both players can find their worst-case
optimal strategies x∗ and y∗ using linear programming. By part (c) of Lemma 2.20, (x∗, y∗) is a
Nash equilibrium.

Since the problem of finding a solution of a given linear program can be solved in poly-
nomial time, the Minimax Theorem implies that finding Nash’s equilibria in zero-sum games
can also be computed in polynomial time. The Minimax Theorem was originally proved
by Von Neumann [vN28] in the 1920s using Brouwer’s Fixed Point Theorem. Later, in the
1940s, Von Neumann found a different proof that was based on the duality of linear program-
ming [vNMKR44]. Nowadays, there are proofs of the Minimax theorem that are based on
so-called regret-minimization algorithms and that avoid even the use of linear programming.
One such proof is presented in Subsection 2.6.3.

2.4 Nash equilibria in bimatrix games
Now we know that Nash equilibria can be efficiently computed in zero-sum games of two
players. This statement is captured by the Minimax Theorem (Theorem 2.21), whose proof was
based on linear programming. Here, we focus on more general case of bimatrix games, that is,
normal-form games of two players, and we show that, unlike the case of zero-sum games, one
cannot hope for significantly more positive results.

We restrict ourselves to games with only two players, as such games can be represented
with matrices and studied using polyhedra. We discuss the representation of bimatrix games
with polyhedra in Subsection 2.4.4. Then, in Subsection 2.4.5, we use such representations
and we present Lemke–Howson algorithm, the best known combinatorial algorithm for finding
equilibria in games of two players. This algorithm, in particular, yields an alternative proof of
Nash’s Theorem (Theorem 2.16). We then enclose this section by showing in Subsection 2.4.6
that the problem of finding Nash’s equilibria is, in some sense, difficult. Similarly as in the
theory of NP-completeness, this is done by introducing a suitable complexity class. Here,
this happens to be the class PPAD (“Polynomial Parity Arguments on Directed graphs") that
contains several natural and well-known problems and we show that the problem of finding
Nash’s equilibria is PPAD-complete, meaning that this problem is at least as difficult as any
problem in PPAD. The complexity class PPAD is a class of problems that are believed to be
hard, but obtaining PPAD-completeness is weaker evidence of intractability than obtaining
NP-completeness, as PPAD is contained in NP.

2.4.1 Best response condition
Before considering two-player games, we prove the following very useful observation, which
holds for an arbitrary normal-form game.

Observation 2.23 (Best response condition). In a normal-form gameG = (P,A, u) of n players,
for every player i ∈ P , a mixed strategy si is a best response to s−i if and only if all pure strategies
in the support of si are best responses to s−i.

Proof. First, assume every pure strategy ai in the support Supp(si) of si is a best response of
player i to s−i, that is, ui(ai; s−i) ≥ ui(s

′
i; s−i) for every s′i ∈ Si. Then, for every s′i ∈ Si, the

linearity of ui implies

ui(s) =
∑

ai∈Supp(si)

si(ai)ui(ai; s−i) ≥
∑

ai∈Supp(si)

si(ai)ui(s
′
i; s−i) = ui(s

′
i; s−i),

22 FINDING NASH EQUILIBRIA

where the last equality follows from
∑

ai∈Supp(si)
si(ai) = 1. Thus, si is a best response of i

to s−i.
For the second part, assume si is a best response of i to s−i. Suppose for contradiction there

is ai ∈ Supp(si) that is not a best response of i to s−i. Then si(ai) > 0 and there exists s′i ∈ Si

with ui(ai; s−i) < ui(s
′
i; s−i). Since si is a best response of i to s−i, we obtain si(ai) < 1 and,

by the linearity of ui, there is âi ∈ Supp(si) with ui(âi; s−i) > ui(ai; s−i). We define a new
mixed strategy s∗i of i that is obtained from si by setting s∗i (ai) to zero, s∗i (âi) to si(âi) + si(ai)
and keeping s∗i (ai) = si(ai) otherwise. Clearly, s∗i ∈ Si. Then, by the linearity of ui and using
si(âi) > 0, we obtain

ui(s
∗
i ; s−i) =

∑
ai∈Ai

s∗i (ai)ui(ai; s−i) >
∑

ai∈Ai

si(ai)ui(ai; s−i) = ui(s),

which contradicts the assumption that si is a best response of i to s−i.

Thus, although it might seem at first glance that the problem of finding a Nash equilibrium
in a normal-form game is a problem in continuous mathematics, Observation 2.23 reveals that
the task is essentially combinatorial. As we will see later in Subsection 2.4.2, the hearth of the
problem of finding Nash equilibria is in finding the right supports. Once we have the right
supports for all players, the precise mixed strategies can be computed by solving a system of
algebraic equations (which are linear in the case of two players).

2.4.2 Finding Nash equilibria by support enumeration
Let G = ({1, 2}, A = A1 ×A2, u) be a bimatrix game and let A1 and A2 be the sets of actions
of players 1 and 2, respectively. Without loss of generality, we assume that A1 = {1, . . . ,m}
and A2 = {1, . . . , n}, as we will use the actions as indices of rows and columns in matrices.
Later we assume that the sets A1 and A2 are disjoint, which can be arranged if we imagine
that, say, A2 = {m+ 1, . . . ,m+ n}.

Since there are only two players in G, the payoff functions u1 and u2 can be represented
bym× n real matricesM and N , respectively. That is, (M)i,j = u1(i, j) and (N)i,j = u2(i, j)
for every pair (i, j) ∈ A = A1 ×A2 (the rows and columns of the matrices are indexed by A1

and A2, respectively). The expected payoffs of a mixed strategy profile s with mixed strategy
vectors x and y are then given by

u1(s) = x⊤My and u2(s) = x⊤Ny.

Also, note that in the case of only two players, the expected payoff of each player is a linear
function in the probabilities of pure strategies of the other player.

We recall the Best response condition (Observation 2.23), which, in the case of two-player
games, can be restated as follows. If x and y are mixed strategy vectors of players 1 and 2,
respectively, then x is a best response to y if and only if for all i ∈ A1,

xi > 0 =⇒ (M)iy = max{(M)ky : k ∈ A1}. (2.3)

Analogously, y is the best response to x if and only if for all j ∈ A2,

yj > 0 =⇒ (N⊤)jx = max{(N⊤)kx : k ∈ A2}. (2.4)

In what follows, we will focus only on so-called nondegenerate games. The reason for
this restriction will be made clear later. In some sense, most games are nondegenerate, as
degeneracy involves a special relationship among the payoffs. Also, there is a standard method,
so-called perturbation, how to deal with degenerate games.

Definition 2.24 (Nondegenerate bimatrix game). A bimatrix game is nondegenerate if there
are at most k pure best responses to every mixed strategy with support of size k.

First, consider the following simple idea how to find all Nash equilibria in a nondegenerate
game G. The Best response condition (Observation 2.23) says that for every player i ∈ {1, 2},
a mixed strategy si is a best response to s−i if and only if all pure strategies in the support
of si are best responses to s−i. Thus, finding a Nash equilibrium is about finding the right
supports. Once we identify the support for each player, the mixed strategies can be computed
by solving a system of linear equations. If sets I ⊆ A1 and J ⊆ A2 are identified as supports,
then we have |I|+ |J | variables xi, i ∈ I , and yj , j ∈ J , where xi = s1(i) and yj = s2(j). Let
x ∈ Rm be a vector with coordinates xi with i ∈ I and xi = 0 otherwise. Analogously, define
the vector y ∈ Rn for J . The equations then say that variables for each player sum up to 1, that
is,
∑

i∈I xi = 1 and
∑

j∈J yj = 1, and that the expected payoffs are equal and maximized at
the support. That is,

(N⊤)jx =
∑
i∈I

(N⊤)j,ixi = v and (M)iy =
∑
j∈J

(M)i,jyj = u,

where u = max{(M)iy : i ∈ I} and v = max{(N⊤)jx : j ∈ J}. Thus, we have a system of
|I| + |J | + 2 variables x1, . . . , x|I|, y1, . . . , y|J|, u, v and |I| + |J | + 2 linear equations, whose
solution yields |I|+ |J |+ 2 real numbers. If the numbers in the solution are all non-negative
and conditions (2.3) and (2.4) hold, then we have a Nash equilibrium. If such a solution exists,
it is unique, since G is nondegenerate (otherwise, we can reduce the support); see Exercise 2.13.
If our game is degenerate, then we can use the above equalities and capture the last two
conditions with linear inequalities, obtaining a linear program for each pair of supports (that
no longer need to be of the same size).

Brute-force algorithm for finding Nash equilibria: It follows immediately from the Best
response condition (Observation 2.23) that if (s1, s2) is a Nash equilibrium in a nondegenerate
bimatrix game, then the strategies s1 and s2 have supports of equal size. Thus, it suffices to
go through all possible supports I ⊆ A1 and J ⊆ A2 of size k for k ∈ {1, . . . ,min{m,n}} and
then verify whether the supports I and J yield a Nash equilibrium by solving the corresponding
system of linear equations. Unfortunately, the running time of this simple procedure is typically
quite large, that is, exponential inm or n. Form = n, the algorithm takes about 4n steps. On
the bright side, this algorithm finds all Nash equilibria of the game. An analogous algorithm can
be used to find Nash equilibria in games of more than two players, but the resulting equations
are no longer linear.

Algorithm 2.4.1: SUPPORT ENUMERATION(G)

Input : A non-degenerate bimatrix game G.
Output : All Nash equilibria of G.
for each k ∈ {1, . . . ,min{m,n}} and a pair of supports (I, J), each of size k

solve the system of equations
∑

i∈I(N
⊤)j,ixi = v,

∑
j∈J(M)i,jyj = u

for all i ∈ I, j ∈ J and
∑

i∈I xi = 1,
∑

j∈J yj = 1

if x, y ≥ 0 and u = max{(M)iy : i ∈ A1}, v = max{(N⊤)jx : j ∈ A2},
then return (x, y) as a Nash equilibrium

We show later that the game G can be represented with labeled polyhedra that capture the
underlying structure of the game. With this representation in hand, we show, in Subsection 2.4.5,
a more sophisticated algorithm that finds a Nash equilibrium of G and is efficient in practice.
To give this geometric description of G, we first recall basic definitions from geometry.

2.4.3 Preliminaries from geometry

For positive integers k and d, let p1, . . . , pk be points in Rd. An affine combination19 of the
points p1, . . . , pk is an expression of the form

∑k
i=1 αipi with αi ∈ R and

∑k
i=1 αi = 1. An

19 Afinní kombinace.

24 FINDING NASH EQUILIBRIA

affine combination
∑k

i=1 αi = 1 for which αi ≥ 0 for each i ∈ {1, . . . , k} is called a convex
combination20 of p1, . . . , pk. For example, the set of affine combinations of two points p1 and
p2 in R2 is the line containing p1 and p2 while the set of convex combinations of p1 and p2 is
the line segment with endpoints p1 and p2. The set of all convex combinations of a point set P
is called the convex hull21 of P and is denoted by conv(P). The points p1, . . . , pk are affinely or
convexly independent22 if no point pi is affine or convex combination, respectively, of points
from {p1, . . . , pk}\{pi}. A subset P of Rd is convex if every convex combination of points from
P lies in P . Observe that the intersection of convex sets is also convex. The dimension of P is
the maximum number of affinely independent points from P minus 1.

A (closed) halfspace23 in Rd is a set {x ∈ Rd : v⊤x ≤ w} for some v ∈ Rd and w ∈ R.
Similarly, a hyperplane24 in Rd is a set {x ∈ Rd : v⊤x = w}. In particular, each hyperplane H
in Rd divides the space Rd into two halfspaces that share H and are otherwise disjoint.

A (convex) polyhedron25 P inRd is an intersection of finitely many halfspaces inRd. In other
words, P = {x ∈ Rd : V x ≤ u} for some real matrix V with d columns and u = (u1, . . . , un) ∈
Rn, where n is the number of halfspaces determining P . Since halfspaces are convex sets,
it follows that each polyhedron is convex. A bounded polyhedron is called polytope26; see
Figure 2.1 for an illustration. A face27 of a polyhedron P is either P itself or a subset of P of the
form P ∩H , where H is a hyperplane such that P is contained in one of the closed halfspaces
determined by H . The faces of P with dimension 0, 1, and d− 1 are called vertices, edges, and
facets of P , respectively. Using (V)i to denote the ith row of the matrix V , it can be shown
that each face F of P can be expressed as F = ∩i∈I{x ∈ P : (V)ix = ui} for some set I of
indices of the rows of V . The equalities (V)ix = ui are then called the binding equalities for F .
A polyhedron is simple28 if none of its points belongs to more than d facets.

(a) (b)

Figure 2.1: Examples of polytopes. (a) 2- and 3-dimensional cube (b) 2- and 3-dimensional
crosspolytope.

2.4.4 Best response polytopes
We first define these labeled polyhedrons for general bimatrix games. Later we show that under
certain assumptions on G, which can be easily achieved, the game G can be represented even
with simple polytopes.

Definition 2.25 (Best response polyhedron29.). The best response polyhedron for player 1 in G
is a polyhedron P is defined as

P = {(x, v) ∈ Rm × R : x ≥ 0,1⊤x = 1, N⊤x ≤ 1v}.

Similarly, we define the best response polyhedron for player 2 in G as

Q = {(y, u) ∈ Rn × R : y ≥ 0,1⊤y = 1,My ≤ 1u}.
20 Konvexní kombinace.
21 Konvexní obal.
22 Afinně či konvexně nezávislé.
23 Poloprostor.
24 Nadrovina.
25 Polyedr.
26 Polytop.
27 Stěna.
28 Jednoduchý mnohostěn.
29 Polyedr nejlepších odpovědí.

P (0, 1, 2)

(1, 0, 1)
(23 ,

1
3 ,

2
3)

2

1

4

3

Q(1, 0, 2)

(0, 1, 1)

(13 ,
2
3 ,

2
3)

3

4

1
2

Figure 2.2: The best response polyhedra P and Q for the game Battle of Sexes. The labels of
points in the facets are denoted by blue and red, respectively, numbers.

Let (x, v) and (y, u) be points from P and Q, respectively. Let s = (s1, s2) be a mixed-
strategy profile and let x and y be mixed strategy vectors for s. Then the conditionMy ≤ 1u
says that the expected payoff u1(s) is at most u. This is because no matter which mixed strategy
vector x player 1 selects, his payoff is always

u1(s) = x⊤My ≤ x⊤1u = u
∑
i∈A1

xi = u.

Analogously, the condition N⊤x ≤ 1v says that the expected payoff u2(s) is at most v. Thus,
for i ∈ {1, 2}, the points of the best response polyhedron for player i are the mixed strategies
of player i together with the “upper envelope” of expected payoffs of the other player 3− i.

Now, we define the labels of points from P and from Q. We say that a point (x, v) of P has
label i ∈ A1 ∪ A2 if either i ∈ A1 and xi = 0 or if i ∈ A2 and (N⊤)ix = v, where (N⊤)i is
the ith row of N⊤. That is, if the corresponding inequality in the definition of P is binding.
Similarly, a point (y, u) has a label i ∈ A1 ∪A2 if either i ∈ A1 and (M)iy = u, where (M)i is
the ith row ofM , or if i ∈ A2 and yi = 0. Note that each point from P or Q may have more
labels.

Example 2.26. Consider the game Battle of Sexes from Example 2.11. We recall that this is a
game of two players 1 and 2, each having two actions, that is,m = 2 = n. We let A1 = {1, 2},
and A2 = {3, 4} be the sets of the actions. Then the entries of the 2× 2 payoff matricesM and
N are (M)1,3 = 2, (M)2,4 = 1, (N)1,3 = 1, (N)2,4 = 2, and zero otherwise.

The best response polyhedra for this game are depicted in Figure 2.2 and are given by

P = {(x1, x2, v) ∈ R2 × R : x1, x2 ≥ 0,

x1 + x2 = 1,

x1 ≤ v, 2x2 ≤ v}

and

Q = {(y3, y4, u) ∈ R2 × R : y3, y4 ≥ 0,

y3 + y4 = 1,

2y3 ≤ u, y4 ≤ u}.

Let s be a strategy profile for G and let x ∈ Rm and y ∈ Rn be its mixed strategy vectors.
We use u = u1(s) and v = u2(s) to denote the corresponding expected payoffs for s.

Proposition 2.27. The strategy profile s is a Nash equilibrium of G if and only if the pair
((x, v), (y, u)) ∈ P ×Q is completely labeled, that is, every label i ∈ A1 ∪A2 appears as a label
of either (x, v) or (y, u).

26 FINDING NASH EQUILIBRIA

Proof. We recall the Best response condition (Observation 2.23), which says that for every player
i ∈ P , a mixed strategy si is a best response to s−i if and only if all pure strategies in the support
of si are best responses to s−i. A missing label i would mean that a pure strategy i from the
support of player 1 (xi > 0) was not a best response ((M)iy < u) or that an analogous situation
happened for player 2 and his pure strategy j.

On the other hand, if every label appears, then s1 and s2 are mutually best responses, as
each pure strategy is a best response or it is not in the support.

We show that the definition of P and Q can be modified and simplified under certain mild
assumptions. In particular, we can get rid of the expected payoffs u and v from the definitions
if they are always positive. Thus, from now on, we assume that the matricesM and N⊤ are
non-negative and have no zero column. Note that this assumption can be achieved simply by
adding a sufficiently large constant to the payoffs, as this does not change the structure of the
Nash equilibria.

Then, we can normalize the expected payoffs to 1. By dividing each inequality (N⊤)ix ≤ v
in the definition of P with v, treating xi/v as a new variable, and by doing the same for Q, we
obtain the following definition.

Definition 2.28 (Normalized best response polytope30). Assume that the matricesM and N⊤

are non-negative and have no zero column. The best response polytope for player 1 in G is a
polytope P defined as

P = {x ∈ Rm : x ≥ 0, N⊤x ≤ 1}.

Similarly, the best response polytope for player 2 in G is a polytope Q defined as

Q = {y ∈ Rn : y ≥ 0,My ≤ 1}.

Note that, in this definition, we do not restrict to vectors x and y whose coordinates sum up
to one. For a nonzero non-negative vector x, we can achieve this by normalizing x to x/(1⊤x).
For a mixed strategy s1 of player 1 with the mixed strategy vector x/(1⊤x), the inequalities
in the definition of the normalized best response polytope P have the following meaning. If
xi ≥ 0 is binding, then i ∈ A1 is not in the support of s1. If (N⊤)jx ≤ 1 is binding, then j ∈ A2

is a best response to s1. Analogous statements are true for the polytope Q.

Example 2.29. Again, consider the game Battle of Sexes and its best response polyhedra from
Example 2.26. After normalizing, we obtain the following two normalized best response polytopes
for this game:

P = {(x1, x2) ∈ R2 : x1, x2 ≥ 0,

x1 ≤ 1, 2x2 ≤ 1}

and

Q = {(y3, y4) ∈ R2 : y3, y4 ≥ 0,

2y3 ≤ 1, y4 ≤ 1}.

That is, P and Q are labeled rectangles [0, 1] × [0, 1/2] and [0, 1/2] × [0, 1], respectively; see
Figure 2.3.

Since the matricesM and N⊤ are non-negative and have no zero column, the polytopes P
and Q are bounded (and thus are indeed polytopes) and have dimensions m and n, respec-
tively. The polyhedron P is in a one-to-one correspondence with P \ {0} under the projective
transformation (x, v) 7→ x/v. Analogously, the projective transformation (y, u) 7→ y/u is a
one-to-one correspondence between Q and Q \ {0}. Since projective transformations preserve
incidences of faces, the points of P andQ have the same labels as their preimages. In particular,
we have the following variant of Proposition 2.27 for P and Q.
30 Normalizovaný polytop nejlepších odpovědí.

P
(0, 0) (1, 0)

(1, 12)(0, 12)

2

1

4

3
Q

(0, 0) (12 , 0)

(12 , 1)(0, 1)

4

3 1

2

Figure 2.3: The normalized best response polytopes P and Q for the game Battle of Sexes. The
labels of points in the facets are denoted by blue and red, respectively, numbers.

Corollary 2.30. Let s = (s1, s2) be a strategy profile for G and let x and y be mixed strategy
vectors of s1 and s2, respectively. Then s is a Nash equilibrium of G if and only if the point
(x/u2(s), y/u1(s)) ∈ P ×Q \ {(0,0)} is completely labeled.

Now, we apply the assumption that G is nondegenerate. This assumption implies that each
point of P has at mostm labels and each point of Q has at most n labels. This is because if x
corresponds to a mixed strategy of player 1 with support of size k, then x has at mostm− k
labels in A1 and so if x had more thanm labels, then x would have more than k best responses
in A2. An analogous statement is true for Q. Thus, P and Q are both simple, as a point of P or
Q contained in more thanm or n, respectively, facets has more thanm or n, respectively, labels.
Moreover, since our assumptions aboutM and N give that the simple polytopes P and Q have
dimensionm and n, respectively, only vertices of P can havem labels and only vertices of Q
can have n labels. Thus, by Corollary 2.30, only vertices of P and Q can be Nash’s equilibria.

Nash’s equilibria by vertex enumeration: The last fact suggests another simple algorithm to
find all Nash’s equilibria in a nondegenerate bimatrix game. It suffices to consider all vertices
x ∈ P \ {0} and all vertices y ∈ Q \ {0} and check whether the pair (x, y) is completely
labeled. If it is, then we have found a Nash equilibrium with mixed strategy vectors x/(1⊤x)
and y/(1⊤y) and expected payoffs 1⊤x and 1⊤y.

Algorithm 2.4.2: VERTEX ENUMERATION(G)

Input : A non-degenerate bimatrix game G.
Output : All Nash equilibria of G.
for each pair (x, y) of vertices from (P \ {0})× (Q \ {0}){
if (x, y) is completely labeled,
then return (x/(1⊤x), y/(1⊤y)) as a Nash equilibrium

The problem of finding all vertices of a simple polytope in Rd is a well-studied problem
in computational geometry. It can be solved efficiently; Avis and Fukuda [AF92] found an
algorithm that finds all vertices of a simple polytope in Rd with v vertices and N defining
inequalities in timeO(dNv). Unfortunately, even with this result in hand, the simple procedure
based on going through all vertices can still take exponentially many steps. For example, in
the case m = n, the best response polytopes can have cn vertices for some constant c > 1
(although the number of vertices never exceeds 2.9n by the Upper Bound Theorem, a famous
result from combinatorial geometry). Note that it also gives an upper bound on the number of
Nash equilibria a nondegenerate bimatrix game can have.

2.4.5 Lemke–Howson algorithm
We now present an algorithm by Lemke and Howson [LH64] for finding Nash equilibrium
in a bimatrix game G = ({1, 2}, A, u). The algorithm resembles the simplex method from
linear programming and uses the normalized best response polytopes P and Q introduced in

28 FINDING NASH EQUILIBRIA

Subsection 2.4.4. The analysis of this algorithm yields an alternative and elementary proof of
Nash’s Theorem (Theorem 2.16).

Recall that Corollary 2.30 says that Nash equilibria in G correspond to completely labeled
pairs of vertices from P×Q\{(0,0)}, so our task is to find such a pair. We also recall that we are
assuming, without loss of generality, that all entries in the matricesM and N are non-negative
and there is no zero column inM nor in N⊤. We also assume that G is nondegenerate. Thus,
in particular, the best response polytopes P and Q are simple, which means that each vertex
of P is incident to exactlym facets and exactlym edges. Similarly, each vertex of Q is incident
to exactly n facets and n edges. It thus follows from the definition of labels that every vertex
of P has exactlym labels and every vertex of Q has exactly n labels. Similarly, each edge of P
has exactlym− 1 labels and each edge of Q has exactly n− 1 labels.

Dropping a label l ∈ A1 ∪A2 in a vertex x of P means traversing the unique edge of P that
is incident to x and has allm labels that x has besides l. The other endpoint of this edge has
the same labels as x, only the label l is replaced with a new label, which is said to be picked up.
Dropping and picking up a label in vertices of Q is defined analogously.

The algorithm alternately follows edges of P andQ, keeping the vertex in the other polytope
fixed. It starts at the (0,0) ∈ Rm × Rn. This is an artificial equilibrium, which is completely
labeled, as all them inequalities x ≥ 0 in P and all the n inequalities y ≥ 0 in Q are binding
for (x, y) = (0,0). It is not a pair of mixed strategy vectors of a Nash equilibrium ofG, since we
cannot rescale them so that the coordinates sum up to 1. As a first step, the algorithm chooses
an arbitrary label k from A1 ∪A2 and drops it. At the endpoint of the corresponding edge (of P
if k ∈ A1 and of Q if k ∈ A2) a new label l is picked up. This label l has a duplicate in the other
polytope, that is, l is present among the labels of the current vertex of the other polytope. We
drop the duplicate of l in the other polytope in the next step, which leads to picking up a new
label l′. If l′ has a duplicate, we drop it and continue. Otherwise, l′ does not have a duplicate,
which means that the pair (x, y) of currently visited vertices of P and Q is completely labeled.
This is when the algorithm stops and outputs (x, y).

Algorithm 2.4.3: LEMKE–HOWSON(G)

Input : A nondegenerate bimatrix game G.
Output : One Nash equilibrium of G.
(x, y)← (0,0) ∈ Rm × Rn,
k ← arbitrary label from A1 ∪A2,
l← k,
while (true)

do



In P, drop the label l from x and redefine x as the new vertex,
redefine l as the newly picked up label. Switch to Q.
If l = k, stop looping.

In Q, drop the label l from y and redefine y as the new vertex,
redefine l as the newly picked up label. Switch to P.
If l = k, stop looping.

Output (x/(1⊤x), y/(1⊤y)).

In the first step of the Lemke–Howson algorithm, dropping a label means giving the cor-
responding pure strategy a positive probability. Thus, the first two steps consist of taking a
pure strategy k and considering a best response l to k. In a general step of the algorithm, a
duplicate label is either a new best response, which gets a positive probability in the next step,
or it is a pure strategy whose probability has just become zero and thus it no longer needs to
be maintained in the other polytope and the path moves away from the best response facet.

We now verify the correctness of the Lemke–Howson algorithm.

Proposition 2.31. The Lemke–Howson algorithm stops after a finite number of steps and outputs
a pair of mixed strategy vectors of a Nash equilibrium of G.

Proof. Let k be the label chosen in the first step of the Lemke–Howson algorithm. We define
a configuration graph with the vertex set formed by those pairs (x, y) of vertices from P ×Q
that are k-almost completely labeled, meaning that every label from A1 ∪A2 \ {k} appears as
a label of x or of y. Clearly, the configuration graph is finite as the polytopes P and Q have
finitely many vertices. Two vertices (x, y) and (x′, y′) of the configuration graph are connected
by an edge if either x = x′ and yy′ is an edge of Q or if xx′ is an edge of P and y = y′.

We show that the configuration graph has degrees only 1 or 2, so it is a disjoint union of
paths and cycles. There are two types of vertices in the configuration graph. If (x, y) has all
labels from A1 ∪A2, then (x, y) is connected to exactly one other vertex, as exactly one of the
vertices x and y has the label k and we can drop k only from this one vertex. Otherwise (x, y)
has all labels from A1 ∪A2 \ {k} and there is a unique label shared by x and y. Then (x, y) is
adjacent to two vertices, as we can drop the duplicate label from x in P or from y in Q.

The Lemke–Howson algorithm starts at the leaf (0,0) of a path in the configuration graph.
The algorithm then walks along this path and does not visit any vertex of the configuration
graph twice, as the next vertex pair on the path is always unique (we move to the other endpoint
of the unique edge that contains current vertex and corresponds to the dropped label) and
visiting the same vertex twice would give a vertex of degree larger than 2 in the configuration
graph since we started at a leaf. Thus, the algorithm terminates after a finite number of steps
in the other leaf (x∗, y∗) of the path. Since (x∗, y∗) is a leaf in the configuration graph, it is
completely labeled. We leave as an exercise to show that this endpoint is not of the form (x,0)
or (0, y); see Exercise 2.16. By Corollary 2.30, the completely labeled pair (x∗, y∗) on the output
corresponds to a Nash equilibrium of G after rescaling the coordinates so that they sum up to
1.

The degree sum formula implies that the number of vertices of degree 1 is even in the
configuration graph. The set of such vertices consists of (0,0) and of pairs of mixed strategy
vectors of Nash equilibria ofG. Thus, we obtain the following result, which yields an alternative
proof of Nash’s Theorem (Theorem 2.16).

Corollary 2.32. A nondegenerate bimatrix game has an odd number of Nash equilibria.

The Lemke–Howson algorithm can start at any Nash equilibrium of G, not just at the
artificial equilibrium (0,0). However, there might be a Nash equilibrium that cannot be found
by the Lemke–Howson algorithm; see Exercise 2.17. We also remark that degenerate games can
have an infinite number of Nash equilibria [NRTV07].

Although the Lemke–Howson algorithm can take an exponential number of iterations [AH02,
Chapter 45], it performs well in practice and is considered among the best algorithms for
finding Nash equilibria in bimatrix games. It has been experimentally shown that, on uniformly
random games, the Lemke–Howson algorithm runs in polynomial time and some of its heuristic
modifications run even in linear time [CDRP08].

We describe an efficient implementation of the Lemke–Howson algorithm. This method
is called complementary pivoting and it resembles the simplex algorithm for solving a linear
program.

First, we introduce new variables s and r, called slack variables, so that the polytopes P
and Q are represented by a system of linear equations. The slack variables s ∈ Rn and r ∈ Rm

are non-negative vectors such that x ∈ P and y ∈ Q if and only if

N⊤x+ s = 1 and r +My = 1 (2.5)

and
x ≥ 0, s ≥ 0, r ≥ 0, y ≥ 0. (2.6)

The ith inequality (N⊤)ix ≤ 1 is binding (that is, (N⊤)ix = 1) if and only if si = 0. Similarly,
the ith inequality ofMy ≤ 1 is binding if and only if ri = 0. Thus, slack variables correspond
to binding inequalities and represent facets of the polytopes. The pair (x, y) is completely

30 FINDING NASH EQUILIBRIA

labeled if and only if xiri = 0 for every i ∈ A1 and yjsj = 0 for every j ∈ A2. By (2.6), this is
equivalent with the orthogonality conditions x⊤r = 0 and y⊤s = 0.

A basic solution to (2.5) is given by n basic (linearly independent) columns of N⊤x+ s = 1
and m basic columns of r +My = 1, where the nonbasic variables that correspond to the
m and n, respectively, other columns are set to zero, so that the basic variables are uniquely
determined. A basic feasible solution to (2.5) also satisfies (2.6). Thus, every basic feasible
solution determines a vertex x ∈ P and y ∈ Q. The labels of these vertices are given by
the respective nonbasic variables. Note that basic variables and sets of labels have opposite
meanings, as labels imply a binding inequality. Thus, “nonbasic variable enters the basis”
means the same as “label is dropped” and “basic variable leaves the basis” is the same as “label
is added”.

Pivoting is a change of the basis where a nonbasic variable enters and a basic variable
leaves the set of basic variables. For a given entering variable zj , the leaving variable is chosen
to preserve feasibility of the basis, that is, the inequalities (2.6). This is done by performing
the so-called minimum ratio test. In nondegenerate games, the leaving variable is determined
uniquely by this test. If we write the system given by (2.5) and (2.6) as Cz = q for some real
matrix C ∈ R(m+n)×2(m+n) and vectors z ∈ R2(m+n), q ∈ Rm+n, then the variable zi that
leaves a basis {Cl : l ∈ β} of the space spanned by the columns Cl of C is determined as
follows. Set C−1

β q = (q1, . . . , qm+n) and (C−1
β Cj)i = ci,j for i ∈ β, where Cβ is a square matrix

formed by columns with indices from β. We choose i ∈ β such that ci,j > 0 and qi/ci,j is
minimized. Note that zβ = (zj)j∈β is the vector of basic solutions and satisfies Cβzβ = q.

The choice of the entering variable depends on the solution that one wants to find. In the
Simplex method for linear programming, one chooses this variable in order to improve the
value of the objective function. Here, we look for a complementary solution where x⊤r = 0 and
y⊤s = 0. Since nonbasic variables represent facets, each basis defines a vertex which is labeled
with the indices of the nonbasic variables. The variables thus form complementary pairs (xi, ri)
for i ∈ A1 and (yj , sj) for j ∈ A2. Thus, a k-almost completely labeled vertex is a basis that
has exactly one basic variable from each complementary pair, except for a pair of variables
(xk, rk) if k ∈ A1 or of (yk, sk) if k ∈ A2 that are both basic. Correspondingly, there is another
pair of complementary variables that are both nonbasic, representing the duplicate label. One
of them is chosen as the entering variable, depending on the direction of the computed path.

The pivoting algorithm starts by choosing an arbitrary label k ∈ A1 ∪A2 and by letting the
first entering variable be xk if k ∈ A1 and yk if k ∈ A2. Then we pivot using the minimum ratio
test while maintaining feasibility. We stop when the variable that left the basis has index k.

Example 2.33. We use the Lemke–Howson algorithm and compute a Nash equilibrium of the
following bimatrix game

M =

0 6
2 5
3 3

 and N =

1 0
0 2
4 3

 .

The rows are indexed by A1 = {1, 2, 3} and the columns by A2 = {4, 5}. Let k = 2 be the
missing label that we choose. First, we introduce the slack variables r1, r2, r3, s4, s5 and write
the corresponding system of equations in the form zβ = C−1

β q −
∑

j /∈β C
−1
β Cjzj as

r1 = 1 − 6y5

r2 = 1− 2y4 − 5y5

r3 = 1− 3y4 − 3y5

s4 = 1 − x1 − 4x3

s5 = 1 − 2x2 − 3x3.

Since the missing label is 2, the first entering variable is x2. By the minimum ratio test, we look at
the column that contains x2 and search for the minimum ratio among all rows. There is only a
single option and thus s5 leaves the basis. The fifth equation is rewritten as x2 = 1

2 −
3
2x3 −

1
2s5.

The complement of s5 is y5, thus y5 enters the basis. Now, the minimum ratio in the column
that contains y5 is 1/6 and so r1 leaves the basis. We get

y5 =
1

6
− 1

6
r1

r2 =
1

6
− 2y4 +

5

6
r1

r3 =
1

2
− 3y4 +

1

2
r1

s4 = 1 − x1 − 4x3

x2 =
1

2
− 3

2
x3 −

1

2
s5.

The complement of r1 is x1 and it enters the basis. By the minimum ratio test, s4 leaves the basis
(again, there is only one option) and we obtain

y5 =
1

6
− 1

6
r1

r2 =
1

6
− 2y4 +

5

6
r1

r3 =
1

2
− 3y4 +

1

2
r1

x1 = 1 − 4x3 − s4

x2 =
1

2
− 3

2
x3 − 1

2
s5.

The complement of s4 is y4 and it enters the basis. The minimum ratio is 1/12 and thus r2 leaves
the basis and we have

y5 =
1

6
− 1

6
r1

y4 =
1

12
+

5

12
r1 −

1

2
r2

r3 =
1

4
− 3

4
r1 +

3

2
r2

x1 = 1 − 4x3 − s4

x2 =
1

2
− 3

2
x3 − 1

2
s5.

Then the algorithm terminates since the variable r2, with the missing label 2 as index, has
become nonbasic. Setting the nonbasic variables to zero (that is, the variables on the right
side), we obtain a solution, which, after re-normalizing, gives a pair of mixed strategy vectors
(x/(1⊤x), y/(1⊤y)) = ((23 ,

1
3 , 0)

⊤, (13 ,
2
3)

⊤). This gives a Nash equilibrium of this game. The
other two Nash equilibria are determined by pairs of vectors ((0, 13 ,

2
3)

⊤, (23 ,
1
3)

⊤) and ((0, 0, 1)⊤,
(1, 0)⊤).

Finally, we briefly mention how to compute Nash equilibria in degenerate games. The
problem with degenerate games that arises in the Lemke–Howson algorithm is that the variable
that leaves the basis might not be determined uniquely by the minimum ratio test. Thus, we
have to find a good “tie-breaking rule” that our algorithm chooses. Unfortunately, the algorithm
can enter a loop and run forever if we choose a bad rule. A good tie-breaking rule, running in
a polynomial time, can be obtained by “lexicographic perturbation”. We do not explain this
method here, instead, we refer an interested reader to [Ste02].

2.4.6 The class PPAD
We have shown a few algorithms how to compute a Nash equilibrium of a bimatrix game.
Unfortunately, all the presented algorithms, including the Lemke–Howson algorithm, can take

32 FINDING NASH EQUILIBRIA

an exponential number of iterations. In fact, despite many efforts, there is still no known
polynomial-time algorithm for computing a Nash equilibrium of a bimatrix game. In such
cases, one usually applies tools from the complexity theory and finds a reduction to a problem
for which there is an evidence suggesting it is computationally intractable. For example, finding
a reduction to an NP-hard problem. Here, we develop the relevant complexity theory for arguing
that computing Nash’s equilibrium of a bimatrix game may be intractable. The goal is to prove
that the problem is complete for a suitable complexity class.

Let NASH be the problem of finding a Nash equilibrium of a bimatrix game. The prob-
lem NASH is not a good candidate for an NP-complete problem, since, by Nash’s Theorem
(Theorem 2.16), Nash equilibria always exist in normal-form games. Thus, if we treat NASH
as a decision problem, the answer is always ‘yes’. Instead, we work with the closely related
class FNP (“functional NP”). The input of an algorithm for an FNP problem is an instance of a
problem from NP. The algorithm outputs a solution, provided one exists. If there is no solution,
the algorithm outputs ‘no’. Informally, FNP problems are just like NP problems except that we
demand a solution to be produced for ‘yes’ instances. For example, an FNP algorithm for SAT
receives a CNF formula φ and outputs an interpretation that satisfies φ, if it exists, and ‘no’
otherwise. The functional version of SAT is also an example of an FNP-complete problem.

The problem NASH belongs to the class FNP, as checking whether a strategy profile is a
Nash equilibrium can be done efficiently, using the Best Response Condition (Observation 2.23),
which says that it suffices to check only pure strategies. To be rigorous, we also note that there
are Nash equilibria of 2-player games whose description in bits takes polynomial size with
respect to the size of the input, since, as we already know, computing the mixed strategy vectors
of a Nash equilibrium with given supports requires to solve a system of linear equations.

Is NASH FNP-complete? If so, we would have strong evidence of the intractability of NASH.
Unfortunately, the following result suggests that it is unlikely, as it is widely believed that NP ̸=
coNP.

Theorem 2.34 ([MP91]). If the problem NASH is FNP-complete, then NP = coNP.

Proof. Suppose there is a polynomial-time reduction from the functional SAT problem to NASH.
That is, there are two polynomial-time algorithms A and B that satisfy the following conditions.
The algorithm Amaps every SAT formula φ to a bimatrix game A(φ). The algorithm B maps
every Nash equilibrium (s1, s2) of a bimatrix game A(φ) to a satisfying assignment B(s1, s2)
of φ, if one exists, and to the string ‘no’ otherwise.

Now, to show that NP = coNP, we show that the NP-complete problem SAT is in coNP. Then
we have NP⊆ coNP, which implies that the set of complements of the problems in NP (problems
where yes and no answers are switched) is a subset of the set of complements in coNP. Formally,
we have X ∈ NP ⇔ X ∈ coNP by the definition of coNP, where X is the complement of X .
Since NP ⊆ coNP , we get X ∈ coNP ⇔ X ∈ NP ⇒ X ∈ coNP ⇔ X ∈ NP . That is, we
have coNP ⊆ NP as well and thus NP = coNP.

It suffices to prove that, for an arbitrary ‘no’ instance φ of SAT, an arbitrary Nash equilibrium
(s1, s2) of A(φ) is a short and efficiently verifiable proof of the unsatisfiability of φ, as then
SAT is in coNP. We recall that at least one Nash equilibrium of A(φ) is guaranteed to exist by
Nash’s Theorem (Theorem 2.16). To show that a given Nash equilibrium (s1, s2) of A(φ) is
an efficiently verifiable proof of unsatisfiability of φ, it suffices to perform two checks. First,
compute the game A(φ) using A and verify that (s1, s2) is a Nash equilibrium of A(φ). Second,
use B to verify that B(s1, s2) is the ‘no’ string. If (s1, s2) passes both of these tests, then we
have verified in polynomial time that φ is unsatisfiable.

Note that the proof of Theorem 2.34 uses the mismatch between the functional version of
SAT, which does not have to have a solution, and between NASH, where the solution is always
guaranteed to exist.

Altogether, we see that we need to consider a more specialized complexity class than FNP.
Inspecting the proof of Nash’s Theorem (Theorem 2.16), we see that the existence of a Nash
equilibrium in a bimatrix game is established using a reduction of the problem to Brouwer’s
Fixed Point Theorem. Unfortunately, this is not very helpful, since the problem BROUWER

of finding Brouwer’s fixed point is known to be a hard problem [HPV89, Pap94]. It turns out
that the reduction holds also in the opposite direction and thus, in a sense, NASH is at least as
difficult as BROUWER.

Consider the proof of the correctness of the Lemke–Howson algorithm (proof of Proposi-
tion 2.31). In the proof we have constructed a so-called configuration graph, which is a graph
where every degree is either one or two and there is a specified source vertex of degree one,
which corresponds to the “artificial equilibrium” (0,0). So the graph is a disjoint union of
cycles and paths. It is possible to direct edges of this graph so that every vertex has in-degree
at most one and out-degree at most one and the source has out-degree one. This represen-
tation eventually gives us a Nash equilibrium, since the other endpoints correspond to Nash
equilibria.

We have thus arrived at the following abstract structure of the problem NASH (for nonde-
generate games, but something similar holds in the general case as well), which we call the
END-OF-THE-LINE problem: for a directed graph G with every vertex having at most one
predecessor and one successor, given a vertex s of G with no predecessor, find a vertex t ̸= s
with no predecessor or no successor. This problem might seem trivial, however, there is a
subtlety involved, as the graph G is not actually given to us on the input, but it is specified by
some polynomial-time computable function f(v) that returns the predecessor and successor
(if they exist) of a vertex v (or, alternatively, G is generated from a boolean circuit). Thus, G
can be exponentially large with respect to the size of the input.

There is a simple algorithm to solve END-OF-THE-LINE. It suffices to start from s and
follow the path until we arrive at the other endpoint of the path. Unfortunately, this algorithm
is not efficient, as G can be exponentially large. What makes the problem END-OF-THE-LINE
interesting is that several other problems admit this structure, for example the problem of
finding an approximate Brouwer’s fixed point of a function or the problem HAM SANDWICH :
given n sets of 2n points in Rn, find a hyperplane H that contains exactly n points from each
of the sets in each open halfspace determined by H . More examples of such problems can be
found in [Pap94]. There is no known polynomial-time algorithm for any of these problems.

One way of thinking about the END-OF-THE-LINE problem is that it is an abstract repre-
sentation of some given problem (NASH, for example), where the vertices of the large directed
graph correspond to feasible solutions and there is an edge from u to v is the feasible solution
can be improved to a solution v. Of course, if we then insist on solving the given problem using
these local search steps, then finding the solution might require exponentially many steps, as
the directed graph can be large. However, it is not clear whether there is some more “clever”
algorithm that forgets about local improvements and can “zoom out” around the search space
and ignore the structure of the directed graph. This is what makes determining the complexity
of this problem hard.

Let PPAD (“Polynomial Parity Arguments on Directed graphs”) be a complexity class con-
sisting of problems that admit a polynomial-time reduction to END-OF-THE-LINE. This class
was introduced by Papadimitriou [Pap94] in 1994 and PPAD-complete problems are believed to
be hard, although obtaining PPAD-completeness is a weaker evidence of intractability than
NP-completeness. Even though it seems unlikely, it could still be the case that PPAD = P while
P ̸= NP.

The proof of the correctness of the Lemke–Howson algorithm shows that NASH for nonde-
generate games belongs to PPAD. The following result, proved by Chen, Deng, and Teng [CDT09]
and Daskalakis, Goldberg, and Papadimitriou [DGP09], shows that the problem NASH is PPAD-
hard and it is one the main breakthroughs in algorithmic game theory.

Theorem 2.35 ([CDT09, DGP09]). The problem NASH is PPAD-complete.

We do not present the proof here, as it is quite technical. However, an interested reader
might check overviews of the proof written by Papadimitriou [Pap07] or by Roughgarden [Rou10].

So far we have considered only bimatrix games, that is, games with two players. One
may use so-called Sperner’s lemma (see Exercise 2.19) to show that the problem of finding
approximate Nash equilibria in games with at least three players lies in PPAD. However, the
problem of computing an exact Nash equilibrium of a game of at least three players appears

34 FINDING NASH EQUILIBRIA

to be strictly harder than PPAD [EY10]. One of the reasons why the problem of computing
exact Nash equilibria of games with at least three players is harder is that there might not be a
rational Nash equilibrium [Nas51]. On the other hand, in games of two players with rational
payoffs there are always rational Nash equilibria and thus they can be computed exactly.

Finally, let us mention that if wemodify the problemNASH in some way so that the existence
is not always guaranteed, then, quite often, it is the case that the resulting problem becomes
NP-complete. For example, given a bimatrix game G, the following decision problems are
NP-complete [GZ89]. Decide whether G has

• at least two Nash equilibria.

• a Nash equilibrium whose support contains a strategy s.

• a Nash equilibrium whose support does not contain a strategy s.

• a Nash equilibrium in which both players have the total utility at least a given amount.

2.4.7 Exercises
Exercise 2.10. Use the Support enumeration algorithm to find a Nash equilibrium of the Game
of chicken with supports of size 2. [1]

Exercise 2.11. Decide whether the Game for Gotham’s soul is degenerate and find all Nash equi-
libria of this game. How is the set of equilibria different from previously computed examples? [2]

Cooperate (1) Detonate (2)

Cooperate (1) (0, 0) (0, 1)

Detonate (2) (1, 0) (0, 0)

Table 2.9: The Game for Gotham’s soul.

Exercise 2.12. Decide which of these two payoff matrices determines a degenerate game. [2]

(a) M =

0 4 1
2 2 4
3 2 2

 and N =

1 2 3
0 3 4
0 1 1

.
(b) M =

0 4 1
2 2 4
3 2 2

 and N =

1 0 0
2 3 1
3 4 1

.
Exercise 2.13. Prove that if a bimatrix game is non-degenerate, then the system of equations in
the Support enumeration algorithm has a unique solution with x,y > 0, u = max{(M)iy : i ∈
A1} and v = max{(N⊤)jx : j ∈ A2}. [4]

Hint: Prove that if there are more solutions, then we can reduce the support.

Exercise 2.14. Show that the following linear programs from the proof of the Minimax Theorem
(Theorem 2.21) are dual to each other.

(a) For a matrixM ∈ Rm×n, [2]

(b) For a matrixM ∈ Rm×n, [2]

You may use the recipe for making dual programs from Table 2.8.

Program P Program D

Variables y1, . . . , yn x0

Objective function minx⊤My maxx0

Constraints
∑n

j=1 yj = 1, 1x0 ≤M⊤x.

y1, . . . , yn ≥ 0.

Program P ′ Program D′

Variables y0, y1, . . . , yn x0, x1, . . . , xm

Objective function min y0 maxx0

Constraints 1y0 −My ≥ 0, 1x0 −M⊤x ≤ 0,∑n
j=1 yj = 1,

∑m
i=1 xi = 1,

y1, . . . , yn ≥ 0. x1, . . . , xm ≥ 0.

Exercise 2.15. Use the Lemke–Howson algorithm and compute a Nash equilibrium of the fol-
lowing bimatrix game [3]

M =

1 3 0
0 0 2
2 1 1

 and N =

2 1 0
1 3 1
0 0 3.


Start the computation by choosing the label 1.

Exercise 2.16. Show that the Lemke–Howson algorithm does not terminate in a vertex of the
form (x,0) or (0, y) in the configuration graph. [2]

Exercise 2.17. Show that the following symmetric 3 × 3 game has a Nash equilibrium that
cannot be found by the Lemke–Howson algorithm. [3]

M =

3 3 0
4 0 1
0 4 5

 = N⊤

Exercise 2.18. Prove that if (s1, s2) and (s′1, s
′
2) are mixed Nash equilibria of a two-player

zero-sum game, then so are (s1, s′2) and (s′1, s2). [2]

Exercise 2.19. [Sperner’s Lemma] Let S be a given subdivision of a triangle T in the plane. A
legal coloring the vertices of S assigns one of three colors (red, blue, and green) to each vertex of
S such that all the three colors are used on the vertices of T . Moreover, a vertex of S lying on an
edge of T must have one of the two colors of the endpoints of this edge.

Prove that, in every legal coloring of S, there is is a triangular face of S whose vertices are
colored with all three colors.

Hint: Use a reduction to the END-OF-THE-LINE problem. [3]

2.5 Other notions of equilibria
As we have seen, finding Nash equilibria is a difficult computational task and possibly in-
tractable unless PPAD ⊆ FP. This fact justifies introducing other solution concepts that possess
some of the qualities of Nash equilibria and yet are easier to compute and work with. After all,
how can we expect the players to find a Nash equilibrium, if our computers cannot?

In this section we introduce two such concepts: approximate and correlated Nash equilibria.

36 FINDING NASH EQUILIBRIA

2.5.1 ε-Nash equilibria
The following solution concept captures the idea that players do not care about changing their
strategies when the change results in a very small gain.

Definition 2.36 (ε-Nash equilibrium). Let G = (P,A, u) be a normal-form game of n players
and let ε > 0. A strategy profile s = (s1, . . . , sn) is an ε-Nash equilibrium31 if, for every player
i ∈ P and for every strategy s′i ∈ Si, we have ui(si; s−i) ≥ ui(s′i; s−i)− ε.

In other words, an ε-Nash equilibrium is a mixed strategy profile such that no other strategy
can improve the payoff by more than an additive ε. We remark that computing an approximate
Nash equilibrium in two-player games where ε acts multiplicatively is PPAD-complete, even
for constant values of the approximation [Das13].

It follows from Nash’s Theorem (Theorem 2.16) that ε-Nash equilibria exist in every normal-
form game. Indeed, every Nash equilibrium is surrounded by a region of ε-Nash equilibria for
every ε > 0. The concept is also computationally useful since the probabilities involved in an
exact Nash equilibrium need not be rational numbers. However, computers usually work with
real numbers using a floating-point approximation and thus only ε-Nash equilibria, where ε is
roughly the “machine precision”.

On the other hand, there are also some disadvantages to this solution concept. For example,
although every Nash equilibrium is surrounded by a region of ε-Nash equilibria, it might be
the case that a given ε-Nash equilibrium is not close to any Nash equilibrium; see Exercise 2.20.
Thus, we cannot think of ε-Nash equilibria as approximations of the true Nash equilibria.

Obviously, an ε-Nash equilibrium is not very compelling solution concept unless ε is very
small. Thus, we would ideally want to have an efficient scheme for approximating ε-Nash
equilibria. An optimization problem P with input of size n and with a parameter ε > 0 has
a PTAS (polynomial-time approximation scheme) if there is an algorithm that computes an
ε-approximate solution of P in time O(nf(1/ε)) for some function f . The problem P is said to
have FPTAS (fully polynomial-time approximation scheme) if there is such an algorithm that
runs in time O((1/ε)cnd) for some constants c and d.

Chen et al. [CDhT06] showed that FPTAS for the problem of computing ε-Nash equilibria is
impossible unless PPAD ⊆ FP. The existence of PTAS for this problem remains an interesting
and challenging open problem.

In the following result due to Lipton, Markakis, and Mehta [LMM03], we show that there
is an approximation scheme for computing ε-Nash equilibria in normal-form games of two
players running in a quasi-polynomial time. This result can be extended to normal-form games
of more players; see [LMM03, Theorem 3].

Theorem 2.37 ([LMM03]). LetG = (P,A, u) be a normal-form game of two players, each having
m actions, such that the payoff matrices have entries between 0 and 1. For every ε > 0, there
exists an algorithm for computing an ε-Nash equilibrium for G in timemO(logm/ε2).

Before proceeding with the proof, we recall a standard tail inequality called a Hoeffding
bound.

Theorem 2.38 (The Hoeffding bound [Hoe63]). Let Z = 1
s

∑s
i=1 Zi be a random variable,

where Z1, . . . , Zs are independent random variables with 0 ≤ Zi ≤ 1. Let µ = E[Z]. Then, for
every t with 0 < t < 1− µ,

Pr[Z − µ ≥ t] ≤ e−2st2 .

Proof of Theorem 2.37. LetM and N be them×m payoff matrices of players 1 and 2, respec-
tively, wherem ≥ 2. We assume that all entries of these matrices are between 0 and 1, other-
wise we have to rescale, which magnifies the ε by max{max{Mi,j} −min{Mi,j},max{Ni,j} −
min{Ni,j}}. Since G is a bimatrix game, we see that a pair (x, y) of mixed strategy vectors
forms an ε-Nash equilibrium for some ε > 0 if and only if for every mixed strategy vector x′ of
player 1 we have (x′)⊤My ≤ x⊤My + ε and for every mixed strategy vector y′ of player 2 we
have x⊤Ny′ ≤ x⊤Ny + ε.
31 ε-Nashova rovnováha či ε-Nashovovo ekvilibrium.

A mixed strategy is k-uniform if it is the uniform distribution on a multiset S of pure
strategies with |S| = k (we count the elements of S with their multiplicities). We first prove the
following statement.

Claim 2.39. For every Nash equilibrium of G with mixed strategy vector (x∗, y∗) and for every
ε > 0, there exists, for every integer k ≥ 48 lnm/ε2, a pair (x, y) of k-uniform strategies such
that (x, y) is an ε-Nash equilibrium, |x⊤My − (x∗)⊤My∗| < ε, and |x⊤Ny − (x∗)⊤Ny∗| < ε.

The last two conditions say that players 1 and 2, respectively, get almost the same payoff as
in the Nash equilibrium (x∗, y∗).

To see that Claim 2.39 implies Theorem 2.37, fix k = 48 lnm/ε2 and perform an exhaustive
search for all k-uniform ε-Nash equilibria of G. There are at most (mk)2 pairs of multisets X
and Y to look at and verifying ε-Nash equilibrium condition is easy, as we need to check only
for deviations to pure strategies. By the choice of k, the algorithm runs in time mO(logm/ε2).
By Nash’s theorem (Theorem 2.16) and Claim 2.39, at least one k-uniform ε-Nash equilibrium
exists and thus the algorithm eventually finds one.

The proof of Claim 2.39 is based on a probabilistic argument. For a given ε > 0, we fix an
integer k ≥ 48 lnm/ε2. Let X be a multiset obtained by sampling k times from the set A1 of
actions of player 1 according to the distribution x∗. Analogously, let Y be a multiset obtained
by sampling k times from the set A2 of actions of player 2 according to y∗. We choose x to
be the mixed strategy vector that assigns a probability µ(ai)/k to each action ai ∈ A1, where
µ(ai) is the multiplicity of ai in X . The mixed strategy vector y is then defined analogously
using the multiset Y .

Let A1 = {a1, . . . , am} and A2 = {b1, . . . , bm} be labelings of actions of both players. We
let xi be the mixed strategy vector for each pure strategy ai ∈ A1 and yj be the mixed strategy
vector for each pure strategy bj ∈ A2. To check that (x, y) is an ε-Nash equilibrium, it suffices
to consider only deviations to pure strategies. In order to do so, we define the following events:

ϕ1 = {(x, y) : |x⊤My − (x∗)⊤My∗| < ε/2},
π1,i = {(x, y) : (xi)⊤My < x⊤My + ε} for every i ∈ {1, . . . ,m},
ϕ2 = {(x, y) : |x⊤Ny − (x∗)⊤Ny∗| < ε/2},
π2,j = {(x, y) : x⊤Nyj < x⊤Ny + ε} for every j ∈ {1, . . . ,m},

GOOD = ϕ1 ∩ ϕ2 ∩
m⋂
i=1

π1,i ∩
m⋂
j=1

π2,j .

Note that to prove Claim 2.39 it suffices to show Pr[GOOD] > 0. Indeed, if the event GOOD
holds with positive probability, then there is a pair of (X,Y) of multisets that determine the
mixed strategy vectors (x, y) satisfying the events ϕ1 and ϕ2, which guarantees that both players
get almost the same payoff as in the Nash equilibrium (x∗, y∗). Moreover, the vectors x and y
satisfy all the events πi,j for i ∈ {1, 2} and j ∈ {1, . . . ,m}, which, by the linearity of expectation,
means that (x, y) is an ε-Nash equilibrium.

We first estimate the probabilities of the events ϕ1 and ϕ2, which are the complements of
the events ϕ1 and ϕ2, respectively. To do so, we consider the following auxiliary events:

ϕ1,a = {(x, y) : |x⊤My∗ − (x∗)⊤My∗| < ε/4},
ϕ1,b = {(x, y) : |x⊤My − x⊤My∗| < ε/4},
ϕ2,a = {(x, y) : |(x∗)⊤Ny − (x∗)⊤Ny∗| < ε/4},
ϕ2,b = {(x, y) : |x⊤Ny − (x∗)⊤Ny| < ε/4}.

We then have ϕ1,a ∩ ϕ1,b ⊆ ϕ1, since

|x⊤My − (x∗)⊤My∗| ≤ |x⊤My − x⊤My∗|+ |x⊤My∗ − (x∗)⊤My∗| < ε/4 + ε/4 = ε/2.

Analogously, ϕ2,a ∩ ϕ2,b ⊆ ϕ2.

38 FINDING NASH EQUILIBRIA

The choice of x corresponds to choosing each element of the multiset X independently at
random with probability 1/k. Thus, the expression x⊤My∗ is essentially a sum of k indepen-
dent random variables, where each variable takes a value between 0 and 1 and has expected
value (x∗)⊤My∗. Thus, the Hoeffding bound (Theorem 2.38) gives Pr[ϕ1,a] ≤ 2e−kε2/8 and,
analogously, Pr[ϕ1,b] ≤ 2e−kε2/8. By the union bound, we obtain Pr[ϕ1] ≤ 4e−kε2/8 using the
fact ϕ1,a ∩ ϕ1,b ⊆ ϕ1. Analogously, we derive the same estimate for ϕ2.

It remains to estimate probabilities for the events πi,j . Again, we first introduce some
auxiliary events. More specifically, we define

ψ1,i = {(x, y) : (xi)⊤My < (xi)⊤My∗ + ε/2} for every i ∈ {1, . . . ,m}

and
ψ2,j = {(x, y) : x⊤Nyj < (x∗)⊤Nyj + ε/2} for every j ∈ {1, . . . ,m}.

Then we obtain ψ1,i ∩ ϕ1 ⊆ π1,i and ψ2,j ∩ ϕ2 ⊆ π2,j for all i, j ∈ {1, . . . ,m}, as the fact that
(x∗, y∗) is a Nash equilibrium gives (xi)⊤My∗ ≤ (x∗)⊤My∗ for every ai ∈ A1 and thus, by ϕ1
and ψ1,i,

(xi)⊤My < (xi)⊤My∗ + ε/2 ≤ (x∗)⊤My∗ + ε/2 < x⊤My + ε.

An analogous inequality is true for π2,j for every j ∈ {1, . . . ,m}.
Each of the expressions (xi)⊤My and x⊤Nyj is essentially a sum of k independent random

variables, where each variable takes value between 0 and 1 and has expected value (xi)⊤My∗

and (x∗)⊤Nyj , respectively. Applying the Hoeffding bound (Theorem 2.38), we get Pr[ψ1,i] ≤
e−kε2/2 and Pr[ψ2,j] ≤ e−kε2/2. Summing up the estimates obtained so far and using the
choice of k and the factm ≥ 2, we derive from the union bound that

Pr[GOOD] ≤ Pr[ϕ1] + Pr[ϕ2] +

m∑
i=1

Pr[π1,i] +

m∑
j=1

Pr[π2,j]

≤ 4e−kε2/8 + 4e−kε2/8 +m(e−kε2/2 + 4e−kε2/8) +m(e−kε2/2 + 4e−kε2/8) < 1.

Thus, Pr[GOOD] > 0 and, as discussed before, we obtain the desired ε-Nash equilibrium
(x, y). This finishes the proof of Claim 2.39.

Note that the above proof actually produces a quasi-polynomial algorithm that finds all
k-uniform ε-Nash equilibria of G.

2.5.2 Correlated equilibria
The following solution concept, introduced by [Aum74], might take some getting used to, but
this is the most fundamental solution concept of all according to several researchers. For
example, Myerson, a Nobel-prize-winning game theorist, said that “If there is intelligent life on
other planets, in majority of them, they would have discovered correlated equilibrium before
Nash equilibrium.” [LBS08]. We first state the definition of correlated equilibria, which might
look rather non-transparent at first sight, and then illustrate it with some examples.

Definition 2.40 (Correlated equilibrium). For a normal-form game G = (P,A, u) of n players,
let p be a probability distribution on A, that is, p(a) ≥ 0 for every a ∈ A and

∑
a∈A p(a) = 1.

The distribution p is a correlated equilibrium32 in G if∑
a−i∈A−i

ui(ai; a−i)p(ai; a−i) ≥
∑

a−i∈A−i

ui(a
′
i; a−i)p(ai; a−i) (2.7)

for every player i ∈ P and all pure strategies ai, a′i ∈ Ai.
32 Korelované ekvilibrium.

Informally, a correlated equilibrium is a randomized assignment of (potentially correlated)
action recommendations to players such that nobody wants to deviate. So a correlated equilib-
rium is a Nash equilibrium when the players receive payoff-irrelevant signals before playing the
game. We can imagine that these recommendations are delivered using a trusted third party
with the distribution p being publicly known. The trusted third party samples a strategy profile
a = (a1, . . . , an) according to p. Before playing the game, for each player i ∈ P , the trusted
third party privately suggests the strategy ai to i, but does not reveal a−i to i. The player i can
follow this suggestion, or not. At the time of decision-making, each player i knows the distribu-
tion p, one component ai of the strategy profile a, and accordingly has a posterior distribution
on suggested strategies a−i of other players. The correlated equilibrium condition (2.7) then
says that every player maximizes his expected utility by playing the suggested strategy ai. The
expectation is conditioned on i’s information — p and ai — and assumes that other players
play their recommended strategies.

We illustrate the definition on two games, the Chicken game and the Battle of Sexes.

Example 2.41. Consider the Game of chicken introduced in Example 2.12. Here we have two
drivers, 1 and 2, driving towards each other in a collision course so one of them has to swerve or
both die in the crash. This is captured by the following table.

Swerve Straight

Swerve (0,0) (-1,1)

Straight (1,-1) (-10,-10)

There are two pure Nash equilibria with (s1(Swerve), s2(Swerve)) = (1, 0) and (s1(Swerve),
s2(Swerve)) = (0, 1), and one fully mixed Nash equilibrium with (s1(Swerve), s2(Swerve)) =
(9/10, 9/10). The expected payoffs are (−1, 1), (1,−1), and (−1/10,−1/10), respectively.

Now, assume there is a trusted third party, a traffic light. The traffic light chooses each
of the three options (Swerve, Swerve), (Swerve, Straight), and (Straight, Swerve) independently
at random with probability 1/3. The option (Straight, Straight) is never chosen by the traffic
light. No driver knows which action is recommended to the other driver, he only knows the
distribution p.

We show that the traffic light constitutes a correlated equilibrium by proving that no driver
wants to deviate from the traffic light’s instruction. If the traffic light tells driver 1 to go straight,
then the driver knows that the recommendation for the other driver is to swerve, so driver 1 will
not deviate from the recommendation, as he assumes that driver 2 obeys his recommendation.
Now, assume that driver 1 is told to swerve. Then he knows that the other driver is being told
to swerve or to go straight, both options with equal probability. The expected payoff of driver 1
conditioned on the fact that he is told to swerve is 1

2 · 0 +
1
2 · (−1) = −1/2. If driver 1 decides to

deviate and goes straight, then his expected payoff is only 1
2 · 1 +

1
2 · (−10) = −9/2. So driver 1

does not deviate also in this case. By symmetry, driver 2 does not deviate as well and thus we
have a correlated equilibrium with the expected payoff for each driver 1

3 · 0+
1
3 · 1+

1
3 · (−1) = 0.

Thus, the reward was made better by correlation.

Example 2.42. We recall the game Battles of sexes from Example 2.11. This game of two players
can be described with the following table.

Football Opera

Football (2,1) (0,0)

Opera (0,0) (1,2)

As we have shown, there are three Nash equilibria of this game: if the players 1 and 2 choose
the actions Football with probability p1 and Opera with probability p2, respectively, where

40 FINDING NASH EQUILIBRIA

(p1, p2) ∈ {(1, 0), (0, 1), (2/3, 2/3)}. The expected payoffs are (2, 1), (1, 2), and (2/3, 2/3), re-
spectively.

Now, imagine there is a trusted third party that flips a fair coin before the game and, based
on the outcome of the coin toss, tells the players what they should do. For example, if the coin
shows head, then both players are told to choose Football and, if the coin shows tails, both of
them are told to choose Opera. Now, if player 1 is told to choose Opera, he knows that player
2 is also told to choose Opera, since both players know the distribution p. So, player 1 has no
incentive to deviate and switch to Football as his payoff would be 0 compared to 1. Analogously,
player 2 does not want to deviate so this distribution constitutes a correlated equilibrium. The
advantage of this procedure is that the expected payoffs are now higher — (3/2, 3/2).

Importantly, the distribution p in the definition of a correlated equilibrium does not have to
be a product distribution; in this sense, the strategies chosen by the players are correlated. This
is captured by the following proposition, which says that correlated equilibria are more general
than Nash equilibria. Consequently, there is a hope that they are computationally tractable.

Proposition 2.43. In every normal-form game G = (P,A, u) of n players, for every Nash
equilibrium there exists a corresponding correlated equilibrium.

Proof. Let s∗ = (s∗1, . . . , s
∗
n) be a strategy profile. Consider a function ps∗(a) =

∏n
j=1 s

∗
j (aj) for

every a = (a1, . . . , an) ∈ A. Clearly, ps∗(a) ≥ 0 for every a ∈ A and one can show by induction
on n that

∑
a∈A ps∗(a) = 1, so ps∗ is a probability distribution.

We show that if s∗ is a Nash equilibrium, then ps∗ is a correlated equilibrium. Fix i ∈ P and
ai, a

′
i ∈ Ai. Assume s∗i (ai) > 0, that is, the pure strategy ai is in the support of s∗i . Using the

definitions of ui and ps∗ , we have

ui(a
′
i; s

∗
−i) =

∑
a−i∈A−i

ui(a
′
i; a−i)

n∏
j=1,j ̸=i

s∗j (aj) =
1

s∗i (ai)

∑
a−i∈A−i

ui(a
′
i; a−i)ps∗(ai; a−i).

Analogously, we see that

ui(ai; s
∗
−i) =

∑
a−i∈A−i

ui(ai; a−i)

n∏
j=1,j ̸=i

s∗j (aj) =
1

s∗i (ai)

∑
a−i∈A−i

ui(ai; a−i)ps∗(ai; a−i).

Assuming s∗ is a Nash equilibrium, Observation 2.23 implies that the pure strategy ai in the
support of s∗i is also a best response of player i to s∗−i. Thus, ui(ai; s∗−i) ≥ ui(a′i; s∗−i) and we
obtain

1

s∗i (ai)

∑
a−i∈A−i

ui(ai; a−i)ps∗(ai; a−i) ≥
1

s∗i (ai)

∑
a−i∈A−i

ui(a
′
i; a−i)ps∗(ai; a−i)

After multiplying by s∗i (ai), this gives∑
a−i∈A−i

ui(ai; a−i)ps∗(ai; a−i) ≥
∑

a−i∈A−i

ui(a
′
i; a−i)ps∗(ai; a−i).

If s∗i (ai) = 0, then ps∗(ai; a−i) = 0 for every a−i ∈ A−i and the last inequality is trivially
satisfied. Thus, ps∗ is a correlated equilibrium.

Therefore, using Nash’s Theorem (Theorem 2.16), we see that correlated equilibria exist in
every normal-form game. In fact, the following result implies that there is always exactly one
correlated equilibrium or we have infinitely many of them.

Proposition 2.44. In every normal-form game G = (P,A, u), every convex combination of
correlated equilibria is a correlated equilibrium.

Proof. Assume p and p′ are two correlated equilibria of G. We show that p′′ = tp+ (1− t)p′ is
a correlated equilibrium as well. First, observe that p′′ is a probability distribution. The rest
follows immediately, as the fact that p and p′ are correlated equilibria gives∑

a−i∈A−i

ui(ai; a−i)p
′′(ai; a−i) =

∑
a−i∈A−i

ui(ai; a−i)(t · p(ai; a−i) + (1− t) · p′(ai; a−i)) ≥∑
a−i∈A−i

ui(a
′
i; a−i)(t · p(ai; a−i) + (1− t) · p′(ai; a−i)) =

∑
a−i∈A−i

ui(a
′
i; a−i)p

′′(ai; a−i)

for every player i ∈ P and all pure strategies ai, a′i ∈ Ai.

Thus, the set of correlated equilibrium distributions is convex and it can be shown that it is
also compact. Moreover, this set is also a set of solutions of some system of linear inequalities.
This is much easier to solve than finding a Nash equilibrium. Consider the following linear
program

max

{∑
i∈P

(∑
a∈A

ui(a)p(a)

)}
subject to∑

a−i∈A−i

ui(ai; a−i)p(ai; a−i) ≥
∑

a−i∈A−i

ui(a
′
i; a−i)p(ai; a−i) for all i ∈ P, ai, a′i ∈ Ai,

p(a) ≥ 0 for every a ∈ A,∑
a∈A

p(a) = 1,

where variables (p(a))a∈A represent the probabilities of selecting a with p. Any feasible solution
of this linear program gives a correlated equilibrium. An optimal solution of this linear program
will give a correlated equilibrium that maximizes the social welfare

∑
i∈P

(∑
a∈A ui(a)p(a)

)
and can be found in polynomial time.

Note, however, that the size of this linear program is polynomial only with respect to the
payoff matrices and can be, for example, exponential with respect to the number of players. If
we settle for approximate correlated equilibria, we do not need the heavy machinery of linear
programming, but, as we will see in the next section, we can use a simpler method based on
suitably chosen learning algorithms.

2.5.3 Exercises
Exercise 2.20. Let G = (P = {1, 2}, A, u) be a normal-form game of two players with A1 =
{U,D} and A2 = {L,R} with payoff function u depicted in Table 2.10.

L R

U (1,1) (0,0)

D (1 + ε
2 , 1) (500,500)

Table 2.10: The game from Exercise 2.20.

Show that there is an ε-Nash equilibrium s of G such that ui(s′) > 10ui(s) for every i ∈ P
and every Nash equilibrium s′ of G. In other words, there might be games where some ε-Nash
equilibria are far away from any Nash equilibrium. [3]

Exercise 2.21. Compute all correlated equilibria in Prisoner’s dilemma. [2]

Exercise 2.22. Consider the following modified Rock-Paper-Scissors game where players get a
penalty in case of a tie.

42 FINDING NASH EQUILIBRIA

T S

T (-2,-2) (0,-3)

S (-3,0) (-1,-1)

Table 2.11: The game from Exercise 2.21

Rock Paper Scissors

Rock (-1,-1) (0,1) (1,0)

Paper (1,0) (-1,-1) (0,1)

Scissors (0,1) (1,0) (-1,-1)

Table 2.12: A modified game Rock-Paper-Scissors in Exercise 2.22.

(a) Show that this game has a unique Nash equilibrium that results in expected payoffs of 0 to
both players. [2]

(b) Show that the following probability distribution is a correlated equilibrium in which the
players obtain expected payoffs of 1/2. [2]

Rock Paper Scissors

Rock 0 1/6 1/6

Paper 1/6 0 1/6

Scissors 1/6 1/6 0

Table 2.13: A probability distribution in the modified game Rock-Paper-Scissors from Exer-
cise 2.22.

Exercise 2.23. Let G = (P = {1, 2}, A, u) be a normal-form game of two players with A1 =
{U,D} and A2 = {L,R} with payoff function u depicted in Table 2.14.

(a) Compute all Nash equilibria ofG and draw the convex hull of Nash equilibrium payoffs. [2]

(b) Is there any correlated equilibrium ofG (for some distribution p) that yields payoffs outside
this convex hull? [3]

Exercise 2.24. Let G = (P = {1, 2}, A, u) be a normal-form game of two players with A1 =
{U,D} and A2 = {L,R} with payoff function u depicted in Table 2.15.

(a) Compute all Nash equilibria ofG and draw the convex hull of Nash equilibrium payoffs. [2]

(b) Determine the set of all correlated equilibria of G. [3]

2.6 Regret minimization
In this section, we explore the concept of online learning and we show some applications in
game theory, in particular, we show a connection to some variants of Nash equilibria. Learning
is the ability to improve performance by observing data. Consider, an agent A in an unknown
adversary environment who has a task to learn the setup in the environment. The agent Amay
be any forecaster or algorithm. Learning problems can also be thought of as a repeated game

L R

U (6,6) (2,7)

D (7,2) (0,0)

Table 2.14: The game from Exercise 2.23.

L R

U (4,4) (1,5)

D (5,1) (0,0)

Table 2.15: The game from Exercise 2.24.

between the agent and the environment. For example, the weather might be the environment,
prediction is the task, and the weather prediction office is the agent.

Formally, we consider the following model. There are N available actions X = {1, . . . , N}
and at each time step t the online algorithmA selects a probability distribution pt = (pt1, . . . , p

t
N)

over X . That is, pti ≥ 0 for every i ∈ X and
∑N

i=1 p
t
i = 1. After the distribution pt is chosen at

time step t, the adversary chooses a loss vector ℓt = (ℓt1, . . . , ℓ
t
N) ∈ [−1, 1]N , where the number

ℓti is the loss of action i in time t. The algorithm A then receives the vector ℓt and experiences
loss ℓtA =

∑N
i=1 p

t
iℓ

t
i. This is the expected loss of A at time step t when the algorithm A selects

action i with probability pti. After T steps, the loss of action i is LT
i =

∑T
t=1 ℓ

t
i and the loss of

A is LT
A =

∑T
t=1 ℓ

t
A.

2.6.1 External regret
LetA be a given class of algorithms, called comparison class, and let T be a given positive integer.
In the external regret setting, our aim is to design an online algorithm A whose loss is close to
the loss of the best algorithm from A, that is, LT

A should be close to LT
A,min = minB∈A L

T
B . In

other words, we want to minimize the external regret RT
A,A = LT

A−LT
A,min of A. In this section,

we mostly consider only one of the most studied comparison classes, the class consisting of
single actions, that is, AX = {Ai : i ∈ X}, where the algorithm Ai always chooses action i. For
this class AX , we simply write LT

min = LT
AX ,min and RT

A = RT
A,AX

.
Until specified otherwise, we now consider only loss vectors with entries from {0, 1}, not

with real entries from [−1, 1]. This is only to simplify the notation, all presented results can be
extended to the general case.

First, we show that one cannot guarantee low external regret with respect to the optimal
sequence of decisions in hindsight. Let Aall be the set of all online algorithms that assign
probability 1 to an arbitrary action from X in every step (unlike the more special class AX ,
where every algorithm selects the same action in all steps).

Observation 2.45. For any online algorithm A and every T ∈ N, there is a sequence of T loss
vectors such that the external regret RT

A,Aall
of A is at least T (1− 1/N).

Proof. For every t ∈ {1, . . . , T}, we choose the loss vector ℓt by choosing an action it ∈ X
with lowest probability pti and we set ℓtit = 0 and ℓti = 1 for every i ̸= it. Since ptit ≤ 1/N , we
have ℓtA ≥ 1− 1/N for every t ∈ {1, . . . , T} and thus the loss LT

A of A after T steps is at least
T (1− 1/N).

On the other hand, the algorithm B ∈ Aall with B that selects the action it in step t with
probability 1 has the total loss LT

B = 0. Therefore RT
A,Aall

≥ LT
A − LT

B ≥ T (1− 1/N).

Thus, considering all possible algorithms leads to a very large regret. This is why we restrict

44 FINDING NASH EQUILIBRIA

ourselves to special classes of algorithms, namely, to the class AX , which corresponds to
comparing the online algorithm to the best single action.

As our first attempt to construct an online algorithm with small external regret, we try
a greedy approach. In step t, the Greedy algorithm selects an action i ∈ X for which the
cumulative loss Lt−1

i at step t− 1 is the smallest (the ties are broken by choosing minimum
action).

Algorithm 2.6.1: GREEDY ALGORITHM(X,T)

Input : A set of actions X = {1, . . . , N} and a number of steps T ∈ N.
Output : A probability distribution pt for every t ∈ {1, . . . , T}.
p1 ← (1, 0, . . . , 0),
for t = 2, . . . , T

do


Lt−1
min ← minj∈X{Lt−1

j },
St−1 ← {i ∈ X : Lt−1

i = Lt−1
min},

k ← minSt−1,
ptk ← 1, pti ← 0 for i ̸= k,

Output {pt : t ∈ {1, . . . , T}}.

Proposition 2.46. The cumulative loss LT
Greedy of the Greedy algorithm at time T ∈ N satisfies

LT
Greedy ≤ N · LT

min + (N − 1)

for any sequence of {0, 1}-valued loss vectors.

Proof. At time step t, if the Greedy algorithm incurs a loss (of 1) and Lt
min does not increase,

then at least one action disappears from St in the next step. This can occur at most N times
and then Lt

min increases by 1. In other words, the Greedy algorithm incurs a loss of at most N
between successive increments of Lt

min by 1. It follows that

LT
Greedy ≤ N · LT

min +N − |ST | ≤ N · LT
min + (N − 1).

The bound obtained in Proposition 2.46 is rather weak since it says that the cumulative loss
of the Greedy algorithm is roughly at most N times larger than the cumulative loss LT

min of
the best action. There is a reason for this poor behavior, as the following result shows that no
deterministic algorithm can perform well. Here, an algorithm is deterministic if, for every step
t, there is action i with pti = 1.

Proposition 2.47. For every deterministic algorithm D and T ∈ N, there is a sequence of loss
vectors such that LT

D = T and LT
min ≤ ⌊T/N⌋. Thus, in particular, LT

D ≥ N ·LT
min+(T mod N).

Proof. For every time step t, let it be the action selected by D, that is, the action with ptit = 1.
We choose the loss vector ℓt such that ℓtit = 1 and such that all other entries of ℓt are zero.
Then the cumulative loss LT

D of D in time T is exactly T .
There are N actions in total and thus, by the pigeonhole principle, there is an action i that

has been selected by D at most ⌊T/N⌋ times. By the construction of ℓt, only actions selected
by D can have a loss. Thus, LT

min ≤ ⌊T/N⌋.

In view of Proposition 2.47, it makes perfect sense to consider randomized algorithms in
order to minimize external regret. A natural approach how to randomize the Greedy algorithm is
to break ties at random, not deterministically. The hope is that then the algorithm splits weights
between the currently best actions, which might produce better results. More specifically,
we consider a Randomized greedy algorithm that is obtained from the Greedy algorithm by
assigning a uniform distribution to actions with the minimum cumulative loss so far.

Algorithm 2.6.2: RANDOMIZED GREEDY ALGORITHM(X,T)

Input : A set of actions X = {1, . . . , N} and a number of steps T ∈ N.
Output : A probability distribution pt for every t ∈ {1, . . . , T}.
p1 ← (1/N, . . . , 1/N),
for t = 2, . . . , T

do


Lt−1
min ← minj∈X{Lt−1

j },
St−1 ← {i ∈ X : Lt−1

i = Lt−1
min},

pti ← 1/|St−1| for every i ∈ St−1 and pti ← 0 otherwise.
Output {pt : t ∈ {1, . . . , T}}.

Proposition 2.48. The cumulative loss LT
RG of the Randomized greedy algorithm at time T ∈ N

satisfies
LT
RG ≤ (1 + lnN) · LT

min + lnN

for any sequence of {0, 1}-valued loss vectors.

Proof. Similarly as in the proof of Proposition 2.46, we estimate the maximum loss incurred
by the algorithm between successive increases of Lt

min. This time, we estimate this loss from
above by 1 + lnN instead of N . For j ∈ N, let tj be the time step t at which the loss Lt

min first
reaches value j. We estimate the loss of the Randomized greedy algorithm between steps tj
and tj+1.

Note that 1 ≤ |St| ≤ N for every step t ∈ {1, . . . , T}. If the size of St shrinks by k from n′

to n′ − k at some time t ∈ (tj , tj+1], then the loss of the Randomized greedy algorithm at step
t is k/n′, since the weight of each such action is 1/n′. Clearly, k/n′ ≤ 1/n′ + 1/(n′ − 1) + · · ·+
1/(n′ − k + 1), so we obtain that the loss for the entire time interval (tj , tj+1] is at most

1/N + 1/(N − 1) + · · ·+ 1/1 ≤ 1 + lnN.

It follows that

LT
RG ≤ (1 + lnN) · LT

min + (1/N + 1/(N − 1) + · · ·+ 1/(|ST |+ 1)).

Thus, the Randomized greedy algorithm performs much better than the Greedy algorithm.
Still, the bound obtained for the Randomized greedy algorithm is a logarithmic factor of N
apart from LT

min. By analyzing the proof of Proposition 2.48, we see that the losses are greatest
when the sets St are small since the loss can be viewed as proportional to 1/|St|. A natural
idea how to overcome this issue is to assign weights to actions such that the actions that are
close to the best have large weights. This is captured by the following algorithm that is again a
modification of the Greedy algorithm. In the analysis of this algorithm, we consider the general
case with losses ℓti in [−1, 1], not only in {0, 1}.

The Polynomial weights algorithm receives the set of actionsX , the number of steps T , and
a parameter η ∈ (0, 1/2] on the input. The algorithm is initialized by setting the probabilities
p1i to 1/N and weights w1

i to 1 for every action i ∈ X . In time step t ≥ 2, we assign to each
action i ∈ X the weight wt

i = wt−1
i (1− ηℓt−1

i) and probability pti = wt
i/
∑N

j=1 w
t
j .

46 FINDING NASH EQUILIBRIA

Algorithm 2.6.3: POLYNOMIAL WEIGHTS ALGORITHM(X,T, η)

Input : A set of actions X = {1, . . . , N}, T ∈ N, and η ∈ (0, 1/2].
Output : A probability distribution pt for every time step t ∈ {1, . . . , T}.
w1

i ← 1 for every i ∈ X,
p1 ← (1/N, . . . , 1/N),
for t = 2, . . . , T

do

w
t
i ← wt−1

i (1− ηℓt−1
i),

W t ←
∑

i∈X wt
i ,

pti ← wt
i/W

t for every i ∈ X.
Output {pt : t ∈ {1, . . . , T}}.

Theorem 2.49. For η ∈ (0, 1/2], every sequence of [−1, 1]-valued loss vectors, and every k ∈ X ,
the cumulative loss LT

PW of the Polynomial weights algorithm at time T ∈ N satisfies

LT
PW ≤ LT

k + ηQT
k + lnN/η,

where QT
k =

∑T
t=1(ℓ

t
k)

2. In particular, if T ≥ 4 lnN , then by setting η =
√
lnN/T and noting

that QT
k ≤ T , we obtain

LT
PW ≤ LT

min + 2
√
T lnN.

Proof. We first show that if the algorithm has a significant loss, then the total weightW t must
drop substantially. For a time step t, we have ℓtPW =

∑N
i=1 w

t
iℓ

t
i/W

t, that is, ℓtPW is the
expected loss of the Polynomial weights algorithm at step t. The weight wt

i of every action i
is multiplied by (1 − ηℓt−1

i) at step t. Thus,W t+1 = W t −
∑N

i=1 ηw
t
iℓ

t
i = W t(1 − ηℓtPW). In

other words, the proportion of the total weightW t removed at step t is exactly η-fraction of
the expected loss ℓtPW of the algorithm. UsingW 1 = N , we obtain

WT+1 =W 1
T∏

t=1

(1− ηℓtPW) = N

T∏
t=1

(1− ηℓtPW).

Using the inequality 1− z ≤ e−z for every z ∈ R, we obtain the estimate

WT+1 ≤ N
T∏

t=1

e−ηℓtPW = Ne−η
∑T

t=1 ℓtPW .

Taking the logarithms, we obtain

lnWT+1 ≤ lnN − η
T∑

t=1

ℓtPW = lnN − ηLT
PW,

where the equality follows from the definition of ℓtPW .
For the lower bound onWT+1, we haveWT+1 ≥ wT+1

k and thus, by taking logarithms and
using the recursive definition of weights, we obtain

lnWT+1 ≥ lnwT+1
k =

T∑
t=1

ln (1− ηℓtk).

Using the inequality ln (1− z) ≥ −z− z2 for z ≤ 1/2, we bound this expression from below by

−ηLT
k − η2QT

k .

Combining the lower and the upper bound onWT+1, we have

−ηLT
k − η2Qt

k ≤ lnN − ηLT
PW,

which finishes the proof.

We assume that the number of steps T is known in advance in the second part of the
statement. If it is not, then a “guess and double” approach can be used, which results with a
bound that is worse by only a constant factor; see Exercise 2.25. A potentially better bound
LT
PW ≤ LT

min + 2
√

lnN/LT
min can be achieved by choosing η = min{

√
lnN/LT

min, 1/2}.
To answer the natural question of whether the upper bound on the external regret from

Theorem 2.49 can be improved, we show that the bound is close to optimal. First, we prove
that it is not possible to get an o(T)-bound on the regret when T is small when compared to
log2N .

Proposition 2.50. For integers N and T with T < ⌊log2N⌋, there exists a stochastic generation
of losses such that, for every online algorithm A, we have E[LT

A] ≥ T/2 and yet LT
min = 0.

Proof. First, we assume that N is a power of two. We consider the following sequence of loss
vectors. At time step 1, a random subset of N/2 actions gets a loss of 0 and the rest gets a loss
of 1. At time step t ≥ 2, a random subset of half of the actions that have received loss 0 so far
gets loss 0 and all remaining actions get loss of 1.

First, since T < log2N , the number of actions with total loss zero is at least

N −
T∑

t=1

N/2t = N(1− 1 + 2−T) = N · 2−T > 1.

Thus, there is at least one action i with the total loss LT
i = 0 and we have LT

min = 0.
Every online algorithm A incurs the expected loss of at least 1/2 in every time step t, since

the expected fraction of probability mass pti on actions that receive a loss of 0 is at most 1/2.
Consequently, LT

A ≥ T/2.
IfN is not a power of two, we restrict ourselves to a set of 2⌊log2 N⌋ actions during the entire

process, setting the losses of the remaining action to 1 at every time step. The proof above then
gives the statement.

As a second lower bound, we show that we cannot achieve o(
√
T) regret even when N = 2.

Proposition 2.51. In the case of N = 2 actions, there exists a stochastic generation of losses such
that, for every online algorithm A, we have E[LT

A − LT
min] ≥ Ω(

√
T).

Proof. Let e1 = (1, 0) and e2 = (0, 1). At each time step t ∈ {1, . . . , T}, we choose ℓt = e1 with
probability 1/2 and ℓt = e2 with probability 1/2. Then, for every distribution pt, the expected
loss at time step t is exactly 1/2. Thus, every online algorithm A has the expected loss of T/2.

LetX ∈ Z be the random variable denoting the number of e1 losses minus T/2. This means
that the number of e2 losses minus T/2 is −X . Then T/2 − LT

min = |X| and it remains to
estimate E[|X|]. The probability Pr[X = m] is(

T

T/2 +m

)
/2T ≤ O(1/

√
T),

where we used Stirling’s approximation k! = (1 + o(1))
√
2πk(k/e)k. By the Union bound,

Pr[|X| ≤ c
√
T] < 1 − c′ for some constants c, c′ > 0. In particular, we have T/2 − LT

min ≥
Ω(
√
T) with constant probability and thus E[|X|] = Ω(

√
T). The rest of the statement follows

from the linearity of the expected value.

2.6.2 No-regret dynamics
In this section, we present a method of how to use regret minimization in the theory of normal-
form games. Let G = (P,A,C) be a normal-form game of n players. It is more natural in this
setting to work with a cost function C instead of the utility function u. The setting is the same,
that is, C = (C1, . . . , Cn), where Ci : A→ [−1, 1]. The only difference is that we now want to
minimize the cost function (not maximize it as in the case of the utility function).

The game theoretic model for regret minimization is then as follows. Each player i ∈ P
plays G T -times using an online algorithm ONi that has probability distribution pti on Ai

48 FINDING NASH EQUILIBRIA

in every step t = 1, . . . , T while the other players play the joint distribution pt−i. In other
words, pti is the mixed strategy vector of player i in step t. We let ℓtONi

= Eat∼pt [Ci(a
t)] be

the loss of player i in step t. The cumulative loss of player i is then LT
ONi

=
∑T

t=1 ℓ
t
ONi

. For
atj ∈ Ai, we also have the loss Eat

−i∼pt
−i
[Ci(a

t
j ; a

t
−i)] of player i if he played the action atj at

step t. The corresponding cumulative loss is then LT
ONi,j

=
∑T

t=1 Eat
−i∼pt

−i
[Ci(a

t
j ; a

t
−i)] and

we use LT
ONi,min to denote minaj∈Ai

LT
ONi,j

.
We consider the following procedure, called No-regret dynamics, that uses algorithms with

small external regret to generate mixed strategies in a normal-form game G = (P,A,C) of n
players. We have T time steps and we proceed as follows in each time step t. First, each player
independently chooses a mixed strategy pti = (pti(ai))ai∈Ai using some algorithm with small
external regret such that actions correspond to pure strategies. Each player i ∈ P then receives
a loss vector ℓti = (ℓti(ai))ai∈Ai

, where

ℓti(ai) = Eat
−i∼pt

−i
[Ci(ai; a

t
−i)]

for the product distribution pt−i =
∏

j ̸=i p
t
j . That is, ℓti(ai) is the expected cost of the pure

strategy ai given the mixed strategies chosen by the other players.

Algorithm 2.6.4: NO-REGRET DYNAMICS(G,T, ε)

Input : A normal-form game G = (P,A,C) of n players, T ∈ N, and ε > 0.
Output : A probability distribution pti on Ai for each i ∈ P and t ∈ {1, . . . , T}.
for every step t = 1, . . . , T

do



Each player i ∈ P independently chooses a mixed strategy pti using
an algorithm with average regret at most ε, with actions
corresponding to pure strategies.
Each player i ∈ P receives a loss vector ℓti = (ℓti(ai))ai∈Ai , where
ℓti(ai)← Eat

−i∼pt
−i
[Ci(ai; a

t
−i)] for the product distribution

pt−i =
∏

j ̸=i p
t
j .

Output {pt : t ∈ {1, . . . , T}}.

For example, if every player uses the Polynomial weights algorithm, then in every time step
each player simply updates the weight of each of his pure strategies. Assuming thatm is the
maximum number of pure strategies of each player and Ci(s) ∈ [−cmax, cmax] for every player
i ∈ P and every strategy profile s, it is sufficient to choose T ≥ 4c2max lnm/ε

2.

2.6.3 New proof of the Minimax Theorem
We recall that a normal-form game G = ({1, 2}, A,C) of two players 1 and 2 is zero-sum if
the loss of one player equals the gain of the other player, that is, C1(a) + C2(a) = 0 for every
action profile a ∈ A.

Theorem 2.52. Let G = (P = {1, 2}, A,C) be a zero-sum game with the value of the game
equal to v; see Theorem 2.21 for the definition. If player i ∈ {1, 2} plays G using the online
algorithm ONi with external regret R, then his cumulative loss LT

ONi
satisfies

LT
ONi
≤ Tv +R.

Proof. By symmetry, it suffices to prove the statement for player 1. Let pt2,j be the probability
that player 2 chooses the jth action from A2 in step t. We then define the mixed strategy
vector corresponding to the observed frequencies of the actions player 2 has played as q =

(q1, . . . , q|A2|), where qj =
∑T

t=1 p
t
2,j/T . We already know from Section 2.3 that, for any mixed

strategy vector q of player 2, player 1 has some action ai such that Eb2∼q[C1(ai, b2)] ≤ v. Thus,
if player 1 always plays action ai, we obtain LT

ON1,min ≤ LT
ON1,i

≤ vT . Now, it follows from
the assumption that ON1 has external regret R that LT

ON1
≤ LT

ON1,min +R ≤ vT +R.

In particular, using a procedure with external regret O(
√
T logN) (for example, using the

Polynomial weights algorithm from Subsection 2.6.1), Theorem 2.52 implies that the average
cumulative loss LT

ONi
/T of size at most v + O(

√
logN/T). By choosing T = T (N) large

enough, we can have the loss of size at most v + ε for any given ε > 0.
Using the above setting, we now present another proof of the Minimax theorem (Theo-

rem 2.21). We recall that each zero-sum game G = (P = {1, 2}, A,C) can be represented
with an m × n matrix M = (mi,j), where A1 = {a1, . . . , am}, A2 = {b1, . . . , bn}, and
mi,j = −C1(ai, bj) = C2(ai, bj). With this representation, the expected cost C2(s) for player 2
and strategy profile s = (s1, s2) equals x⊤My, where x and y are the mixed strategy vectors
for s1 and s2, respectively. The Minimax theorem (Theorem 2.21) then states

max
x∈S1

min
y∈S2

x⊤My = min
y∈S2

max
x∈S1

x⊤My.

That is, it does not matter which player commits to his mixed strategy first, under optimal play,
the expected payoff of each player is the same in the two scenarios.

Another proof of the Minimax theorem (Theorem 2.21). First, the inequalitymaxx miny x
⊤My

≤ miny maxx x
⊤My follows easily, since if x∗ is an optimal strategy for player 1 if he plays first,

he can always choose x∗ when he plays second. In other words, it is only worse to go first.
To prove the other inequality maxx miny x

⊤My ≥ miny maxx x
⊤My, we assume that all

payoffs mi,j are between −1 and 1, otherwise we can rescale them. We choose a parameter
ε ∈ (0, 1] and run a no-regret dynamics for a sufficient number T of time steps so that both
players have expected external regret at most ε. For example, if we run the Polynomial weights
algorithm from Subsection 2.6.1, then it is sufficient to choose T ≥ 4 ln (max{m,n})/ε2, since
the regret per time step is 2

√
ln (max{m,n})/T for this algorithm.

Let p1, . . . , pT and q1, . . . , qT be the mixed strategies played by players 1 and 2, respectively,
as advised by the algorithm. The payoff vector revealed to each no-regret algorithm after
iteration t is the expected payoff of each strategy, given the mixed strategy played by the other
player in iteration t. This translates to the payoff vectorsMqt and −(pt)⊤M for players 1 and
2, respectively. We let x = 1

T

∑T
t=1 p

t be the time-averaged mixed strategy of player 1. Similarly,
we let y = 1

T

∑T
t=1 q

t be the time-averaged mixed strategy of player 2. The time-averaged
expected payoff v of player 1 is then 1

T

∑T
t=1(p

t)⊤Mqt.
For every i ∈ {1, . . . ,m}, let ei be the mixed strategy vector for the pure strategy ai, that is,

the ith coordinate of ei is 1 and all other coordinates of ei are 0. Since the external regret of
player 1 is at most ε, we have

e⊤i My =
1

T

T∑
t=1

e⊤i Mqt ≤ 1

T

T∑
t=1

(pt)⊤Mqt + ε = v + ε

for every i ∈ {1, . . . ,m}. Since every mixed strategy x of player 1 is a convex combination of
the pure strategies ei, the linearity of expectation gives x⊤My ≤ v + ε for every x ∈ S1. For
player 2, a symmetric argument that uses the fact that the regret of player 2 is also at most ε
gives (x)⊤My ≥ v − ε for every y ∈ S2.

Putting these facts together, we obtain

max
x∈S1

min
y∈S2

x⊤My ≥ min
y∈S2

(x)⊤My ≥ v − ε

≥ max
x∈S1

x⊤My − 2ε ≥ min
y∈S2

max
x∈S1

x⊤My − 2ε.

For T →∞, we get ε→ 0 and thus we obtain the desired inequality.

2.6.4 Coarse correlated equilibria
We now show a close connection between regret minimization and correlated equilibria. In
Subsection 2.5.2, we introduced correlated equilibria, which generalize the concept of Nash

50 FINDING NASH EQUILIBRIA

equilibrium and, unlike Nash equilibria, can be found efficiently using linear programming.
Here we generalize Nash equilibria even further by defining so-called coarse correlated equilib-
ria, which are even easier to compute than correlated equilibria. we show that in order to find
a coarse correlated equilibrium of a normal-form game, it is sufficient to use one of the simple
regret-minimizing algorithms.

Let G = (P,A,C) be a normal-form game of n players. We recall that a probability distri-
bution p on A is a correlated equilibrium in G if∑

a−i∈A−i

Ci(ai; a−i)p(ai; a−i) ≤
∑

a−i∈A−i

Ci(a
′
i; a−i)p(ai; a−i)

for every player i ∈ P and all pure strategies ai, a′i ∈ Ai. That is, for every player, it is a best
response to play the suggested action by a correlating device, provided that the other players
also do not deviate. Thus, one may express the correlated equilibrium condition as

Ea∼p[Ci(a) | ai] ≤ Ea∼p[Ci(a
′
i; a−i) | ai]

for every i ∈ P and all ai, a′i ∈ Ai.
We would like to enlarge the set of correlated equilibria to obtain an even more tractable

concept. This is done by considering equilibrium that protects against unconditional unilateral
deviations, as opposed to the conditional unilateral deviations addressed in the definition of
correlated equilibria.

Definition 2.53 (Coarse correlated equilibrium). For a normal-form game G = (P,A,C) of n
players, a probability distribution p on A is a coarse correlated equilibrium in G if∑

a∈A

Ci(a)p(a) ≤
∑
a∈A

Ci(a
′
i; a−i)p(a)

for every player i ∈ P and every a′i ∈ Ai.

In terms of expected value, a coarse correlated equilibrium can be expressed as

Ea∼p[Ci(a)] ≤ Ea∼p[Ci(a
′
i; a−i)]

for every i ∈ P and each a′i ∈ Ai. The difference between a coarse correlated equilibrium and
a correlated equilibrium is that a coarse correlated equilibrium only requires that following
your suggested action ai when a is drawn from p is only a best response in expectation before
you see ai. This makes sense if you have to commit to following your suggested action or not
upfront, and do not have the opportunity to deviate after seeing it.

It follows from this definition that every correlated equilibrium is a coarse correlated equi-
librium; see Exercise 2.27. Thus, in particular, every normal-form game has a coarse correlated
equilibrium and we can find one in polynomial time using linear programming. The hierarchy
of some of the discussed equilibrium notions is depicted in Figure 2.4.

We show that strategy profiles in regret-minimizing algorithms converge to coarse correlated
equilibria. First, we need to define an approximate version of coarse correlated equilibria. For
ε ≥ 0, an ε-coarse correlated equilibrium in G is a probability distribution p on A such that

∑
a∈A

Ci(a)p(a) ≤

(∑
a∈A

Ci(a
′
i; a−i)p(a)

)
+ ε

for every player i ∈ P and every a′i ∈ Ai. In other words, p must satisfy Ea∼p[Ci(a)] ≤
Ea∼p[Ci(a

′
i; a−i)] + ε. Note that, for ε = 0, we obtain exactly coarse correlated equilibria.

The next result shows that the time-averaged history of joint play under no-regret dynamics
converges to the set of coarse correlated equilibria. In particular, it implies that we can use
natural learning dynamics to find ε-coarse correlated equilibria.

Coarse correlated equilibria,

Correlated equilibria,

Mixed Nash equilibria,

Pure Nash equilibria,

CCE

CE

MNE

PNE
not always exist

always exist, hard to compute

easy to compute

even easier to compute

Figure 2.4: A hierarchy of variants of Nash equilibria.

Theorem 2.54. Let G = (P,A,C) be a normal-form game of n players, let ε > 0 be a given
parameter, and T = T (ε) ∈ N be a given number of steps. Assume that after T time steps of
the No-regret dynamics, each player i ∈ P has time-averaged expected regret at most ε. Let
pt =

∏n
i=1 p

t
i denote the outcome probability distribution at time step t and let p = 1

T

∑T
t=1 p

t

be the time-averaged history of these distributions. Then p is an ε-coarse correlated equilibrium,
that is,

Ea∼p[Ci(a)] ≤ Ea∼p[Ci(a
′
i; a−i)] + ε

for every player i ∈ P and a′i ∈ Ai.

Proof. By the definition of p, we have, for every player i ∈ P and a′i ∈ Ai,

Ea∼p[Ci(a)] =
1

T

T∑
t=1

Ea∼pt [Ci(a)]

and

Ea∼p[Ci(a
′
i; a−i)] =

1

T

T∑
t=1

Ea∼pt [Ci(a
′
i; a−i)].

The right-hand sides of both equalities are the time-averaged expected costs of player i when
playing according to his algorithm with small external regret and when playing the fixed action
a′i every iteration, respectively. Since every player has regret at most ε, we obtain

1

T

T∑
t=1

Ea∼pt [Ci(a)] ≤
1

T

T∑
t=1

Ea∼pt [Ci(a
′
i; a−i)] + ε.

This verifies the ε-coarse correlated equilibrium condition for p = 1
T

∑T
t=1 pt.

2.6.5 Swap regret and correlated equilibria
External regret uses the fixed comparison class AX , but we can also study comparison classes
that depend on the actions of our online algorithm A. We consider modification rules that
modify action selected by A and thus produce an alternative strategy which we will want to
compete against. So-called internal regret, deals with the situation when one is allowed to
change the online action sequence by changing every occurrence of action i by a different
action j. In swap regret, we allow a more general modification rule by allowing any mapping
fromX toX . We also present a simple way to efficiently convert any external regret-minimizing
algorithm into an algorithm that minimizes swap regret with only a factor N increase in the
regret term.

First, we state the definitions of internal and swap regret more formally. Again, there are N
available actions X = {1, . . . , N} and at each time step t ∈ {1, . . . , T} the online algorithm A

52 FINDING NASH EQUILIBRIA

selects a probability distribution pt = (pt1, . . . , p
t
N) over X . After the distribution pt is chosen

at time step t, the adversary chooses a loss vector ℓt = (ℓt1, . . . , ℓ
t
N) ∈ [−1, 1]N , where the

number ℓti is the loss of action i in time t. We also recall that LT
A =

∑T
t=1 ℓ

t
A denotes the loss

of A, where ℓtA =
∑N

i=1 p
t
iℓ

t
i is the loss experienced by A in time step t.

A modification rule F is a function of the type X → X . The function F outputs a possibly
different action than the current one selected by A. Given a sequence (pt)Tt=1 of the probability
distributions used by A and a modification rule F , we define amodified sequence (f t)Tt=1 =
(F (pt))Tt=1, where f t = (f t1, . . . , f

t
N) and f ti =

∑
j : F (j)=i p

t
j . Note that each term of the

modified sequence is a probability distribution. The loss of the modified sequence is LT
A,F =∑T

t=1

∑N
i=1 f

t
i ℓ

t
i.

Let F be a finite set of modification rules. Given a sequence ℓt of loss vectors, the regret of
A with respect to modification rules from F is

RT
A,F = max

F∈F

{
LT
A − LT

A,F

}
.

In particular, for a set Fex = {Fi : i ∈ X} of N modification rules Fi, where Fi always
outputs action i, we obtain exactly the external regret setting with the external regret of A equal
to

RT
A,Fex = max

F∈Fex

{
LT
A − LT

A,F

}
= max

j∈X

{
T∑

t=1

((∑
i∈X

ptiℓ
t
i

)
− ℓtj

)}
.

In the internal regret setting, we consider the set F in = {Fi,j : (i, j) ∈ X × X, i ̸= j} of
N(N − 1) modification rules Fi,j , where, for every time step t, Fi,j(i) = j and Fi,j(i

′) = i′

for each i′ ̸= i. That is, the modification rule Fi,j always keeps all actions besides i, which is
changed to a different action j. The internal regret of A is then

RT
A,Fin = max

F∈Fin

{
LT
A − LT

A,F

}
= max

i,j∈X

{
T∑

t=1

pti(ℓ
t
i − ℓtj)

}
.

In a more general swap regret setting, we work with the set Fsw of all NN modification
rules F : X → X , where a function F swaps the current online action i with F (i) (we might
have i = F (i)). Then the swap regret of A is

RT
A,Fsw = max

F∈Fsw

{
LT
A − LT

A,F

}
=

N∑
i=1

max
j∈X

{
T∑

t=1

pti(ℓ
t
i − ℓtj)

}
.

That is, in swap regret, we want the best performance with respect to a fixed modification rule,
not with respect to a fixed action as in the case of the external regret. Since Fex,F in ⊆ Fsw,
we immediately have RT

A,Fex , RT
A,Fin ≤ RT

A,Fsw for every A.
We now show a black-box reduction that shows how to use an algorithm with a good bound

on external regret to produce an algorithm that achieves good swap regret. An R-external regret
algorithm A guarantees that for every sequence (ℓt)Tt=1 of T loss vectors and for every action
j ∈ X , we have

LT
A =

T∑
t=1

ℓtA ≤
T∑

t=1

ℓtj +R = LT
j +R.

Theorem 2.55. For every R-external regret algorithm A, there exists an online algorithmM =
M(A) such that, for every function F : X → X and T ∈ N, we have

LT
M ≤ LT

M,F +NR.

That is, the swap regret ofM is at most NR.

Proof. Assume that A1, . . . , AN are copies of the R-external regret algorithm A. We construct
the master algorithmM =M(A) by combining these copies of A. In every time step t, each

Ai outputs a probability distribution qti = (qti,1, . . . , q
t
i,N), where qti,j is the fraction Ai assigns

to an action j ∈ X . We construct a single probability distribution pt = (pt1, . . . , p
t
N) by letting

ptj =
∑N

i=1 p
t
iq

t
i,j for every j ∈ X . That is, (pt)⊤ = (pt)⊤Qt, where Qt is an N ×N matrix with

(Qt)i,j = qti,j . It can be shown that such a distribution pt exists and is efficiently computable as
if we interpretQt as the transition matrix of a Markov chain, then pt is its stationary distribution.
This choice of pt guarantees that we can consider action selection in two equivalent ways. An
action j ∈ X is either selected with a probability ptj or we first select an algorithm Ai with
probability pti and then use the algorithm Ai to select j with probability qti,j .

When the adversary returns the loss vector ℓt, we give, for each i ∈ X , a loss vector ptiℓt to
the algorithm Ai. The algorithm Ai then experiences loss (ptiℓt) · qti = pti(q

t
i · ℓt) at time step t

(we recall that qti is a vector). Now, Ai is an R-external regret algorithm, so, for every action
j ∈ X , we have

T∑
t=1

pti(q
t
i · ℓt) ≤

T∑
t=1

ptiℓ
t
j +R. (2.8)

Summing the losses of all algorithms Ai at time step t over i ∈ X , we get the total loss∑N
i=1 p

t
i(q

t
i · ℓt) = (pt)⊤Qtℓt of all algorithms Ai at time step t. By the choice of pt, we have

(pt)⊤ = (pt)⊤Qt. Thus, the total loss of all algorithms Ai at time step t equals pt · ℓt, the actual
loss ofM at time step t.

Therefore, summing (2.8) over all actions i ∈ X , the left-hand side equals LT
M . The right-

hand side of (2.8) is true for every action j ∈ X , so we obtain, for every function F : X → X ,

LT
M ≤

N∑
i=1

T∑
t=1

ptiℓ
t
F (i) +NR = LT

M,F +NR.

In particular, Theorem 2.55 together with Theorem 2.49 yield the following corollary.

Corollary 2.56. There exists an online algorithm A such that, for every function F : X → X
and T ∈ N, we have

LT
A ≤ LT

A,F +O(N
√
T logN).

That is, the swap regret of A is at most O(N
√
T logN).

In Theorem 2.54, we have seen that online algorithms with external regret o(T) can be
used in so-called No-regret dynamics to converge to a coarse correlated equilibrium of a given
normal-form game G. Similarly, we show that a No-swap-regret dynamics converges to a
correlated equilibrium of G. This dynamics is the same as for external regret, we just use an
online algorithm with small swap regret from Corollary 2.56 instead of the Polynomial weights
algorithm.

Algorithm 2.6.5: NO-SWAP-REGRET DYNAMICS(G,T, ε)

Input : A normal-form game G = (P,A,C) of n players, T ∈ N and ε > 0.
Output : A probability distribution pti on Ai for each i ∈ P and t ∈ {1, . . . , T}.
for every step t = 1, . . . , T

do



Each player i ∈ P independently chooses a mixed strategy pti using
an algorithm with swap regret at most ε, with actions corresponding to
pure strategies.
Each player i ∈ P receives a loss vector ℓti = (ℓti(ai))ai∈Ai

, where
ℓti(ai)← Eat

−i∼pt
−i
[Ci(ai; a

t
−i)] for the product distribution

pt−i =
∏

j ̸=i p
t
j .

Output {pt : t ∈ {1, . . . , T}}.

54 FINDING NASH EQUILIBRIA

The connection between correlated equilibria and no-swap-regret dynamics is then the
same as the connection between coarse correlated equilibria and the no-regret dynamics.

Theorem 2.57. Let G = (P,A,C) be a normal-form game of n players, let ε > 0 be a given
parameter, and T = T (ε) ∈ N be a given number of steps. Assume that after T time steps of
the No-swap-regret dynamics, each player i ∈ P has time-averaged expected swap regret at
most ε. Let pt =

∏n
i=1 p

t
i denote the outcome probability distribution at time step t and let

p = 1
T

∑T
t=1 p

t be the time-averaged history of these distributions. Then p is an ε-correlated
equilibrium, that is,

Ea∼p[Ci(a)] ≤ Ea∼p[Ci(F (ai); a−i)] + ε

for every player i ∈ P and each modification rule F : Ai → Ai.

We note that a probability distribution p is a correlated equilibrium, that is, Ea∼p[Ci(a) |
ai] ≤ Ea∼p[Ci(a

′
i; a−i) | ai] for every i ∈ P and all ai, a′i ∈ Ai, if and only if Ea∼p[Ci(a)] ≤

Ea∼p[Ci(F (ai); a−i)] for every player i ∈ P and each modification rule F : Ai → Ai; see
Exercise 2.31.

Proof. By the definition of p, we have, for every player i ∈ P and every modification rule
F : Ai → Ai,

Ea∼p[Ci(a)] =
1

T

T∑
t=1

Ea∼pt [Ci(a)]

and

Ea∼p[Ci(F (ai); a−i)] =
1

T

T∑
t=1

Ea∼pt [Ci(F (ai); a−i)].

The right-hand sides of both qualities are the time-averaged expected costs of player i when
playing according to his algorithm with small swap regret and when playing the action F (ai)
instead of ai every iteration, respectively. Since every player has average swap regret at most ε,
we obtain

1

T

T∑
t=1

Ea∼pt [Ci(a)] ≤
1

T

T∑
t=1

Ea∼pt [Ci(F (ai); a−i)] + ε.

This verifies the ε-correlated equilibrium condition for p = 1
T

∑T
t=1 p

t.

Finally, we note that we could also replace swap regret with the internal regret in Theo-
rem 2.57 and p would still be a ε-correlated equilibrium.

2.6.6 Exercises
Exercise 2.25. In this exercise, we get rid of the assumption in the second part of the statement
of Theorem 2.49, where we assume the number of steps T is given in advance.

Let A be the Polynomial weights algorithm with parameter η ∈ (0, 1/2] and with external
regret at most α/η+βηT for some constants α, β (that may depend on the numberN of actions).
We showed that choosing η =

√
α/(Tβ) minimizes the bound. Modify this algorithm so that we

obtain an external regret bound that is at most O(1)-times larger than the original bound for
any T . In particular, you cannot run A with a parameter η that depends on T .

Hint: Partition the set {1, . . . , T} into suitable intervals Im for m = 0, 1, 2, . . . and run A
with a suitable parameter ηm in every step from Im. [3]

Exercise 2.26. Consider the following setting in which the agent A tries to learn the setup in an
adversary environment while using information given to him by a set S0 ofN experts. The setting
proceeds in a sequence of steps t = 1, . . . , T . In every step t, the environment picks yt ∈ {0, 1},
which is unknown toA and to the experts, and each expert i gives a recommendation fi,t ∈ {0, 1}
to A. The agent A then makes prediction zt ∈ {0, 1} based on the experts’ advice and then sees
yt. The goal of A is to minimize the numberMT (A) of steps t in which zt ̸= yt.

(a) Assume that, in each step t, the agent A selects zt to be the majority vote of all experts from
St−1 and, after seeing yt, he lets St be the number of agents i ∈ St−1 with the right guess
fi,t = zt. Also, assume that there is a perfect expert who always guesses right. Prove that
thenMT (A) ≤ log2N . [1]

(b) Modify the above algorithm of the agent so thatMT (A) ≤ O((m+ 1) log2N) when the
best expert makesm ≥ 0 mistakes. [2]

Exercise 2.27. Show formally that every correlated equilibrium is a coarse correlated equilib-
rium. [1]

Exercise 2.28. Show that the swap regret is at most N times larger than the internal regret. [2]

Exercise 2.29. Show an example with N = 3 where the external regret is zero and the swap
regret goes to infinity with T . [3]

Clarification: you need to choose only a sequence of actions a1, . . . , aT , at ∈ X = {1, 2, 3},
and a loss sequence ℓ1a, . . . , ℓTa for every a ∈ X .

Exercise 2.30. Let G = (P = {1, 2}, A, u) be a normal-form game of two players with A1 =
{a, b, c} a A2 = {d, e, f} and with the utility function from Table 2.16.

d e f

a (1,1) (-1,-1) (0,0)

b (-1,-1) (1,1) (0,0)

c (0,0) (0,0) (-1.1,-1.1)

Table 2.16: Thee game from Exercise 2.30.

Show that the probability distribution p on A with p(a, d) = p(b, e) = p(c, f) = 1/3 is a
coarse correlated equilibrium in G (CCE), but it is not a correlated equilibrium in G (CE). [2]

Exercise 2.31. Show that a probability distribution p is a correlated equilibrium, that is, we
have Ea∼p[Ci(a) | ai] ≤ Ea∼p[Ci(a

′
i; a−i) | ai] for every i ∈ P and all ai, a′i ∈ Ai, if and

only if Ea∼p[Ci(a)] ≤ Ea∼p[Ci(F (ai); a−i)] for every player i ∈ P and each modification rule
F : Ai → Ai [3]

2.7 Games in extensive form
In normal-form games, players act simultaneously resulting in a static description of an in-
teractive situation. Here, we describe a different representation of games which provides a
dynamic description where players act sequentially. For a subclass of such games, we show
how to efficiently compute Nash equilibria using linear programming.

Extensive game33 consists of a directed tree where nodes represent game states. The tree
encodes the full history of play. The game starts at the root of the tree and ends at a leaf, where
each player receives a payoff. A tree edge corresponds to one player moving from one state to a
different state of the game. Each node that is not a leaf is called a decision node. Moves a player
can make in a given state are assigned to the outgoing edges of the corresponding decision
node.

For example, the extensive form of Chess consists of a tree whose root corresponds to the
standard initial position of the chessboard. Each decision node represents a position on the
chessboard and its outgoing edges correspond to possible moves in such a position. Nodes of
this tree on odd levels are positions where the white player is on the move and the nodes on
even levels are positions where the black player is on the move.

If players always know the node they are in (that is, in every node they know the history
of the play that led to it), then we have a perfect-information game34. For example, Chess is a
33 Hra v rozšířené formě či v explicitní formě.
34 Hry s dokonalou informací.

56 FINDING NASH EQUILIBRIA

perfect-information game. However, in general, there are many situations where the players
have only partial or no knowledge of the action taken by other players or even by themselves.
Consider, for example, the game of Poker. Such imperfect-information games35 can be modeled
if we extend the definition of extensive games by partitioning decision nodes into information
sets where all nodes in an information set belong to the same player, and have the same moves.
The interpretation is that when a player makes a move, he only knows the information set but
not the particular node he is at. Thus, perfect-information games are a special case, where all
information sets are singletons. For player i, we let Hi be the set of information sets of i and,
for an information set h ∈ Hi, we let Ch be the set of moves at h.

Example 2.58 (A game in extensive form). An example of an imperfect-information game in
extensive form; see Figure 2.5. Player 1 has two information sets. Note that player 1 does not
know whether player 2 played action ℓ or r if he is in a node from the bottom information set.

1

1

2

L R

` r

S T S T

(3, 3)

(6, 1)(5, 6)(0, 3)(2, 2)

(a) (b)

(`) (r)
(L, S) (2,2) (5,6)
(L, T) (0,3) (6,1)
(R,S) (3,3) (3,3)
(R, T) (3,3) (3,3)

Figure 2.5: (a) An example of an extensive game G. The decision nodes are green for player 1
and red for player 2. The leaves are black and the information sets are represented by dotted
ovals. (b) The normal-form game of G.

Example 2.59 (Prisoner’s dilemma in extensive form). An equivalent imperfect-information
game in extensive form to Prisoner’s dilemma is shown in Figure 2.6. Note that we could have
chosen to make player 2 choose first and player 1 choose second.

1

2

S T

S T S T

(−2,−2)(0,−3)(−3, 0)(−1,−1)

(a) (b)

T S
T (-2,-2) (0,-3)
S (-3,0) (-1,-1)

Figure 2.6: (a) An extensive form of Prisoner’s dilemma. (b) Its normal form.

It should be obvious from Example 2.59 that every normal-form game can be trivially
transformed into an equivalent imperfect-information game in extensive form. Note that this
transformation is not one-to-one, as mentioned in Example 2.59.
35 Hry s nedokonalou informací.

2.7.1 Strategies and equilibria in extensive games
A pure strategy for player i is a complete specification of which deterministic action to take at
every information set belonging to that player. Formally, a pure strategy of player i is a vector
(ch)h∈Hi

from the Cartesian product
∏

h∈Hi
Ch.

Using pure strategies, we can transform an extensive game G into a normal-form game
G′ simply by tabulating all pure strategies of the players and recording the resulting expected
payoffs. Then, it is natural to define mixed strategies of G as the mixed strategies of G′. In the
same way, we can also define the set of Nash equilibria of G.

We can also define a behavioral strategy36 of player i as a probability distribution on Ch

for each h ∈ Hi. That is, a behavioral strategy is a strategy in which each player’s probabilistic
choice at each information set is made independently of his choices at other information
sets. So a behavioral strategy is a vector of probability distributions while a mixed strategy is a
probability distribution over vectors. For example, in mixed strategy, a player plays the same
move whenever he encounters an information set h while in behavioral strategy, a player might
play different moves in different encounters of h.

Example 2.60. Consider the information-perfect game from Figure 2.7. Then, a strategy of
player 1 that selects A with probability 1

2 and G with probability 1
3 is a behavioral strategy. On

the other hand, the mixed strategy (35 (A,G),
2
5 (B,H)) is not a behavioral strategy for player 1

as the choices made by him at the two nodes are not independent.

1

2

A B

C D

G H
(5, 5)

(1, 10)(2, 10)

(8, 3)(3, 8)
1

2

E F

(a) (b)

(C,E) (C,F) (D,E) (D,F)
(A,G) (3,8) (3,8) (8,3) (8,3)
(A,H) (3,8) (3,8) (8,3) (8,3)
(B,G) (5,5) (2,10) (5,5) (2,10)
(B,H) (5,5) (1,0) (5,5) (1,0)

Figure 2.7: A perfect-information game in extensive form.

We note that some games, such as Russian roulette contain certain randomness where, at
some decision nodes, the next move is determined at random. To model such situations, we
use an additional player, numbered 0, who receives no payoff and who plays according to a
known behavior strategy β0. His moves are then called chance moves.

Example 2.61 (Russian roulette). In Russian roulette, we have two players with a six-shot
revolver containing a single bullet. Each player has two moves: shoot or give up. If a player gives
up, he loses the game immediately. If he shoots, then he either dies or survives, in which case
the other player is on a turn. Consider that player 1 has payoffs (10, 2, 1) for (Win, Loss, Death)
and that player 2 has payoffs (10, 0, 0). The extensive form of this game is depicted in Figure 2.8.
Note that the chance moves that correspond to occurrences of the bullet are simulated using the
additional player 0.

In general, the expressive power of behavioral strategies and the expressive power of mixed
strategies are incomparable as in some games there are outcomes that can be achieved via
mixed strategies and not by behavioral strategies and in some games it is the other way around.
However, there is a large class of extensive games for which the two definitions coincide. This
36 Behaviorální strategie.

58 FINDING NASH EQUILIBRIA

(2, 10)

(1, 10)

(10, 0)

0

0

1/5

1/4

1/3

(10, 0)

(1, 10)

(10, 0)

(1, 10)

(10, 0)

1

1

1

2

2

2

0

0

0

1/6

1/2

(2, 10)

(10, 0)

(2, 10)

(10, 0)

G

G

G

G

G

G

S

S

S

S

S

S

Figure 2.8: An extensive form of Russian roulette using chance moves. The probability of each
chance move corresponding to the revolver shooting is denoted blue and the corresponding
edge is also blue. The moves of players 1 and 2 are “shoot” (S, black) or “give up” (G, orange).

is the class of games of perfect recall37 where no player forgets any information he knew about
moves made so far; in particular, he remembers precisely all his own moves. To define this
class formally, we introduce some auxiliary terms.

A sequence σi(t) of moves of player i to a node t is the sequence of his moves (disregarding
the moves of other players) on the unique path from the root of the tree to t. The empty
sequence is denoted ∅. Player i has perfect recall if and only if, for every h ∈ Hi and any nodes
t, t′ ∈ h, we have σi(t) = σi(t

′). In such case, we use σh to denote the unique sequence leading
to any node t in h. A game G is a game of perfect recall if every player has perfect recall in
G. That is, each player remembers what he did in prior moves, and each player remembers
everything that he knew before. Note that every perfect-information game is a game of perfect
recall.

The following result states that in games of perfect recall, mixed strategies and behavioral
strategies are equivalent. Here, two strategies are equivalent if they reach any node of the tree
with the same probabilities, given any strategy (mixed or behavioral) of the other players.

Theorem 2.62 (Kuhn’s theorem, 1953). In a game of perfect recall, any mixed strategy of a given
player can be replaced by an equivalent behavioral strategy, and any behavioral strategy can be
replaced by an equivalent mixed strategy.

It follows from Theorem 2.62 that the set of Nash equilibria does not change if we restrict
ourselves to behavioral strategies in games of perfect recall. In general imperfect-information
games, mixed and behavioral strategies yield incomparable sets of Nash equilibria.

From now on, we consider only games of perfect recall.

2.7.2 Sequence form
Since every extensive game G can be converted into an equivalent normal-form game G′,
we can find a Nash equilibrium of G by converting it into G′ and applying, for example, the
Lemke–Howson algorithm to G′. However, this is inefficient, as the number of actions in G′ is
37 Hry s dokonalou pamětí.

exponential in the size of G. To avoid this problem, we will work directly with G using so-called
sequence form38.

The sequence form of an imperfect-information game G is a 4-tuple (P, S, u, C) where P is
a set of n players, S = (S1, . . . , Sn), where Si is a set of sequences of player i, u = (u1, . . . , un),
where ui : S → R is the payoff function of player i, and C = (C1, . . . , Cn) is a set of linear
constraints on the realization probabilities of player i. Now, we will define all these terms.

Any sequence σ from Si is either the empty sequence ∅ or it is uniquely determined by the
last move c at the information set h, that is, σ = σhc. Thus, Si = {∅} ∪ {σhc : h ∈ Hi, c ∈ Ch}.
It follows that |Si| = 1 +

∑
h∈Hi

|Ch|, which is linear in the size of the tree of G.
For player i and sequences σ = (σ1, . . . , σn) ∈ S, the payoff ui(σ) equals ui(ℓ) where ℓ is

the leaf that would be reached if each player j played his sequence σj . Otherwise, ui(σ) = 0.
Similarly as in the normal-form games, we can represent the payoffs u using a table with
entries indexed by elements from S. Note that this table is sparse as most entries are 0; see
Example 2.64.

We still do not have everything we need to describe our game since a player cannot choose
sequences as actions because other players might not play in a way that would allow him to fol-
low to a leaf. What we want is for players to select behavioral strategies since, by Theorem 2.62,
equilibrium will be expressible using behavioral strategies. However, we cannot work with
behavioral strategies directly as then the resulting optimization problems would be computa-
tionally difficult. Instead, we develop an alternate concept of a realization plan, which is the
probability that a sequence arises under a given behavioral strategy. The realization plan39 of a
behavioral strategy βi for player i is a mapping x : Si → [0, 1] defined as x(σi) =

∏
c∈σi

βi(c).
The value x(σi) is called the realization probability.

There is an equivalent definition of the realization plan that is more convenient, as it
involves a set of linear equations, although it is probably not so transparent. A realization plan
for player i is a mapping x : Si → [0, 1] satisfying the following two constraints:

1. x(∅) = 1, and

2.
∑

c∈Ch
x(σhc) = x(σh) for every h ∈ Hi.

We let Ci be the set of constraints of the second type. This finishes the definition of the sequence
form of G.

Note that we can uniquely recover behavioral strategy βi from a realization plan x for player
i in all relevant information sets, that is, sets h ∈ Hi with x(σh) > 0. For each such h ∈ Hi and
c ∈ Ch, we set βi(h, c) = x(σhc)

x(σh)
. The irrelevant information sets (h ∈ Hi with x(σh) = 0) are

nodes that can never be reached in a play due to the player’s own previous decisions.

2.7.3 Computing equilibria in two-player extensive games
We now show how to use the sequence form to compute equilibria much more efficiently than
using the induced normal-form game. We consider only games of two players 1 and 2 with a
possible chance player 0.

Consider realization plans as vectors x = (xσ)σ∈S1
∈ R|S1| and y = (yτ)τ∈S2

∈ R|S2|. Then,
the linear constraints from the definition of sequence form can be written as

Ex = e, x ≥ 0 and Fy = f, y ≥ 0

where the constraint matrices E and F have 1 + |H1| and 1 + |H2| rows, respectively, with
first row of Ex = e and Fy = f corresponding to x(∅) = 1 for E and y(∅) = 1 for F ; see
Example 2.63. The other rows of Ex = e are the equations −x(σh) +

∑
c∈Ch

x(σhc) = 0 for
every h ∈ H1. For Fy = f , we have the rows −y(σh) +

∑
c∈Ch

y(σhc) = 0 for every h ∈ H2.
The vectors e and f also have 1 + |H1| and 1 + |H2| rows, respectively.
38 Reprezentace posloupnostmi.
39 Realizační plán.

60 FINDING NASH EQUILIBRIA

Example 2.63. Consider the extensive game from Example 2.58. The sets of sequences in this
game are S1 = {∅, L,R, LS,LT} and S2 = {∅, ℓ, r}. The corresponding constraint matrices E
and F and the right hand side vectors e and f are

E =

 1
−1 1 1

−1 1 1

 , e =

1
0
0

 , F =

(
1
−1 1 1

)
, f =

(
1
0

)
.

The sequence payoff matrices A and B are |S1| × |S2|matrices where

Aσ,τ =
∑

leaves t : σ1(t)=σ,σ2(t)=τ

u1(t)β0(σ0(t)) and Bσ,τ =
∑

leaves t : σ1(t)=σ,σ2(t)=τ

u2(t)β0(σ0(t))

for all σ ∈ S1 and τ ∈ S2. These two matrices are sparse as they have nonzero entries only
for pairs (σ, τ) that lead to a leaf. The expected payoffs of players 1 and 2 are then x⊤Ay and
x⊤By, respectively.

Example 2.64. Consider the extensive game from Example 2.58 and see Figure 2.9 for its sequence
form payoff matrices with omitted 0 entries. Note that the matrices are sparse and their size is
linear with respect to the size of the tree of the game.

1

1

2

L R

` r

S T S T

(3, 3)

(6, 1)(5, 6)(0, 3)(2, 2)

(a) (b)

A =

3
2 5
0 6


∅ ` r

∅
L
R
LS
LT

B =

3
2 6
3 1


∅ ` r

∅
L
R
LS
LT

Figure 2.9: (a) An extensive game from Example 2.58. (b) Its sequence form payoff matrices.

We first show how to compute best responses. For a fixed realization plan y of player 2, a
best response of player 1 is a realization plan x that maximizes the expected payoff. Thus, x is
a solution to the following linear program P

maxx⊤Ay subject to
Ex = e,

x ≥ 0.

The dual D of P uses unconstrained variables u and is of the form

min e⊤u subject to

E⊤u ≥ Ay.

Analogous linear programs can be used to compute best responses of player 2.
Assume now that our game is zero sum, that is, B = −A. Then, using the Duality Theorem

(Theorem 2.22) to these linear programs, similarly as we did in Section 2.3, will give a linear
program for finding equilibrium in a given zero-sum game. The reason is that player 2 wants
to minimize x⊤Ay, which by duality equals e⊤y if player 1 maximizes his payoff x⊤Ay. It is
important that the constraints in the program D remain linear even if y is treated as a variable.

Theorem 2.65. The equilibria of a two-player zero-sum game in an extensive form of perfect
recall are the solutions to the following linear program:

min
u,y

e⊤u subject to Fy = f,E⊤u−Ay ≥ 0, y ≥ 0.

The dual of this program has variables x and v and is of the form

max
v,x

f⊤v subject to Ex = e, F⊤v −A⊤x ≤ 0, x ≥ 0.

This linear program then finds realization plan x with payoff f⊤v for player 1.
The number of nonzero entries in matrices E,F.A,B is linear in the size of the game tree,

thus the linear program from Theorem 2.65 can be solved in polynomial time with respect to
the size of the given extensive game. This is an exponential improvement over trying to solve
the induced normal-form game.

We can proceed similarly for general extensive games of 2 players with perfect recall. How-
ever, in the end we do not obtain a linear program, but a so-called linear complementarity
problem.

Again, the best response of player 1 to a fixed realization plan y is given by the linear
program P . By the Duality Theorem (Theorem 2.22) a feasible solution x to P is optimal
if and only if there is a solution u of D satisfying E⊤u ≥ Ay and x⊤(Ay) = e⊤u. That is,
x⊤(Ay) = (x⊤E⊤)u as Ex = e. Equivalently, x⊤(E⊤u − Ay) = 0. Since the vectors x and
E⊤u−Ay are non-negative, this equality states that they are complementary, meaning that
they cannot both have positive components in the same position. This characterization of an
optimal primal-dual pair of feasible solutions is known as complementary slackness in linear
programming. For player 2, we analogously derive the equality y⊤(F⊤v −B⊤x) = 0.

Considering these conditions for both players, we obtain the following result.

Theorem 2.66. A pair (x, y) of realization plans in a 2-player game in the extensive form of
perfect recall is equilibrium if and only if there are vectors u and v such that the following
conditions are satisfied:

x⊤(E⊤u−Ay) = 0, y⊤(F⊤v −B⊤x) = 0,

Ex = e, x ≥ 0, Fy = f, y ≥ 0,

E⊤u−Ay ≥ 0, F⊤v −B⊤x ≥ 0.

Note that some of the conditions are not linear and thus we do not have a linear program.
However, this is the so-called linear complementarity problem, where we are given a matrix
M and a vector q and we want to find vectors z and w such that w, z ≥ 0, z⊤w = 0, and w =
Mz + q. The perhaps most well-known method for solving linear complementarity problems
is Lemke’s algorithm, which has exponential running time in the worst case, similarly as the
Lemke–Howson algorithm. Nevertheless, it is exponentially faster to run Lemke’s algorithm on a
game in a sequence form than to run the Lemke–Howson algorithm on its induced normal-form
game.

2.7.4 Exercises
Exercise 2.32. Construct an extensive form of the Game of chicken from Table 2.17 and write
its sequence form and the linear complementarity problem for finding Nash equilibria in this
game. [2]

Exercise 2.33. Construct an extensive form of the Rock-Paper-Scissors game from Table 2.18 and
write its sequence form and the linear program for finding Nash equilibria in this game. [2]

62 FINDING NASH EQUILIBRIA

Turn Straight

Turn (0,0) (-1,1)

Straight (1,-1) (-10,-10)

Table 2.17: A normal form of the Game of chicken.

Rock Paper Scissors

Rock (0,0) (-1,1) (1,-1)

Paper (1,-1) (0,0) (-1,1)

Scissors (-1,1) (1,-1) (0,0)

Table 2.18: A normal form of the game Rock-paper-scissors.

3 Mechanism design

Contents of this chapter

3.1 Mechanism design basics . . . 64
3.1.1 Vickrey’s auction 64
3.1.2 Myerson’s lemma . . . 66
3.1.3 Some applications of

Myerson’s lemma . . . 69
3.1.4 Knapsack auctions . . 71
3.1.5 Exercises 73

3.2 Revenue-Maximizing Auctions 73
3.2.1 Maximizing expected

revenue 75

3.2.2 Maximizing expected
virtual social surplus . 76

3.2.3 The Bulow–Klemperer
Theorem 77

3.2.4 Exercises 78
3.3 Multi-parameter mechanism

design 79
3.3.1 The Revelation Principle 82
3.3.2 Exercises 82

This chapter is devoted to mechanism design1, a subarea of game theory that deals with
designing games toward desired objectives. Unlike the previous chapter, where we adopted a
somewhat passive perspective by assuming the rules of the game to be fixed and then analyzed
the strategic outcomes of this game, we now try to design the rules of the game so that strategic
behavior by participants leads to a desirable outcome.

First, in Section 3.1, we consider single-item auctions and identify an auction mechanism
called Vickrey auction with great properties. These properties will serve as a gold standard
against which we will evaluate our solutions. We then extend these desired properties to a
more general setting of single-parameter environments using so-calledMyerson’s lemma and we
present some applications to illustrate the strength of this famous result. We also show, using
Knapsack auctions, that we cannot keep all the desired properties that we had for single-item
auctions in single-parameter environments. Namely, we lose the existence of polynomial-time
implementations, assuming P ̸= NP.

In all instances from the previous part, we consider only mechanisms that maximize social
surplus. In Section 3.2, we study auctions that maximize revenue as their primary goal. We show
that the situation then becomes more involved already for simple instances and introduce most
classical model to study such auctions, the Bayesian model. Then we characterize a class of
auctions that maximize the expected revenue in this model and, using this characterization, we
show that Vickrey auctions with reserved prices are an optimal auction format in some cases.
We finish this part by proving the Bulow–Klemperer Theorem, which roughly states that adding
an extra bidder is as good as knowing the underlying distribution and running an optimal
auction.

Finally, in Section 3.3, we consider multi-parameter environments, where every bidder can
have more different private valuations for different goods, and we show that so-called VCG
mechanism maximizes social surplus even in this very general setting. Finally, we prove the
so-called Revelation principle, which says that we do not lose anything by restricting ourselves
to a special type of dominant strategies in any mechanism that admits a dominant strategy for
each bidder.

1 Návrh mechanismů.

64 MECHANISM DESIGN

3.1 Mechanism design basics
We start our study of mechanism design with single item auctions2. In such auctions, there is a
seller selling a single good (a painting, for example) to some number n of strategic bidders who
are potentially interested in buying the item. Each bidder i has a valuation vi that he is willing
to pay for the item and he, of course, wants to buy the item as cheaply as possible, provided the
selling price is at most vi. The valuation of bidder i is private, meaning that the other bidders
nor the seller know vi.

We assume that our auction is a sealed-bid auction, that is, each bidder i privately commu-
nicates a bid bi to the seller. The seller then decides who receives the item (if any) and decides
the selling price p.

We consider perhaps the simplest natural utility model, so-called quasilinear utility model,
in which if a bidder loses the auction, then his utility is 0. If the bidder wins the auction at
price p, then his utility is vi − p.

3.1.1 Vickrey’s auction
Our goal is to design a mechanism how to decide the allocation of the item to a bidder in a way
that cannot be strategically manipulated. To do so, we need to appropriately implement the
rules for the seller how to decide the winner of the auction and how to decide the selling price.

One possible choice of payment is to sell the item for free to bidder i with the highest bid
bi. However, this is not a very good choice, as then the utility of each bidder is independent of
the payment and thus bidders will benefit from exaggerating their valuations vi by reporting bi
that is much larger than vi. So our auction turns into a game of “who can name the highest
number”.

Another possible and natural approach is to sell the item to bidder i with the highest bid bi
and set the selling price to bi. That is, the winner has to pay his declared bid bi. This first-price
auction looks much more reasonable and such auctions are common in practice. However,
there are still some drawbacks to this approach. For example, it is difficult for the bidders to
figure out how to bid. If bidder i wins and pays bi = vi, then his utility is vi − bi = 0, the same
as if he loses the bid. Thus, it is clear that he should be declaring somehow lower bid bi than
vi. Then he can still win and receive a positive utility, but what is the value bi he should bid?

A dominant strategy3 for bidder i is a strategy that maximizes the utility of bidder i, no
matter what the other bidders do. The social surplus4 is defined as

n∑
i=1

vixi,

where xi = 1 if bidder i wins and xi = 0 otherwise subject to the obvious constraint
∑n

i=1 xi ≤
1 (the seller sells only a single item).

Definition 3.1 (Awesome auction). Optimally, we would like our auction to be awesome, that
is, to satisfy the following three conditions:

(a) Strong incentive guarantees: The auction is dominant-strategy incentive-compatible
(DSIC), that is, it satisfies the following two properties. Every bidder has a dominant
strategy: bid truthfully, that is, set his bid bi to his private valuation vi. Moreover, the
utility of every truth-telling bidder is guaranteed to be non-negative.

(b) Strong performance guarantees: If all bidders bid truthfully then the auction maximizes
the social surplus.

(c) Computational efficiency: The auction can be implemented in polynomial time.
2 Jednopoložkové aukce.
3 Dominantní strategie.
4 Sociální zisk.

Let us justify this definition by showing that all these three properties are important. The
DSIC property makes it particularly easy to choose a bid for each bidder, it suffices to bid bi = vi
for bidder i, since then i is guaranteed to achieve maximized utility, which is non-negative.
That is, a bidder does not need to reason about other bidders in any way. It is also easy for the
seller to reason about the auction’s outcome. His prediction of the outcome does not have to
be predicated on strong assumptions about how bidders behave. Instead, he can only assume
that a bidder with an obvious dominant strategy will play it.

The DSIC property by itself is not enough, since, for example, an auction where the item
goes for free to a random bidder is DSIC. Similarly, giving the item to nobody is also DSIC.
We would like to identify which bidders actually want the good and this is why we require the
strong performance guarantee. This property states that, even though the bidder valuations
were a priori unknown to the seller, the auction nevertheless successfully identifies the bidder
with the highest valuation (Assuming truthful bids, which is a reasonable assumption in light of
the DSIC property.). That is, an awesome auction solves the surplus-maximization optimization
problem as well as if the valuations were known in advance.

Finally, the importance of the third condition is rather obvious for computer scientists. An
auction should run in a reasonable amount of time in order to have practical utility.

Now that we have defined the properties an ideal auction should satisfy, it remains to
show that there is an awesome auction. Amazingly, there is a simple and elegant rule for the
seller that leads to an awesome auction. This rule is very similar to the first-price auction, the
only difference is that the seller gives the item to the highest bidder for the price equal to the
second-highest declared bid.

Definition 3.2 (Vickrey’s second price auction). Let the winner be the bidder i with the highest
declared value bi and let i pay the second highest declared bid p = maxj∈{1,...,n}\{i} bj .

The following result says that Vickrey’s auctions indeed satisfy all the desired properties.

Theorem 3.3 (Vickrey, [Vic61a]). Vickrey’s auction is awesome.

Proof. It suffices to verify that Vickrey’s auction satisfies all three conditions from the definition
of an awesome auction.

1. Strong incentive guarantees: First, we show that each player has the dominant strategy
in which he sets bi = vi. Fix bidder i .We need to show that the utility of i is maximized
for bi = vi. Let B = maxj∈{1,...,n}\{i} bj be the maximum bid among bids of other
bidders. If bi < B, then i loses and receives utility 0. If bi ≥ B, then i wins and receives
utility vi −B (assuming the ties are broken in favor of i, but it is easy to check that the
claim holds no matter how ties are broken). Now, if vi < B, then the highest utility i
can get is max{0, vi − B} = 0, and this is achieved by bidding truthfully (and losing).
Otherwise vi ≥ B and the highest utility i can receive is max{0, vi − B} = vi − B ≥ 0
and he achieves this by bidding truthfully (and winning). Observe that the utility of i is
non-negative whenever he bids truthfully. Thus, the second part of the DSIC condition is
also verified.

2. Strong performance guarantees: To verify that the surplus is maximized, note that if i
is the winner of the auction, then vi ≥ vj for every j ∈ {1, . . . , n}, as all bidders bid
truthfully. Since xi = 1 and xj = 0 for j ̸= i, the social surplus is then equal to vi and is
clearly maximum.

3. Computational efficiency: Vickrey’s auction clearly runs in linear time, so this condition
is satisfied easily.

We note that it can be shown that, in a certain sense, truthful bidding is the unique dominant
strategy for a bidder in Vickrey’s auction, as for every false bid bi ̸= vi by bidder i in Vickrey’s
auction, there is b−i such that the utility of i is strictly less than when bidding vi.

66 MECHANISM DESIGN

3.1.2 Myerson’s lemma
Now, we would like to extend the three desired properties from the definition of single term
auctions beyond the single-item auctions to more complex situations. Fortunately, there is a
very satisfactory result, Myerson’s lemma, stating that it is possible to obtain the DSIC property
for single-parameter environments.

In a single-parameter environment5, there are n bidders, each bidding for a certain goods.
Each bidder i has a private valuation vi, which denotes a value “per unit of the goods” that he
gets. There is a feasible set X ⊆ Rn corresponding to feasible outcomes. Each element of X
is a vector x = (x1, . . . , xn) ∈ Rn, where xi denotes the part of the outcome that bidder i is
interested in. The sealed-bid auction in this environment then proceeds in three steps.

(a) Collect bids b = (b1, . . . , bn), where bi is the bid of bidder i.

(b) Allocation rule6: Choose a feasible outcome (allocation) x = x(b) from the feasible set X
as a function of the bids b.

(c) Payment rule7: Choose payments p(b) = (p1(b), . . . , pn(b)) ∈ Rn as a function of the
bids b.

The pair (x, p) then forms a (direct) mechanism8. The utility ui(b) of bidder i is defined as

ui(b) = vi · xi(b)− pi(b).

Here, we consider only payments pi(b) ∈ [0, bi · xi(b)] for every bidder i and all bids b. Since
pi(b) ≥ 0, the seller never pays the bidders. The condition pi(b) ≤ bi · xi(b) says that we never
charge a bidder more than his value bi per good (that he told us) times the amount xi(b) of
stuff that we gave him. It ensures that a truthtelling bidder receives non-negative utility. The
basic dilemma of mechanism design is that the mechanism designer wants to optimize some
global objective such as the social surplus

∑n
i=1 vi · xi(b).

We now illustrate the definition of the single-parameter environment with a few specific ex-
amples. We start by showing that singe-parameter environments comprise single-item auctions
we met earlier.

Example 3.4 (Single-item auctions). In single-item auctions, n bidders compete for a single
item of the seller. Each bidder either gets the item or not, but only one bidder can get it. Thus,
xi ∈ {0, 1} for each bidder i and thus the feasible set X is of the form X = {(x1, . . . , xn) ∈
{0, 1}n :

∑n
i=1 xi ≤ 1}. The goal is to design the auction so that the bidder with the highest

valuation vi wins.

The following example is more complex than single-item auctions, as it allows more items,
which, in addition, are not identical (that is, some items are more valuable than others).

Example 3.5 (Sponsored-search auctions9). Here, we have n bidders competing for k positions.
Each position j has a click-through-rate αj , where α1 > · · · > αk > 0. The feasible setX consists
of vectors (x1, . . . , xn), where each xi lies in {α1, . . . , αk, 0} and if xi = xj , then xi = 0 = xj .
The value of slot j to bidder i is then viαj . The goal is to maximize the social surplus.

The motivation for this example is as follows. A Web search results page contains a list of
organic search results and a list of k sponsored links, which have been paid for by advertisers.
Every time a search query is typed into a search engine, an auction is run in real-time to decide
which sponsored links are shown, in what order, and how they are charged. The positions for sale
are the k “slots” for sponsored links and slots with higher positions on the search page are more
valuable than lower ones, since people generally scan the page from top to bottom. The bidders
are the advertisers who have a standing bid on the keyword that was searched on. We can then

5 Jednoparametrové protředí.
6 Alokační pravidlo.
7 Platební pravidlo.
8 (Přímý) mechanismus.
9 Aukce pro sponzorované vyhledávání.

view each αj as the probability that the jth slot is clicked on. We have two assumptions: first,
the more the slot is on the top, the higher the probability that the slot is clicked on, and, second,
the click-through rates do not depend on the occupant of the slot.

It is worth noting that sponsored-search auctions were responsible for 98% revenue of Google
in 2006, so these auctions have been really important to the Internet economy.

An elegant way how to resolve the potential conflict of interest between the mechanism
designer and the bidder is to ensure that each bidder wants to bid truthfully. That is, to ensure
that the mechanism (x, p) has the DSIC property. Then each bidder has an obvious dominant
strategy and thus the auction becomes much more predictable for the seller.

Thus, we want to identify those allocation rules x for which we can find payment rules p
such that the resulting mechanism (x, p) has the DSIC property. To do so, we first introduce
some definitions.

Definition 3.6 (Implementable allocation rule10). An allocation rule x for a single-parameter
environment is implementable if there is a payment rule p such the mechanism (x, p) is DSIC.

Thus, we want to identify implementable allocation rules, as these extend to DSIC mecha-
nisms. We note that the allocation rules of DSIC mechanisms form the set of implementable
allocation rules. To give an example, we know that the allocation rule “give the item to the
bidder with the highest bid” is implementable in the case of single-item auctions, as the second-
price rule provides DSIC mechanism. On the other hand, the situation is much less clear for
the allocation rule “give the item to the bidder with the second highest bid”. We have not seen
a payment rule that would extend it to DSIC mechanism and it seems difficult to argue that
the no payment rule should not work.

Definition 3.7 (Monotone allocation rule11). An allocation rule x for a single-parameter envi-
ronment is monotone if, for every bidder i and all bids b−i of the other bidders, the allocation
xi(z; b−i) to i is nondecreasing in his bid z. Here, xi(z; b−i) denotes the function xi applied to a
vector that is obtained from b by replacing the ith coordinate with z.

That is, in a monotone allocation rule, bidder i can only get more goods by bidding higher.
Usually, it is not difficult to check whether an allocation rule is monotone. For example, the
single-item auction allocation rule “give the item to the bidder with the highest bid” is mono-
tone. If a bidder raises his bid while other bids remain the same, he cannot lose the auction
if he is the winner before raising his bid. In contrast, the allocation rule “give the item to the
bidder with the second highest bid” is not monotone, as raising a bid can lose the auction to a
bidder.

The following result, Myerson’s lemma, is a powerful tool for designing DSIC mechanisms.

Theorem 3.8 (Myerson’s lemma [Mye81]). In a single-parameter environment, the following
three claims hold.

(a) An allocation rule is implementable if and only if it is monotone.

(b) If an allocation rule x is monotone, then there exists a unique payment rule p such that
the mechanism (x, p) is DSIC (assuming that bi = 0 implies pi(b) = 0).

(c) The payment rule p is given by the following explicit formula

pi(bi; b−i) =

∫ bi

0

z · d
dz
xi(z; b−i) dz

for every i ∈ {1, . . . , n}.
10 Implementovatelné alokační pravidlo.
11 Monotónní alokační pravidlo.

68 MECHANISM DESIGN

Myerson’s lemma says that implementable allocation rules and monotone allocation rules
form exactly the same class. This equivalence is quite powerful, as implementable allocation
rules describe our design goal but are difficult to verify, while the monotonicity property is
usually easy to check. The second part states that, when an allocation rule is implementable,
there is only one way how to assign payments to achieve the DSIC property (assuming bidding
zero guarantees zero payment, but this follows from our assumption pi(b) ∈ [0, bi · xi(b)]).
Moreover, there is a relatively simple and explicit formula for this payment rule.

Sketch of the proof of Myerson’s lemma (Theorem 3.8). We prove all three claims at once. First,
let x be an allocation rule and p be a payment rule. We recall that the mechanism (x, p)
is DSIC if every bidder maximizes his utility by setting bi = vi and, moreover, his utility
ui(b) = vi · xi(b)− pi(b) is guaranteed to be non-negative. Expressing the utility of bidder i as
a function of his bid z, we write ui(z; b−i) = vi · xi(z; b−i)− pi(z; b−i).

Assume the mechanism (x, p) is DSIC. The DSIC property says ui(z; b−i) = vi · xi(z; b−i)−
pi(z; b−i) ≤ vi · xi(vi; b−i) − pi(vi; b−i) for every z. We use a clever swapping trick. For two
possible bids y and z with 0 ≤ y < z, bidder imight as well have private valuation z and can
submit the false bid y if he wants, thus the DSIC condition gives

ui(y; b−i) = z · xi(y; b−i)− pi(y; b−i) ≤ z · xi(z; b−i)− pi(z; b−i) = ui(z; b−i). (3.1)

Analogously, bidder i may have his private valuation vi = y and can submit the false bid z and
thus the mechanism (x, p)must satisfy

ui(z; b−i) = y · xi(z; b−i)− pi(z; b−i) ≤ y · xi(y; b−i)− pi(y; b−i) = ui(y; b−i). (3.2)

By rearranging inequalities (3.1) and (3.2) and putting them together, we obtain the following
inequality called the payment difference sandwich:

z(xi(y; b−i)− xi(z; b−i)) ≤ pi(y; b−i)− pi(z; b−i) ≤ y(xi(y; b−i)− xi(z; b−i)). (3.3)

Since 0 ≤ y < z, we obtain, by ignoring the middle part of this inequality, xi(y; b−i) ≤
xi(z; b−i). Thus, if the mechanism (x, p) is DSIC, then x is monotone.

In the rest of the proof, we assume that the mechanism x is monotone. Let i and b−i be
fixed, so, in particular, we consider xi and pi as functions of z. First, we also assume that the
function xi is piecewise constant. Thus, the graph of xi consists of a finite number of intervals
with “jumps” between consecutive intervals; see Figure 3.1.

xi(z; b−i)

z0

} jump(xi, t)

t

Figure 3.1: A piecewise constant function.

For a piecewise constant function f , we use jump(f, t) to denote the magnitude of the
jump of f at point t. If we fix z in the “payment difference sandwich” inequality (3.3) and let y
approach z from below in this inequality, then both sides become 0 if there is no jump of xi
at z (that is, if jump(xi, z) = 0). If jump(xi, z) = h > 0, then both sides tend to z · h. Thus, if
the mechanism (x, p) is supposed to be DSIC, then the following constraint on p must hold for
every z:

jump(pi, z) = z · jump(xi, z).

If we combine this constraint with the initial condition pi(0; b−i) = 0, we obtain a formula for
the payment function p for every bidder i and bids b−i of other bidders,

pi(bi; b−i) =

ℓ∑
j=1

zj · jump(xi(· ; b−i), zj), (3.4)

where z1, . . . , zℓ are the breakpoints of the allocation function xi(· ; b−i) in the interval [0, bi].
With some additional facts from calculus, this argument can be generalized to general

monotone functions xi. We omit the details here and only sketch the idea for differentiable xi.
If we divide the “payment difference sandwich” inequality (3.3) by z − y and take the limit of
the resulting function as z approaches y from above, then we obtain the constraint

p′i(y; b−i) = y · x′i(y; b−i).

Combining this constraint with the initial condition pi(0; b−i) = 0, we obtain the formula

pi(bi; b−i) =

∫ bi

0

z · d
dz
xi(z; b−i) dz

for every z. Note that we showed that this is the only possibility for the function p if we want to
extend the allocation rule x to a DSIC mechanism (x, p).

It remains to show that if x is monotone, then the mechanism (x, p) is indeed DSIC. This
argument works also for monotone allocation rules that are not necessarily piecewise constant.
However, for the sake of clarity, we present it only for piecewise constant functions. The
proof is illustrated in Figure 3.2. We recall that the utility of bidder i satisfies ui(bi; b−i) =
vi ·xi(bi; b−i)−pi(bi; b−i)when he bids bi and the other bidders bid b−i. The value vi ·xi(bi; b−i)
is represented by a blue rectangle in Figure 3.2. Using the expression (3.4), we see that the
payment pi(bi; b−i) of bidder i corresponds to the part of [0, bi]× [0, xi(bi; b−i)] lying to the left
of the curve xi(· ; b−i); this is represented by the red areas in Figure 3.2. Clearly, it is optimal
for bidder i to bid bi = vi. Otherwise he either overbids bi > vi, in which case his utility is
smaller by the area above xi(· ; b−i) in the range [vi, bi], or he underbids bi < vi, in which case
his utility is smaller by the area below xi(· ; b−i) in the range [0, vi]; see Figure 3.2.

3.1.3 Some applications of Myerson’s lemma
In this subsection, we give some applications of Myerson’s lemma (Theorem 3.8) to illustrate
its strength and, in particular, to show the use of the explicit payment rule. In the case of
piecewise constant allocation function, this payment rule for bidder i and bids b−i of other
bidders becomes

pi(bi; b−i) =

ℓ∑
j=1

zj · jump(xi(· ; b−i), zj),

where z1, . . . , zℓ are the breakpoints of the allocation function xi(· ; b−i) in the interval [0, bi].

Single-item auctions. We start with single-item auctions mentioned in Example 3.4. Recall
that, in single-item auctions, n bidders compete for a single item of the seller. Each bidder
either gets the item or not, but only one bidder can get it. The goal is to design the auction
so that the bidder with the highest valuation vi wins. Let bidder i and bids b−i of the other
bidders be fixed and set B = maxj∈{1,...,n}\{i} bj . If we allocate the item to the highest bidder,
then the allocation function xi(· ; b−i) is 0 up to B and 1 thereafter. Clearly, this allocation
rule is monotone.

If i is the highest bidder, then bi > B and the (unique) payment formula from Myerson’s
lemma becomes pi(bi; b−i) = B and the utility of i is vi ·xi(bi; b−i)−B = vi−B; see Figure 3.3.
Otherwise, bi ≤ B and the payment function and the utility of i is zero. If vi > B, then his
utility is positive and the utility of all other bidders is zero. It follows from the form of pi that
the utility of i is maximized when vi = bi. Altogether, we obtain the second-price payment rule
discussed in Section 3.1.1.

70 MECHANISM DESIGN

xi(z; b−i)

z0

xi(z; b−i)

z0

xi(z; b−i)

z0

xi(z; b−i)

z0

xi(z; b−i)

z0

xi(z; b−i)

z0

(a) (b) (c)

(d) (e) (f)

xi(z; b−i)

z0

xi(z; b−i)

z0

xi(z; b−i)

z0

(g) (h) (i)

vi = bi

bi

bi vi vi

vivivi

vi bi bi

bibi

vi = bi vi = bi

Bidder i bids
truthfully:

Bidder i
overbids:

Bidder i
underbids:

Figure 3.2: A sketch of the proof of Myerson’s lemma. The blue areas represent the value
vi · xi(bi; b−i), the red areas represent the payment pi(bi; b−i), and the green parts correspond
to the utility ui(bi; b−i) = vi · xi(bi, b−i) − pi(bi; b−i) of bidder i. Parts (a)–(c) represent the
situation when bidder i bids bi = vi, parts (d)–(f) correspond to a situation when i overbids,
that is, bi > vi. Parts (g)–(i) illustrate the case when bidder i underbids, that is, bi < vi. Clearly,
the utility is largest if bi = vi.

Sponsored-search auctions. Recall that, in a sponsored-search auction, we have n bidders
competing for k positions. Each position j has a click-through-rate αj , where α1 > · · · > αk >
0. The feasible set X consists of vectors (x1, . . . , xn), where each xi lies in {α1, . . . , αk, 0} and
if xi = xj , then xi = 0 = xj . The goal is to maximize social surplus. Let x be the allocation
rule that assigns the ith best slot to the ith highest bidder. The rule x is then monotone, as one
can easily verify, and, assuming truthful bids, x is also maximizing social surplus. By Myerson’s
lemma (Theorem 3.8), there is a unique and explicit formula for a payment rule p such that
the mechanism (x, p) is DSIC. This formula can be described as follows. Assume without loss
of generality that bidder i bids the ith highest bid, that is, b1 ≥ · · · ≥ bn. Consider bidder 1.
Imagine that he increases his bid z from 0 to b1, while other bids are fixed. The allocation
function x1(z; b−1) increases from 0 to α1 as z increases from 0 to b1, with a jump of αj −αj+1

at the point where z becomes the jth highest bid in the profile (z; b−1), namely bj+1. In general,
for ith highest bidder, Myerson’s lemma gives the payment formula

pi(b) =

k∑
j=i

bj+1(αj − αj+1),

where αk+1 = 0. The per-click payment for bidder i is then this value simply scaled by 1/αi,
that is, 1

αi

∑k
j=i bj+1(αj − αj+1). Thus, when the bidder’s link is clicked, he pays a suitable

xi(z; b−i)

z0 vi

Bidder i is
the highest
bidder:

1

B

Figure 3.3: Myerson’s lemma in case of single-item auctions.

convex combination of the lower bids. Altogether, we see that the natural greedy algorithm in
allocation is optimal.

3.1.4 Knapsack auctions
In this subsection, we introduce another type of auctions, so-called knapsack auctions. These
auctions are single-parameter environments, so we can use Myerson’s lemma again to design a
DSIC mechanism for them. However, as we will see, although knapsack auctions admit DSIC
mechanism, they are not awesome in the sense of Definition 3.1.

Definition 3.9 (Knapsack auction12). In a knapsack auction of n bidders 1, . . . , n, each bidder
i has two parameters: publicly known size wi ≥ 0 and a private valuation vi ≥ 0. There is a
single seller who has a capacityW ≥ 0. The feasible set X consists of {0, 1}-vectors (x1, . . . , xn)
such that

∑n
i=1 xiwi ≤W , where xi = 1 indicates that bidder i is a winning bidder.

That is, knapsack auctions are auctions where multiple bidders might win, but there is a
limited capacity. As an example, we might imagine that the bidders are companies such that
each company has its own TV commercial of length wi and is willing to pay vi in order to have
the commercial presented during a commercial break. The seller is the television company
and the capacityW is the length of the commercial break. Other examples include bidders
who want files stored on a shared server, data streams sent through a shared communication
channel, or processes to be executed on a shared supercomputer. Note that a k-item auction is
a special case of a knapsack auction, where wi = 1 for each bidder i andW = k.

We now try to design a mechanism for knapsack auctions so that we satisfy all three condi-
tions from the definition of an awesome auction (Definition 3.1). Recall that we would like to
have a DSIC property, maximize the social surplus, and implement the auction in polynomial
time.

Since we want to maximize the social surplus
∑n

i=1 vixi, the choice of the allocation rule
x = (x1, . . . , xn) ∈ X is determined. For bids b = (b1, . . . , bn), we choose x(b) from X such
that

∑n
i=1 bixi is maximized. Then, when bidders bid truthfully (that is, bi = vi for every i), the

social surplus is maximized. Note that the problem of finding such x solves an instance of the
Knapsack problem: given a capacityW and n items of values v1, . . . , vn and sizes w1, . . . , wn,
find a subset of the items having a maximum total value such that the total size is at mostW .

Now, having the allocation rule x, it remains to find an appropriate payment rule p so that
the resulting mechanism (x, p) is DSIC. To do so, we apply Myerson’s lemma. It is not difficult
to verify that the allocation rule x is monotone and thus Myerson’s lemma (Theorem 3.8) gives
us a payment rule p such that (x, p) is DSIC. Moreover, since the allocation rule x is very simple
(it is 0 until some point z in which it jumps to 1), we know that p is defined as follows. If bi < z,
then bidder i pays nothing, otherwise he pays z · (1− 0) = z (for fixed bids b−i of the other
bidders). That is, bidder i pays the lowest bid he could make and continues to win (holding
the other bids b−i fixed).

Thus, we have satisfied the first two conditions from the definition of an awesome auction.
However, assuming P ̸= NP, we cannot satisfy the third condition (implementing the auction
in polynomial time), since the Knapsack problem is known to be NP-hard, and choosing the
12 Batohová aukce.

72 MECHANISM DESIGN

allocation rule so that the social surplus is maximized solves this problem. Thus, knapsack
auctions are not awesome.

Relaxing the first condition (DSIC property) does not help, since it is the last two conditions
that collide. We might relax the third condition since it is known that the allocation rule can
be implemented in pseudopolynomial time using dynamic programming. In general, relaxing
this condition is helpful if our instances are small or structured enough and we have enough
time and computing power to implement optimal surplus-maximization. Then the resulting
allocation rule is monotone and can be extended to a DSIC mechanism.

The dominant paradigm in algorithmic mechanism design is to relax the second constraint
(optimal surplus) as little as possible, subject to the first (DSIC) and the third (polynomial-time)
constraints. For single-parameter environments, Myerson’s Lemma implies that the following
goal is equivalent: design a polynomial-time and monotone allocation rule that comes as close
as possible to maximizing the social surplus.

This approach resembles the primary goal in approximation algorithms: to design algo-
rithms for NP-hard problems that are as close to optimal as possible, subject to a polynomial-
time constraint. Algorithmic mechanism design for single-parameter problems has exactly
the same goal, except the algorithms must additionally obey a monotonicity constraint. The
“holy grail” in algorithmic mechanism design is as follows: for as many NP-hard problems of
interest as possible, match the best-known (or even best possible) approximation guarantee
for (not necessarily monotone) approximate surplus maximization algorithms, subject to P
̸= NP. That is, we would like the DSIC/monotone constraint to cause no additional surplus
loss, beyond the loss we already have to suffer due to the polynomial-time constraint. So far
this was not an issue, as, with exact surplus-maximization, the DSIC/monotone constraint
was satisfied “for free”, and exact surplus-maximization with unknown data reduced to exact
surplus-maximization with known data.

We now illustrate this approach in the specific setting of knapsack auctions by designing
an allocation rule that will lead to at least one half of the optimum social surplus, assuming
truthful bids. We assume without loss of generality that there is no bidder i with wi > W , since
we can discard such bidders with no effect on the optimal solution. We also assume that the
bidders 1, . . . , n are sorted in the order < so that

b1
w1
≥ · · · ≥ bn

wn
.

Consider the following greedy allocation rule xG = (xG1 , . . . , x
G
n) ∈ X , which for given bids

b = (b1, . . . , bn) selects a subset of bidders so that
∑n

i=1 x
G
i wi ≤ W using the following

procedure.

1. Pick winners in the order < until one does not fit and then halt.

2. Return either the solution from the first step or the highest bidder, whichever creates
more social surplus.

The reason for the second step is that the solution in the first step might be highly suboptimal
if there is a very valuable and very large bidder. Consider, for example, n = 2 with b1 = 2,
w1 = 1, b2 =W , and w2 =W for a very largeW .

Theorem 3.10. Assuming truthful bids, the social surplus of the greedy allocation rule xG is at
least one half of the maximum possible social surplus.

Proof. Let w1, . . . , wn be the given sizes, v1, . . . , vn the valuations, which are also the bids, as
bidders bid truthfully, andW be the capacity. First, we consider a relaxation of the problem,
where a bidder can be chosen fractionally with its value pro-rated accordingly. That is, we can
choose each bidder i with fraction αi ∈ [0, 1] so that i contributes with αi · vi to the solution.
The greedy algorithm to solve this fractional version of the problem is as follows: pick winners
in the order < until the entire capacity W is fully used with the possibility to pick the last
winner fractionally, if needed.

We argue that this algorithm maximizes the surplus over all feasible solutions to the frac-
tional knapsack problem using a straightforward exchange argument. Let 1, . . . , k be the
winners selected by the greedy algorithm and suppose for contradiction that there is another
feasible solution that gives higher social surplus. Then our solution can be improved by chang-
ing one of the constraints αi to some larger βi. Since α1 = · · · = αk−1 = 1, we have i ≥ k. Since∑k

l=1 αlwl = W , there is a j ∈ {1, . . . , k} with j < i and βj < αj . We can assume that these
two coefficients are the only changed ones; see Exercise 3.5. Then (βi−αi)wi ≤ (αj−βj)wj , as∑k

l=1 αlwl =W and we add (βi −αi)wi to the size, while removing (αj − βj)wj . On the other
hand, since the social surplus is now larger, we have (βi − αi)vi > (αj − βj)vj . By dividing the
left side of the second inequality with the left side of the first inequality and doing the same
for the right sides, we obtain vi/wi > vj/wj , which, since j < i, contradicts our choice of the
order <.

Now, assume that in the fractional setting the first k − 1 winners i have αi = 1 while the
kth winner won only fractionally, that is, αk < 1. Then the social surplus achieved by step 1
is exactly

∑k−1
i=1 αivi =

∑k−1
i=1 vi. The social surplus achieved by step 2 is at least vk. Thus,

both steps together yield a social surplus of size at least max{vk,
∑k−1

i=1 vi}. This is at least half
of the surplus of the optimal fractional solution, which is at least the surplus of an optimal
(non-fractional) solution to the original problem.

It can be shown that the greedy allocation rule xG is monotone; see Exercise 3.5. Thus,
by Myerson’s lemma (Theorem 3.8), there is a payment rule that together with the greedy
allocation rule forms a DSIC mechanism. In particular, this justifies the assumption about
truthful bidders in Theorem 3.10.

3.1.5 Exercises
Exercise 3.1. Consider a single-item auction with at least three bidders. Prove that selling the
item to the highest bidder at a price equal to the third-highest bid yields an auction that is not
dominant-strategy incentive compatible (DSIC). [2]

Exercise 3.2. Assume there are k identical items and n > k bidders. Also, assume that each
bidder can receive at most one item. What is the analog of the second-price auction? Prove that
your auction is DSIC. [2]

Exercise 3.3. Use Myerson’s Lemma (Theorem 3.8) to prove that the Vickrey auction is the unique
single-item auction that is DSIC, always awards the good to the highest bidder, and charges the
other bidders 0. [2]

Exercise 3.4. Give a purely algebraic proof that coupling a monotone and piecewise constant
allocation rule x with the following payment rule

pi(bi; b−i) =

ℓ∑
j=1

zj · jump(xi(· ; b−i), zj),

where z1, . . . , zℓ are the breakpoints of the allocation function xi(· ; b−i) in the interval [0, bi],
yields a DSIC mechanism. [2]

Exercise 3.5. (a) Prove that the Knapsack auction allocation rule xG induced by the greedy
(1/2)-approximation algorithm is monotone. [1]

(b) Prove that it suffices to change only two coefficients αi and βj in the proof of Theorem 3.10
(the correctness of the (1/2)-approximation algorithm that is based on xG). [2]

3.2 Revenue-Maximizing Auctions
So far we have focused on designs that maximize the social surplus

∑n
i=1 vixi(b) over all feasible

outcomes (x1, . . . , xn) of some set X . We did not care much about the revenue
∑n

i=1 pi(b).

74 MECHANISM DESIGN

Payments were present even in Vickrey’s auctions, but they served only to encourage the bidders
to bid truthfully so that we receive DSIC property. In this section, we focus on auctions that
maximize the revenue as their primary goal.

Let us first state a simple example that illustrates that revenue maximization is not as simple
as social surplus maximization. Consider a single-item auction with a single bidder, whose
valuation v is unknown to the designer of the auction. With only one bidder, the space of
all DSIC auctions we can run is quite small, all the seller can do is to offer the bidder the
take-it-or-leave-it offer, since the allocation function is monotone (by Myerson’s lemma) and
thus there is a value r for which the bidder gets the item for the first time. This auction works
as follows: the seller posts a price r, then his revenue is either r if v ≥ r and 0 otherwise. Thus,
maximizing the social surplus is trivial, as then the seller just puts r = 0, not caring what v is.
However, when maximizing the revenue, it is not clear how the mechanism designer should set
r, since he does not know the valuation v. The main issue is that different auctions do better
on different inputs. For example, with a single item and a bidder, a posted price r = 10 will do
very well on inputs with v not much larger than 10, and terribly on inputs with v < 10.

Thus, we need a model that helps us to reason about trade-offs between our performance
on different inputs. We consider the following most classical model, called Bayesian model
or the average case analysis. We will have a probability distribution over inputs (the private
valuations of the bidders) and we will seek to perform as well as possible on expected revenue.
Formally, the model consists of

(a) a single-parameter environment (x, p). That is, there are n bidders with private valuations
(v1, . . . , vn), an allocation rule x assigning outcomes from a feasible set X ⊆ Rn of
outcomes, and a payment rule p.

(b) For each bidder i, the private valuation vi of i is drawn from a probability distribution
Fi with density function fi and with support contained in [0, vmax]. That is, Fi(z) is
the probability that vi from Fi has value at most z. We assume that the distributions
F1, . . . , Fn are independent, but not necessarily the same.

(c) The distributions F1, . . . , Fn are known to the mechanism designer. The bidders do
not know the distributions F1, . . . , Fn. Actually, since we discuss only DSIC auctions,
the bidders do not need to know the distributions F1, . . . , Fn, as they have dominant
strategies.

The goal is to maximize, among all DSIC auctions, the expected revenue

Ev=(v1,...,vn)∼(F1×···×Fn)

[
n∑

i=1

pi(v)

]
, (3.5)

where the expectation is taken with respect to the given distribution F1 × · · · × Fn over the
valuations (v1, . . . , vn).

We recall that if F is a probability distribution with density f and with support [0, vmax],
then f(x) = d

dxF (x) and F (x) =
∫ x

0
f(z) dz. Also, for a random variable X , we have

Ez∼F [X(z)] =
∫ vmax

0
X(z) · f(z) dz.

Example 3.11 (Single-bidder single-item auction in the Bayesian model). We return to the
previous example with a single bidder in a single-item auction. It now becomes much easier to
handle, as the expected revenue of a posted price r equals r · (1− F1(r)), since (1− F1(r)) is the
probability that v is at least r. Given a probability distribution F1, it is usually a simple matter
to maximize this value. For example, if F1 is the uniform distribution on [0, 1], where F1(x) = x
for every x ∈ [0, 1], then we achieve the maximum revenue 1/4 by choosing r = 1/2. The posted
price r that makes the expected revenue as high as possible is called the monopoly price.

Example 3.12 (Two-bidders single-item auction in the Bayesian model). Consider a single-item
auction with two bidders that have their valuations v1 and v2 drawn uniformly from [0, 1].
Now, there are more DSIC auctions to think of, for example, the Vickrey’s auction, for which the
expected revenue is 1/3; see part (a) of Exercise 3.6). Besides Vickrey’s auctions, there are other

DSIC auctions and some may perform better with respect to the expected revenue; see part (b) of
Exercise 3.6).

3.2.1 Maximizing expected revenue
We now characterize DSIC auctions that maximize the expected revenue. We already have a
formula for the expected revenue (see (3.5)), but it is not very useful, as it is not clear from it
what auctions make the revenue as large as possible. As a main result of this section, we find
another, much more useful, formula for the expected revenue.

Theorem 3.13. Let (x, p) be a DSIC mechanism in a single-parameter environment forming
a Bayesian model with n bidders, probability distributions F1, . . . , Fn, and density functions
f1, . . . , fn. Let F = F1 × · · · × Fn. Then

Ev∼F

[
n∑

i=1

pi(v)

]
= Ev∼F

[
n∑

i=1

φi(vi) · xi(v)

]
,

where
φi(vi) = vi −

1− Fi(vi)

fi(vi)

is the virtual valuation of bidder i with valuation vi drawn from Fi.

In other words, for every DSIC auction, the expected revenue is equal to the expected virtual
social surplus

∑n
i=1 φi(vi) · xi(v). Note that the virtual valuation φi(vi) of a bidder can be

negative and that it depends on the valuation vi of the bidder i and his distribution Fi, and
not on those of the others. For example, consider a bidder i with valuation vi drawn from the
uniform distribution on [0, 1]. Then Fi(z) = z, fi(z) = 1, and φi(z) = z− (1−z)/1 = 2z−1 ∈
[−1, 1]. We can also give some coarse intuition behind the virtual valuations φi(vi). Recall that
φi(vi) = vi − (1− Fi(vi))/fi(vi). The first term vi in this expression can be thought of as the
maximum revenue obtainable from bidder i and the second term as the inevitable revenue
loss caused by not knowing vi in advance.

Proof of Theorem 3.13. Since the mechanism (x, p) is DSIC, we can assume bi = vi for every
bidder i. The proof is an application of Myerson’s lemma (Theorem 3.8). By this lemma, we
have the following payment formula:

pi(bi; b−i) =

∫ bi

0

z · d
dz
xi(z; b−i) dz.

As noted in Section 3.1.2, it can be shown by results from calculus that this formula holds for
any monotone function xi(z; b−i), if we suitably interpret the derivation d

dzxi(z; b−i). Similarly,
all arguments that we use later in the proof, such as integration by parts, can be made rigorous
for bounded monotone functions, but we omit the details.

In particular, Myerson’s payment formula says that the payments are determined by the
allocation rules xi. We now fix a bidder i and the bids v−i of other bidders. We can also use
Myerson’s payment formula to express the expected payment by bidder i for a given v−i as

Evi∼Fi [pi(v)] =

∫ vmax

0

pi(v)fi(vi) dvi =

∫ vmax

0

(∫ vi

0

z · d
dz
xi(z; v−i) dz

)
fi(vi) dvi,

where the first equality is just expanding the expectation and the second one is expanding pi(v)
using Myerson’s payment formula.

As a next step, we reverse the integration order and obtain∫ vmax

0

(∫ vi

0

z · d
dz
xi(z; v−i) dz

)
fi(vi) dvi =

∫ vmax

0

(∫ vmax

z

fi(vi) dvi

)
z · d

dz
xi(z; v−i) dz.

We have used the fact that z ≤ vi.

76 MECHANISM DESIGN

Since fi is the density function, the inner integral can be simplified and we can rewrite the
above expression as ∫ vmax

0

(1− Fi(z)) · z ·
d

dz
xi(z; v−i) dz.

We now apply integration by parts, that is
∫
fg′ = fg −

∫
f ′g, choosing f(z) = (1− Fi(z)) · z

and g′(z) = d
dzxi(z; v−i), rewriting the expression as

[(1− Fi(z)) · z · xi(z; v−i)]
vmax

0 −
∫ vmax

0

xi(z; v−i) · (1− Fi(z)− zfi(z)) dz.

The first term is zero, as it equals to 0 for z = 0 and also for z = vmax, as vmax is a finite
number. The second term can be rewritten so that we obtain∫ vmax

0

(
z − 1− Fi(z)

fi(z)

)
xi(z; v−i)fi(z) dz =

∫ vmax

0

φi(z)xi(z; v−i)fi(z) dz

by the definition of φi(vi).
This final expression as an expected value where z is drawn from Fi and we have thus

derived, for every v−i,

Evi∼Fi
[pi(vi; v−i)] = Evi∼Fi

[φi(vi) · xi(vi; v−i)] .

Taking the expectation with respect to v−i on both sides of this equality (“integrating out over
everybody else’s valuations”), we obtain

Ev∼F [pi(v)] = Ev∼F [φi(vi) · xi(v)] .

Finally, applying the linearity of expectation twice, we get the final form

Ev∼F

[
n∑

i=1

pi(v)

]
=

n∑
i=1

Ev∼F [pi(v)] =

n∑
i=1

Ev∼F [φi(vi) · xi(v)] = Ev∼F

[
n∑

i=1

φi(vi) · xi(v)

]
.

Note that if we omitted the virtual valuations from the derived expression, we would obtain
the expected social surplus, which we already know how to optimize. Thus, for DSIC auctions,
we can interpret the statement of Theorem 3.13 as “maximizing expected revenue = maximizing
expected virtual social surplus”. Note that, somewhat surprisingly, even though we are interested
in the payment rule p, the formula tells us that it suffices to deal with the allocation function x.

3.2.2 Maximizing expected virtual social surplus
By Theorem 3.13, maximizing the expected revenue in DSIC auctions is the same as maximizing
the expected virtual social surplus. In this section, we characterize the auctions that do that.

We start with a simpler setting by considering only single-item auctions of n bidders, that is
we have

∑n
i=1 xi(v) ≤ 1 for each v and xi(v) ∈ {0, 1}. We also assume that there is a probability

distribution F such that F1 = · · · = Fn = F and thus all virtual valuations φ1, . . . , φn are
the same, say equal to a function φ (recall that we are still assuming that the probability
distributions F1, . . . , Fn are independent). Finally, we assume that the probability distribution
F is regular, that is, the corresponding virtual valuation function φ(v) = v − (1− F (v))/f(v)
is strictly increasing in v. All these conditions are satisfied, for example, if F is the uniform
probability distribution on [0, 1], as then φ(v) = 2v − 1, as we have already seen.

We show that for such auctions the Vickrey auction with reserved price is the optimal
auction format for maximizing expected revenue. In a Vickrey auction with reserve price r, the
allocation rule awards the item to the highest bidder, unless all bids are less than r, in which
case no one gets the item. The corresponding payment rule charges the winner (if any) the
second-highest bid or r, whichever is larger. We remark that Vickrey auctions with reserved
prices correspond to eBay auctions with an opening bid.

Proposition 3.14. Let F be a regular probability distribution with density f and the virtual
valuation φ and let F1, . . . , Fn be independent probability distributions on valuations of n
bidders such that F = F1 = · · · = Fn (and thus φ = φ1 = · · · = φn). Then Vickrey auction
with reserve price φ−1(0) maximizes the expected revenue.

Proof. By Theorem 3.13, maximizing the expected revenue is the same as maximizing the
expected virtual social surplus. To maximize expected virtual social surplus, we have the
freedom of choosing x(v) for each input v (subject to feasibility constraints (x1, . . . , xn) ∈ X),
while we do not have any control over the probability distribution F and the virtual values φ(vi).
In a single-item auction, the feasibility constraint is

∑n
i=1 xi(v) ≤ 1 for each v, so to maximize

the expected virtual social surplus, we just give the item to bidder i with the highest virtual
valuation φ(vi). This is the so-called virtual social surplus-maximizing mechanism. However,
the virtual valuations can be negative, so if every bidder has a negative virtual valuation then
the expected virtual social surplus is maximized by not awarding the item to anyone.

So we have an allocation rule that maximizes the expected virtual social surplus over all
allocation rules (monotone or not). It remains to show that this allocation rule is monotone,
as then, by Myerson’s lemma (Theorem 3.8), it can be extended to a DSIC auction (x, p) by
choosing an appropriate payment rule p. This is where we use the fact that F is regular, as then
the virtual valuation function φ shared by all bidders is strictly increasing. Thus, it follows that
our allocation rule is thus equivalent to the Vickrey auction with a reserve price φ−1(0).

Thus, under our assumptions, eBay with a suitable opening bid is the optimal auction
format. A natural question is whether we can weaken the assumptions in the statement of
Proposition 3.14. For an arbitrary single-parameter environment and probability distributions
F1, . . . , Fn, the allocation rule that maximizes the expected revenue is defined as that, for an
input v, chooses the feasible allocation that maximizes the expected virtual social surplus∑n

i=1 φ(vi)xi(v). If every Fi is regular, then this allocation rule is monotone; see Exercise 3.8.
Thus, by Myerson’s lemma (Theorem 3.8), we obtain the optimal DSIC auction. The theory
developed in this lecture, which is due to Myerson [Mye81], is even more general, as it can be
extended to accommodate valuation distributions that are not regular, but this requires more
work; see [Har17, Chapter 3].

To summarize, if the probability distributions F1, . . . , Fn of n bidders are identical, inde-
pendent, and regular, then choosing the allocation rule

x(v) = argmax(x1,...,xn)∈X

n∑
i=1

φ(vi)xi

for every v, we obtain a monotone allocation rule that can be extended to a DSIC mechanism
by Myerson’s lemma (Theorem 3.8). We thus see that for such setting, the Vickrey auction with
appropriately chosen reserve price is optimal single-item auction format. We also noted that
there are optimal DISC auctions even if we relax the conditions a bit by not insisting on the
probability distributions F1, . . . , Fn being identical. However, an optimal auction can get weird,
and it does not generally resemble any auctions used in practice; see Exercise 3.9.

3.2.3 The Bulow–Klemperer Theorem
In Subsection 3.2.2, we showed how to find an optimal single-item auction format if we are given
independent and regular probability distributions F1, . . . , Fn. The distributions F1, . . . , Fn

were known in advance to the seller, which is not always true in practice (in so-called thin
markets); consider, for example, keyword auctions for rarely used search queries. Here we show
how to deal with this issue.

Thus, the goal is to design an auction, whose description is independent of the underlying
distributions, which is called prior-independent auction, and that performs almost as well as if
the distributions were known in advance. The expected revenue of a Vickrey auction with no
reserve can obviously only be at most as large as that of an optimal auction. Yet the following
result due to Bulow and Klemperer [BK96] shows that this inequality reverses when the Vickrey
auction’s environment is made slightly more competitive.

78 MECHANISM DESIGN

Theorem 3.15 (The Bulow–Klemperer Theorem [BK96]). Let F = F1 = · · · = Fn be a regular
probability distribution and let n be a positive integer. Then the following inequality holds

Ev1,...,vn+1∼F [Rev(V An+1)] ≥ Ev1,...,vn∼F [Rev(OPTF,n)] , (3.6)

where Rev(V An+1) denotes the revenue of Vickrey auction V An+1 with n+ 1 bidders (and no
reserve) and Rev(OPTF,n) denotes the revenue of the optimal auction OPTF,n for F with n
bidders.

We recall that OPTF,n is the Vickrey auction with the monopoly reserve price φ−1(0),
where φ is the virtual valuation function of F . Note that the auction on the left side of (3.6)
does not depend on the probability distribution F while the one on the right side does. The
Bulow–Kemperer theorem implies that in all possible single-item auctions with identical regular
probability distributions on valuations of n ≥ 2 bidders, the expected revenue of Vickrey auction
is at least n−1

n -fraction of the expected revenue of an optimal auction for the same number
of bidders; see Exercise 3.10. Informally, the underlying idea behind this result is that extra
competition is more important than getting the auction format just right.

Proof of Theorem 3.15. We define an auxiliary auction A of n+ 1 bidders as follows:

(a) Simulate the optimal auction OPTF,n on the bidders 1, . . . , n,

(b) If the item was not awarded in Step (a), then give the item to bidder n+ 1 for free.

By definition, we have

Ev1,...,vn+1∼F [Rev(A)] = Ev1,...,vn∼F [Rev(OPTF,n)] .

Also, note that A always allocates the item.
To finish the proof, we argue that if F = F1 = · · · = Fn and F is regular, then the Vickrey

auction maximizes expected revenue over all auctions that are guaranteed to allocate the item.
It follows from Theorem 3.13 that the optimal auction, which always allocates the item, awards
the item to the bidder with the highest virtual valuation (even if this is negative). The Vickrey
auction awards the item to the bidder with the highest valuation. Since F = F1 = · · · = Fn and
F is regular, all bidders share the same increasing virtual valuation function φ. Thus, the bidder
with the highest virtual valuation is always the bidder with the highest valuation. We conclude
that the Vickrey auction V An+1 has expected revenue at least that of every auction that always
allocates the item, including A. Therefore the expected revenue Ev1,...,vn+1∼F [Rev(V An+1)] is
at least as large as the expected revenue Ev1,...,vn+1∼F [Rev(A)] = Ev1,...,vn∼F [Rev(OPTF,n)].

3.2.4 Exercises
Exercise 3.6. Let F be the uniform probability distribution on [0, 1]. Consider a single-item
auction with two bidders 1 and 2 that have probability distributions F1 = F and F2 = F on
their valuations.

(a) Prove that the expected revenue obtained by the Vickrey auction (with no reserve) is 1/3. [2]

(b) Prove that the expected revenue obtained by the Vickrey auction with reserve 1/2 is 5/12. [3]

Exercise 3.7. Compute the virtual valuation function of the following probability distributions
and show which of these distributions are regular (meaning the virtual valuation function is
strictly increasing).

(a) The uniform distribution F (z) = z/a on [0, a] with a > 0, [1]

(b) The exponential distribution F (z) = 1− e−λz with rate λ > 0 on [0,∞), [1]

(c) The distribution given by F (z) = 1− 1
(z+1)c on [0,∞), where c > 0 is some constant, [2]

(d) Consider the probability distribution F in part (c), with c = 1. Argue that when bidder
valuations are drawn from F , it is not necessarily the case that the expected revenue of
an auction equals its expected virtual social surplus. To reconcile this observation with
Theorem 3.13, identify which assumption of this result is violated in your example. [3]

Exercise 3.8. Consider an arbitrary single-parameter environment with feasible set X and n
bidders. For every bidder i, the valuation of i is drawn from a regular probability distribution Fi,
so the virtual valuation function φi of i is strictly increasing. Consider the allocation rule x that
maximizes the virtual social surplus for any given input v. That is,

x(v) = argmax(x1,...,xn)∈X

n∑
i=1

φi(vi)xi.

Prove that this allocation rule is monotone. [2]
Remark: You should assume that ties are broken in a deterministic and consistent way, such

as lexicographically.

Exercise 3.9. Consider a single-item auction where bidder i draws his valuation from his own
regular distribution Fi, that is, the probability distributions F1, . . . , Fn can be different but all
virtual valuation functions φ1, . . . , φn are strictly increasing.

(a) Give a formula for the winner’s payment in an optimal auction, in terms of the bidders’
virtual valuation functions φi. Verify that if F1 = · · · = Fn are uniform probability
distributions on [0, 1], then you obtain Vickrey auction with reserve price 1/2. [2]

(b) Find an example of an optimal auction in which the highest bidder does not win, even if
he has a positive virtual valuation. [2]

Hint: It suffices to consider two bidders with valuations from different uniform distribu-
tions.

Exercise 3.10. Consider a single-item auction with n ≥ 2 bidders that draw their valuations
from a regular probability distribution F . Prove that the expected revenue of the Vickrey auction
with no reserve is at least n−1

n -fraction of the expected revenue of the optimal auction with the
same number n of bidders. [3]

Hint: deduce this statement from the Bulow–Klemperer theorem. When one new bidder is
added, how much can the maximum-possible expected revenue increase?

3.3 Multi-parameter mechanism design
So far we have discussed single-parameter mechanism designs, where each bidder has only a
single piece of private information—his valuation vi. In this section, we consider more general
multi-parameter mechanism design where bidders have different private valuations for different
items. Formally, we have the following setting:

(a) n strategic participants (or bidders),

(b) a finite set Ω of outcomes,

(c) each bidder i has a private valuation vi(ω) ≥ 0 for every outcome ω ∈ Ω.

Each bidder i submits his bids bi(ω) for each ω ∈ Ω and our goal is to design a mechanism
that selects an outcome ω ∈ Ω so that it maximizes the social surplus

∑n
i=1 vi(ω). Note that

the valuations now depend on possible outcomes, so, for example, if bidders compete for a
single item, each bidder can have an opinion about each other bidder winning the item as
well. In this section, we assume that all bids bi(ω) are non-negative. Also, the set Ω of possible
outcomes can be very large, we only require Ω to be finite. We illustrate this definition with a
few examples.

80 MECHANISM DESIGN

Example 3.16 (Single-item auction). In the single-item auction, the set of outcomesΩ = {ω1, . . . ,
ωn, ω∅} has size n+1 and each outcome ωi with i ∈ N corresponds to the winner i of the item. The
last outcome ω∅ corresponds to the situation when nobody gets the item. For every i = 1, . . . , n,
the valuations are set to be vi(ωj) = 0 for every j ̸= i and vi(ωi) = vi otherwise. We thus have
only one unknown parameter for each bidder i.

Example 3.17 (Two-item auction). Assume there are two bidders 1 and 2 in an auction in which
the seller sells two items t1 and t2 and each bidder is allowed to obtain only one item. The set
of possible outcomes is Ω = {(0, 0), (0, 1), (0, 2), (1, 0), (2, 0), (1, 2), (2, 1)}, where an outcome
(i, j) corresponds to bidder 1 receiving the item ti (or nothing if i = 0) and bidder 2 receiving the
item tj (or nothing if j = 0). The valuations of bidder 1 are v1((i, j)) = 0 if i = 0, v1((i, j)) = 10
if i = 1, and v1((i, j)) = 5 if i = 2. Similarly, the valuations of bidder 2 are v2((i, j)) = 0 if
j = 0, v2((i, j)) = 5 if j = 1, and v2((i, j)) = 3 if j = 2. Thus, we see that both bidders prefer
item t1 and also want to buy at least something. The optimal allocation is to sell t1 to bidder 1
and t2 to bidder 2, which leads to the social surplus 10 + 3 = 13.

We now cover a cornerstone of mechanism design theory, the following result by Vick-
rey [Vic61b], Clarke [Cla71], and Groves [Gro73] called the VCG mechanism. It states that at least
one result from the single-parameter setting extends to the general multi-parameter setting,
namely that we can still do DSIC social surplus maximization.

Theorem 3.18 (The Vickrey–Clarke–Groves (VCG) mechanism [Vic61b, Cla71, Gro73]). In every
multi-parameter mechanism design environment, there is a DSIC social-surplus-maximizing
mechanism.

In other words, we can still have the first two properties from the definition of an awesome
auction (Definition 3.1), the strong incentive guarantees (every bidder has his dominant strategy
by setting bi(ω) = vi(ω) for every ω ∈ Ω) and the strong performance guarantees (if bidders
bid truthfully, that is bi(ω) = vi(ω) for all bidders i and outcomes ω ∈ Ω, then the mechanism
maximizes the social surplus). We recall that we had to give up the third property (polynomial
running time) already in single-parameter environments; see Subsection 3.1.4 about Knapsack
auctions.

Proof of Theorem 3.18. We proceed in two steps. First, we assume, without justification, that
bidders truthfully reveal their private information, and then figure out which outcome from
Ω to pick. We want to maximize the social surplus, so our allocation rule is forced to pick an
outcome that maximizes the social surplus. So, given bids b = ((b1(ω))ω∈Ω, . . . , (bn(ω))ω∈Ω)
(note that each bid is a vector indexed by Ω), we define the allocation rule by

x(b) = argmaxω∈Ω

n∑
i=1

bi(ω). (3.7)

As the second step, we need to choose payments p so that, together with our allocation
rule x, they form a DSIC multi-parameter mechanism (x, p). We choose p = (p1, . . . , pn) so
that our assumption about bidders revealing their information truthfully is justified. This is
what we have already done in the proof of Myerson’s lemma (Theorem 3.8), which dealt with
single-parameter environments. We recall that allocation rule monotonicity is necessary and
sufficient for implementability and, for monotone rules, Myerson’s lemma gives an explicit
formula for the unique payment rule that meets the DSIC condition. However, Myerson’s
lemma does not hold beyond single-parameter environments, in particular, it is not even clear
how to define monotonicity in multi-parameter environments.

The key idea turns out to be considering the “externality” caused by bidder i, that is, the loss
of social surplus inflicted on the other n− 1 bidders by the presence of bidder i. For example,
in single-item auctions, the winning bidder inflicts a social surplus loss of the second-highest
bid to the others, which is the payment rule in the Vickrey auction. Intuitively, we define the
payments to force each bidder to care about the other n− 1 bidders and not just to care about

himself. Formally, we choose the payment rule as

pi(b) = max
ω∈Ω


n∑

j=1
j ̸=i

bj(ω)

−
n∑

j=1
j ̸=i

bj(ω
∗) (3.8)

for every bidder i, where ω∗ = x(b) is the outcome chosen by our allocation rule x for given
bids b. The first term in the definition of pi(b) is the surplus of the remaining n− 1 bidders if
we omit bidder i. The second term is the social surplus if we consider bidder i. By definition,
the mechanism (x, p) is maximizing social surplus, assuming truthful bids.

It remains to prove that the mechanism (x, p) is DSIC, as then the assumption that bidders
bid truthfully is justified by the first property of DSIC mechanisms (the strong incentive guar-
antees). That is, we need to show that each bidder imaximizes his utility vi(x(b))− pi(b) by
setting bi(ω) = vi(ω) for every ω ∈ Ω. One can show that pi(b) is always non-negative and that
pi(b) ≤ bi(ω∗); see Exercise 3.11. Hence truthtelling agents are guaranteed non-negative utility.

We fix bidder i and the bids of other bidders b−i. If x(b) = ω∗, then the utility of bidder i
equals

vi(ω
∗)− pi(b) =

vi(ω∗) +
n∑

j=1
j ̸=i

bj(ω
∗)

−
max

ω∈Ω


n∑

j=1
j ̸=i

bj(ω)


 ,

where we just expanded the term pi(b) using (3.8). The second term in the expansion is in-
dependent of bi, thus bidder i needs to maximize the first term of the expansion in order to
maximize his utility. However, bidder i cannot influence the outcome ω∗ directly, the mecha-
nism (x, p) gets to choose ω∗. The VCG mechanism chooses ω∗ according to (3.7), so that sums
of bids are maximized. Best case for bidder i is when the mechanism picks ω∗ that maximizes
the first term of the expansion, that is, bidder i wants to select

argmaxω∈Ω

vi(ω) +
n∑

j=1
j ̸=i

bj(ω)

 . (3.9)

If i bids truthfully, then (3.9) becomes the expression in (3.7). Thus, bidding truthfully results
in the mechanism (x, p) choosing an outcome that maximizes agent i’s utility, no other bid
could be better.

Note that we only used the fact that the second term in the expansion of bidder i’s utility
vi(ω

∗)− pi(b) is independent of bi. The reason why we choose the payment formula as in (3.8)
is that, besides natural interpretations, this choice guarantees non-negative payments and also
non-negative utilities of truthtelling bidders.

We now present an alternative way how to think about the payments from (3.8). We can
rewrite the definition of pi(b) as

pi(b) = bi(ω
∗)−

 n∑
j=1

bj(ω
∗)−max

ω∈Ω


n∑

j=1
j ̸=i

bj(ω)


 .

Thus, the payment pi(b) of bidder i is his bid minus the increase in social surplus attributable
to the presence of i. For example, in the Vickrey auction, the highest bidder pays his bid b1
minus b1− b2, where b2 is the bid of the second-highest bidder. Note that b1− b2 is the increase
in social surplus that the highest bidder brings.

To summarize, Theorem 3.18 says that DSIC maximization of social surplus is possible even
in the very general setting of multi-parameter mechanisms. However, in practice, implementing
this can be very hard. Nevertheless, the VCG mechanism serves as a useful benchmark for
other, more practical approaches.

82 MECHANISM DESIGN

3.3.1 The Revelation Principle
So far we have considered only DSIC mechanisms, as they are easy to play and predict. A
natural question is whether we lose anything by restricting ourselves to these mechanisms. We
split the DSIC property into the following two parts:

(a) Each bidder has a dominant strategy, no matter what his private valuation is.

(b) This dominant strategy is of a special type, so-called direct revelation13, where the partici-
pant truthfully reports all of its private information to the mechanism.

To see an example of an auction that satisfies the first property, but not the second one,
consider a single-item auction, where the seller on given bids (b1, . . . , bn) runs a Vickrey’s
auction on bids (2b1, . . . , 2bn). Then each bidder has a dominant strategy and thus the first
property is satisfied. However, this dominant strategy is not direct revelation, as the dominant
strategy of each bidder is to bid half of his value, which is not truthful bidding.

Informally, the Revelation Principle14 says that only the first condition matters while the
second one then comes for free. Clearly, the first condition is not always satisfied, for example,
there are no dominant strategies in first-price auctions. Without this condition, it becomes
harder for the seller to predict the behavior of the bidders, so we need some stronger assump-
tions about the mechanism. We remark that there are such mechanisms that perform better
than DSIC mechanisms, but we will not cover those here. So, in general, it sometimes makes
sense to relax the first condition. The Revelation Principle says that there is no need to relax
the second condition.

Theorem 3.19 (The Revelation Principle). For every multi-parameter mechanismM in which
every bidder has a dominant strategy, no matter what his private valuation is, there is an equiv-
alent mechanismM ′ in which each bidder has a dominant strategy that is a direct revelation.

Proof. The proof proceeds by a simulation argument. For each bidder i and his valuations
(vi(ω)ω∈Ω, let si(vi(ω)ω∈Ω) be the dominant strategy of i in the mechanismM .

We now construct the mechanism M ′ that additionally satisfies the second condition.
The mechanismM ′ accepts sealed bids b1(ω)ω∈Ω, . . . , bn(ω)ω∈Ω from the bidders. ThenM ′

submits the bids s1(b1(ω)ω∈Ω), . . . , sn(bn(ω)ω∈Ω) toM andM ′ outputs the same outcome as
M .

The direct revelation is a dominant strategy inM ′, as if a bidder i has valuations vi(ω)ω∈Ω,
then submitting any other bid than vi(ω)ω∈Ω can only result in playing a different strategy than
si(vi(ω)ω∈Ω) inM ′. This, however, can only decrease the utility of i.

3.3.2 Exercises
Exercise 3.11. Prove that the payment rule from the proof of the VCG mechanism is always
non-negative and bounded from above by bi(ω∗). That is, show that 0 ≤ pi(b) ≤ bi(ω

∗) for
every vector b of bids, where pi(b) is defined in (3.8) and ω∗ is selected by the allocation rule
from (3.7). [1]

Exercise 3.12. Consider a three-item auction with two bidders 1 and 2. The three items A, B,
and C are being auctioned simultaneously, and each bidder can bid on any possible subset of
the items. The valuations of the bidders for each subset of the items are shown in Table 3.1.

(a) What are the outcomes of this VCG auction? In other words, which of the two bidders will
get which item(s) and what payments will they each pay? [3]

(b) Do you expect the bidders to tell you the truth about their valuations? [2]

13 Přímé odhalení.
14 Princip odhalení.

bidder i vi(∅) vi(A) vi(B) vi(C) vi(AB) vi(AC) vi(BC) vi(ABC)

i = 1 0 24 4 9 29 38 20 50

i = 2 0 15 18 11 30 34 32 47

Table 3.1: Valuations of the bidders from Exercise 3.12.

84 MECHANISM DESIGN

Bibliography

[AF92] David Avis and Komei Fukuda. A pivoting algorithm for convex hulls and vertex
enumeration of arrangements and polyhedra. Discrete Comput. Geom., 8(3):295–
313, 1992.

[AH02] Robert J. Aumann and Sergiu Hart, editors. Handbook of game theory with eco-
nomic applications. Vol. 3, volume 11 of Handbooks in Economics. Elsevier/North-
Holland, Amsterdam, 2002.

[Aum74] Robert J. Aumann. Subjectivity and correlation in randomized strategies. J. Math.
Econom., 1(1):67–96, 1974.

[BK96] Jeremy Bulow and Paul Klemperer. Auctions versus negotiations. The American
Economic Review, 86(1):180–194, 1996.

[Bro11] Luitzen E. J. Brouwer. Über Abbildung vonMannigfaltigkeiten.Math. Ann., 71(1):97–
115, 1911.

[CDhT06] X. Chen, X. Deng, and S. h. Teng. Computing nash equilibria: Approximation and
smoothed complexity. In 2006 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’06), pages 603–612, 2006.

[CDRP08] Bruno Codenotti, Stefano De Rossi, and Marino Pagan. An experimental analysis
of lemke-howson algorithm. 2008. arxiv.org/abs/0811.3247.

[CDT09] Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of computing
two-player Nash equilibria. J. ACM, 56(3):Art. 14, 57, 2009.

[Cla71] Edward Clarke. Multipart pricing of public goods. Public Choice, 11(1):17–33, 1971.

[Das13] Constantinos Daskalakis. On the complexity of approximating a Nash equilibrium.
ACM Trans. Algorithms, 9(3):Art. 23, 35, 2013.

[DGP09] Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou. The
complexity of computing a Nash equilibrium. SIAM J. Comput., 39(1):195–259, 2009.

[EY10] Kousha Etessami and Mihalis Yannakakis. On the complexity of Nash equilibria
and other fixed points. SIAM J. Comput., 39(6):2531–2597, 2010.

[Gro73] Theodore Groves. Incentives in teams. Econometrica, 41:617–631, 1973.

[GZ89] Itzhak Gilboa and Eitan Zemel. Nash and correlated equilibria: some complexity
considerations. Games Econom. Behav., 1(1):80–93, 1989.

[Har17] Jason D. Hartline. Mechanism design and approximation. 2017. Book draft.

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded random variables.
J. Amer. Statist. Assoc., 58:13–30, 1963.

[HPV89] Michael D. Hirsch, Christos H. Papadimitriou, and Stephen A. Vavasis. Exponential
lower bounds for finding Brouwer fixed points. J. Complexity, 5(4):379–416, 1989.

[Kak41] Shizuo Kakutani. A generalization of Brouwer’s fixed point theorem. Duke Math.
J., 8:457–459, 1941.

86 BIBLIOGRAPHY

[LBS08] Kevin Leyton-Brown and Yoav Shoham. Essentials of game theory, volume 3 of
Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan &
Claypool Publishers, Williston, VT, 2008. A concise, multidisciplinary introduction.

[LH64] Carlton E. Lemke and Joseph T. Howson, Jr. Equilibrium points of bimatrix games.
J. Soc. Indust. Appl. Math., 12:413–423, 1964.

[LMM03] Richard J. Lipton, Evangelos Markakis, and Aranyak Mehta. Playing large games
using simple strategies. In Proceedings of the 4th ACM Conference on Electronic
Commerce, EC ’03, pages 36–41, New York, NY, USA, 2003. ACM.

[MG06] Jiří Matoušek and Bernd Gärtner. Understanding and Using Linear Programming.
Springer-Verlag New York, Inc., 2006.

[MP91] Nimrod Megiddo and Christos H. Papadimitriou. On total functions, existence
theorems and computational complexity. Theoret. Comput. Sci., 81(2, Algorithms
Automat. Complexity Games):317–324, 1991.

[Mye81] Roger B. Myerson. Optimal auction design. Math. Oper. Res., 6(1):58–73, 1981.

[Nas50] John F. Nash, Jr. Equilibrium points in n-person games. Proc. Nat. Acad. Sci. U. S.
A., 36:48–49, 1950.

[Nas51] John F. Nash, Jr. Non-cooperative games. Ann. of Math. (2), 54:286–295, 1951.

[NRTV07] Noam Nisan, Tim Roughgarden, Éva Tardos, and Vijay V. Vazirani, editors. Algo-
rithmic game theory. Cambridge University Press, Cambridge, 2007.

[Pap94] Christos H. Papadimitriou. On the complexity of the parity argument and other
inefficient proofs of existence. J. Comput. System Sci., 48(3):498–532, 1994. 31st
Annual Symposium on Foundations of Computer Science (FOCS) (St. Louis, MO,
1990).

[Pap07] Christos H. Papadimitriou. The complexity of finding nash equilibria. In Noam
Nisan, Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani, editors, Algorithmic
Game Theory, pages 29–52. Cambridge University Press, 2007.

[Rou10] Tim Roughgarden. Computing equilibria: a computational complexity perspective.
Econom. Theory, 42(1):193–236, 2010.

[Rou16] Tim Roughgarden. Twenty lectures on algorithmic game theory. Cambridge Uni-
versity Press, Cambridge, 2016.

[Ste02] Bernhard Von Stengel. Computing equilibria for two-person games. In R. J. Au-
mann and S. Hart, editors, Handbook of Game Theory with Economic Applications,
volume 3, chapter 45, pages 1723–1759. Elsevier, 2002.

[Vic61a] William Vickrey. Counterspeculation, auctions, and competitive sealed tenders. J.
Finance, 16(1):8–37, 1961.

[Vic61b] William Vickrey. Counterspeculation, auctions, and competitive sealed tenders. J.
Finance, 16(1):8–37, 1961.

[vN28] John von Neumann. Zur Theorie der Gesellschaftsspiele. Math. Ann., 100(1):295–
320, 1928.

[vNMKR44] John von Neumann, Oskar Morgenstern, Harold W. Kuhn, and Ariel Rubinstein.
Theory of Games and Economic Behavior (60th Anniversary Commemorative Edi-
tion). Princeton University Press, 1944.

