Algorithmic game theory – Tutorial 6^*

November 18th, 2024

1 Regret minimization

For a normal-form game G = (P, A, C) of n players, a probability distribution p(a) on A is a correlated equilibrium in G if $\sum_{a_{-i} \in A_{-i}} C_i(a_i; a_{-i})p(a_i; a_{-i}) \leq \sum_{a_{-i} \in A_{-i}} C_i(a'_i; a_{-i})p(a_i; a_{-i})$ for every player $i \in P$ and all $a_i, a'_i \in A_i$. A probability distribution p(a) on A is a coarse correlated equilibrium in G if $\sum_{a \in A} C_i(a)p(a) \leq \sum_{a \in A} C_i(a'_i; a_{-i})p(a)$ for every player $i \in P$ and every $a'_i \in A_i$.

Exercise 1. Show formally that every correlated equilibrium is a coarse correlated equilibrium.

Exercise 2. Compute all coarse correlated equilibria in the Prisoner's dilemma game.

	Т	S
Т	(2,2)	(0,3)
\mathbf{S}	$(3,\!0)$	(1,1)

rabie r. rne game nom Exercise	Table 1	: The	game	from	Exercise	2
--------------------------------	---------	-------	------	------	----------	---

There are N available actions $X = \{1, ..., N\}$ and at each time step t the online algorithm A selects a probability distribution $p^t = (p_1^t, ..., p_N^t)$ over X. After the distribution p^t is chosen at time step t, the adversary chooses a loss vector $\ell^t = (\ell_1^t, ..., \ell_N^t) \in [-1, 1]^N$, where the number ℓ_i^t is the loss of action i in time t. The algorithm A then experiences loss $\ell_A^t = \sum_{i=1}^N p_i^t \ell_i^t$. After T steps, the loss of action i is $L_i^T = \sum_{t=1}^T \ell_i^t$ and the loss of A is $L_A^T = \sum_{t=1}^T \ell_A^t$. The external regret of A is $R_A^T = \max_{i \in X} \{L_A^T - L_i^T\}$.

Exercise 3. Let A be an algorithm with parameter $\eta \in (0, 1/2]$ and with external regret at most $\alpha/\eta + \beta\eta T$ for some constants α, β (that may depend on the number N of actions). We showed that choosing $\eta = \sqrt{\alpha/(T\beta)}$ minimizes the bound. Modify this algorithm so that we obtain an external regret bound that is at most O(1)-times larger that the original bound for any T. In particular, you cannot run A with a parameter η that depends on T.

Hint: Partition the set $\{1, \ldots, T\}$ into suitable intervals I_m for $m = 0, 1, 2, \ldots$ and run A with a suitable parameter η_m in every step from I_m .

Exercise 4 (*). Prove the following statements about lower bounds on the external regret.

- (a) For integers N and T with $T < \lfloor \log_2 N \rfloor$, there exists a stochastic generation of losses such that, for every online algorithm A, we have $\mathbb{E}[L_A^T] \ge T/2$ and yet $L_{min}^T = 0$.
- (b) In the case of N = 2 actions, there exists a stochastic generation of losses such that, for every online algorithm A, we have $\mathbb{E}[L_A^T L_{min}^T] \ge \Omega(\sqrt{T})$.

Exercise 5. Consider the following setting in which the agent A tries to learn the setup in an adversary environment while using information given to him by a set S_0 of N experts. The setting proceeds in a sequence of steps t = 1, ..., T. In every step t, the environment picks $y_t \in \{0, 1\}$, which is unknown to A and to the experts, and each expert i gives a recommendation $f_{i,t} \in \{0, 1\}$ to A. The agent A then makes prediction $z_t \in \{0, 1\}$ based on the experts' advice and then sees y_t . The goal of A is to minimize the number $M^T(A)$ of steps t in which $z_t \neq y_t$.

- (a) Assume that, in each step t, the agent A selects z_t to be the majority vote of all experts from S_{t-1} and, after seeing y_t , he lets S_t be the number of agents $i \in S_{t-1}$ with the right guess $f_{i,t} = z_t$. Also, assume that there is a perfect expert who always guesses right. Prove that then $M^T(A) \leq \log_2 N$.
- (b) Modify the above algorithm of the agent so that $M^T(A) \leq O((m+1)\log_2 N)$ when the best expert makes $m \geq 0$ mistakes.

^{*}Information about the course can be found at http://kam.mff.cuni.cz/~balko/