Algorithmic game theory – Tutorial 3^*

October 21st 2024

1 Bimatrix games

A bimatrix game is a normal-form game of 2 players. A bimatrix game is non-degenerate of every player has at most k pure best responses to every strategy with support of size k. A zero-sum bimatrix game is a game where the utility of one player equals the loss of the other one. For a bimatrix game $G = (\{1,2\}, A, u)$ with $A_1 = \{1, \ldots, m\}$ and $A_2 = \{1, \ldots, n\}$, we use the payoff matrices M and N where $(M)_{i,j} = u_1(i,j)$ and $(N)_{i,j} = u_2(i,j)$ for all $i \in A_1$ and $j \in A_2$.

The following algorithm for computing NE in non-degenerate games was shown at the lecture.

Algorithm 1.1: SUPPORT ENUMERATION(G)

 $\begin{array}{l} Input: \mbox{ A non-degenerate game } G. \\ Output: \mbox{ All Nash equilibria of } G. \\ \mbox{for every } k \in \{1, \ldots, \min\{m, n\}\} \mbox{ and a pair of supports } (I, J) \mbox{ of size } k \\ \\ \left\{ \begin{array}{l} \mbox{solve the system of equations } \sum_{i \in I} (N^{\top})_{j,i} x_i = v, \sum_{j \in J} (M)_{i,j} y_j = u, \\ \mbox{ for all } i \in I, j \in J \mbox{ and } \sum_{i \in I} x_i = 1, \sum_{j \in J} y_j = 1 \\ \mbox{ if } x, y \geq \mathbf{0} \mbox{ and } u = \max\{(M)_i y \colon i \in A_1\}, v = \max\{(N^{\top})_j x \colon j \in A_2\}, \\ \mbox{ return } (x, y) \mbox{ as Nash equilibrium} \end{array} \right.$

Exercise 1. Use the Support enumeration algorithm to find a Nash equilibrium of the Game of chicken with supports of size 2.

	Turn (1)	Go straight (2)
Turn (1)	(0, 0)	(-1, 1)
Go straigth (2)	(1, -1)	(-10, -10)

Exercise 2. Decide whether the Game for Gotham's soul is degenerate and find all Nash equilibria of this game. How is the set of equilibria different from previously computed examples?

	Cooperate (1)	Detonate (2)
Cooperate (1)	(0, 0)	(0, 1)
Detonate (2)	(1,0)	(0, 0)

Table 2: The Game for Gotham's soul.

Exercise 3. Decide which of these two payoff matrices determines a degenerate game.

(a)
$$M = \begin{pmatrix} 0 & 4 & 1 \\ 2 & 2 & 4 \\ 3 & 2 & 2 \end{pmatrix}$$
 and $N = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 3 & 4 \\ 0 & 1 & 1 \end{pmatrix}$

^{*}Informace o cvičení naleznete na http://kam.mff.cuni.cz/~balko/

(b)
$$M = \begin{pmatrix} 0 & 4 & 1 \\ 2 & 2 & 4 \\ 3 & 2 & 2 \end{pmatrix}$$
 and $N = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 3 & 1 \\ 3 & 4 & 1 \end{pmatrix}$.

Exercise 4. Prove that the following linear programs from the proof of the Minimax theorem are dual to each other.

(a) For a matrix $M \in \mathbb{R}^{m \times n}$,

	Program P	Program D
Variables	y_1,\ldots,y_n	x_0
Objective function	$\min x^{\top} M y$	$\max x_0$
Constraints	$\sum_{j=1}^{n} y_j = 1,$	$1x_0 \le M^\top x.$
	$y_1,\ldots,y_n\geq 0.$	

(b) For a matrix $M \in \mathbb{R}^{m \times n}$,

	Program P'	Program D'
Variables	y_0, y_1, \ldots, y_n	x_0, x_1, \ldots, x_m
Objective function	$\min y_0$	$\max x_0$
Constraints	$1y_0 - My \ge 0,$	$1x_0 - M^\top x \le 0,$
	$\sum_{j=1}^{n} y_j = 1,$	$\sum_{i=1}^{m} x_i = 1,$
	$y_1,\ldots,y_n\geq 0.$	$x_1,\ldots,x_m \ge 0.$

You can use the following recipe for duality.

	Primal	Dual
Variables	$\mathbf{x} = (x_1, \dots, x_m)$	$\mathbf{y} = (y_1, \dots, y_n)$
Constraint matrix	$A \in \mathbb{R}^{n \times m}$	$A^\top \in \mathbb{R}^{m \times n}$
Right-hand side	$\mathbf{b} \in \mathbb{R}^n$	$\mathbf{c} \in \mathbb{R}^m$
Objective function	$\max \mathbf{c}^{\top} \mathbf{x}$	$\min \mathbf{b}^{ op} \mathbf{y}$
Constraints	<i>i</i> th constraint has \leq	$y_i \ge 0$
	\geq	$y_i \le 0$
	=	$y_i \in \mathbb{R}$
	$x_j \ge 0$	j th contraints has \geq
	$x_j \le 0$	≤
	$x_j \in \mathbb{R}$	=

Exercise 5 (*). Prove that if a bimatrix game is non-degenerate, then the system of equations in the Support enumeration algorithm has a unique solution with $\mathbf{x}, \mathbf{y} > \mathbf{0}$, $u = \max\{(M)_i y: i \in A_1\}$ and $v = \max\{(N^{\top})_j x: j \in A_2\}$.

Hint: Prove that if there are more solutions, then we can reduce the support.

Exercise 6. Prove that if (s_1, s_2) and (s'_1, s'_2) are mixed Nash equilibria of a two-player zero-sum game, then so are (s_1, s'_2) and (s'_1, s_2) .