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January 6th 2025

1 Bulow–Klemperer theorem

Theorem 1 (The Bulow–Klemperer Theorem). Let F = F1 = · · · = Fn be a regular probability
distribution and let n be a positive integer. Then the following inequality holds

Ev1,...,vn+1∼F [Rev(V An+1)] ≥ Ev1,...,vn∼F [Rev(OPTF,n)] , (1)

where Rev(V An+1) denotes the revenue of Vickrey auction V An+1 with n + 1 bidders (and no
reserve) and Rev(OPTF,n) denotes the revenue of the optimal auction OPTF,n for F with n bidders.

Exercise 1. Consider a single-item auction with n ≥ 2 bidders that draw their valuations from
a regular probability distribution F . Prove that the expected revenue of the Vickrey auction with
no reserve is at least n−1

n -fraction of the expected revenue of the optimal auction with the same
number n of bidders.

Hint: deduce this statement from the Bulow–Klemperer theorem. When one new bidder is
added, how much can the maximum-possible expected revenue increase?

2 Multi-parameter mechanism design

In multi-parameter mechanism design, we have the following setting:

(a) n strategic participants (or bidders),

(b) a finite set Ω of outcomes,

(c) each bidder i has a private valuation vi(ω) ≥ 0 for every outcome ω ∈ Ω.

Each bidder i submits his bids bi(ω) for each ω ∈ Ω and our goal is to design a mechanism that
selects an outcome ω ∈ Ω so that it maximizes the social surplus

∑n
i=1 vi(ω).

Theorem 2 (The Vickrey–Clarke–Groves (VCG) mechanism). In every multi-parameter mecha-
nism design environment, there is a DSIC social-surplus-maximizing mechanism.

Exercise 2. Prove that the payment rule from the proof of the VCG mechanism is always non-
negative and bounded from above by bi(ω

∗). That is, show that 0 ≤ pi(b) ≤ bi(ω
∗) for every vector

b of bids, where

pi(b) = max
ω∈Ω


n∑

j=1
j ̸=i

bj(ω)

−
n∑

j=1
j ̸=i

bj(ω
∗)

and

ω∗ = argmaxω∈Ω

n∑
i=1

bi(ω).

Exercise 3. Consider a three-item auction with two bidders 1 and 2. The three items A, B, and
C are being auctioned simultaneously, and each bidder can bid on any possible subset of the items.
The valuations of the bidders for each subset of the items are shown in Table 1. What are the
outcomes of this VCG auction? In other words, which of the two bidders will get which item(s)
and what payments will they each pay?

*Information about the course can be found at http://kam.mff.cuni.cz/˜balko/
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bidder i vi(∅) vi(A) vi(B) vi(C) vi(AB) vi(AC) vi(BC) vi(ABC)

i = 1 0 24 4 9 29 38 20 50

i = 2 0 15 18 11 30 34 32 47

Table 1: Valuations of the bidders from Exercise 3.

3 Knapsack auctions

In a single-parameter environment, we assume that the bidders 1, . . . , n are sorted in the order <
so that b1

w1
≥ · · · ≥ bn

wn
. Consider the following greedy allocation rule xG = (xG

1 , . . . , x
G
n ) ∈ X,

which for given bids b = (b1, . . . , bn) selects a subset of bidders so that
∑n

i=1 x
G
i wi ≤ W using the

following procedure.

1. Pick winners in the order < until one does not fit and then halt.

2. Return either the solution from the first step or the highest bidder, whichever creates more
social surplus.

Exercise 4. ( a) Prove that the Knapsack auction allocation rule xG induced by the greedy (1/2)-
approximation algorithm is monotone.

(b) Prove that it suffices to change only two coefficients αi and βj in the proof of Theorem 3.10
(the correctness of the (1/2)-approximation algorithm that is based on xG).
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