Algorithmic game theory

Martin Balko

9th lecture

December 7th 2023

• Last lecture, we introduced a new notion of games, so-called games in extensive form, which are described using trees.

• Last lecture, we introduced a new notion of games, so-called games in extensive form, which are described using trees.

Today, we describe strategies for such games and how to compute Nash equilibria.

• Extensive game consists of a directed tree where nodes represent game states.

- Extensive game consists of a directed tree where nodes represent game states.
- The game starts at the root of the tree and ends at a leaf, where each player receives a payoff.

- Extensive game consists of a directed tree where nodes represent game states.
- The game starts at the root of the tree and ends at a leaf, where each player receives a payoff. Each node that is not a leaf is a decision node.

- Extensive game consists of a directed tree where nodes represent game states.
- The game starts at the root of the tree and ends at a leaf, where each player receives a payoff. Each node that is not a leaf is a decision node.
- Moves a player can made in a given state are assigned to the outgoing edges of the corresponding decision node.

- Extensive game consists of a directed tree where nodes represent game states.
- The game starts at the root of the tree and ends at a leaf, where each player receives a payoff. Each node that is not a leaf is a decision node.
- Moves a player can made in a given state are assigned to the outgoing edges of the corresponding decision node.
- We partition decision nodes into information sets where all nodes in an information set belong to the same player and have the same moves.

- Extensive game consists of a directed tree where nodes represent game states.
- The game starts at the root of the tree and ends at a leaf, where each player receives a payoff. Each node that is not a leaf is a decision node.
- Moves a player can made in a given state are assigned to the outgoing edges of the corresponding decision node.
- We partition decision nodes into information sets where all nodes in an information set belong to the same player and have the same moves.
- For player *i*, we let *H_i* be the set of information sets of *i* and, for an information set *h* ∈ *H_i*, we let *C_h* be the set of moves at *h*.

- Extensive game consists of a directed tree where nodes represent game states.
- The game starts at the root of the tree and ends at a leaf, where each player receives a payoff. Each node that is not a leaf is a decision node.
- Moves a player can made in a given state are assigned to the outgoing edges of the corresponding decision node.
- We partition decision nodes into information sets where all nodes in an information set belong to the same player and have the same moves.
- For player *i*, we let *H_i* be the set of information sets of *i* and, for an information set *h* ∈ *H_i*, we let *C_h* be the set of moves at *h*.
- In perfect-information games all information sets are singletons.

Example

 An example of an imperfect-information game in extensive form (part (a)) and its normal-form (part (b)).

Example: Prisoner's dilemma

Example: Prisoner's dilemma

Prisoner's dilemma in extensive form (part (a)) and its normal-form (part (b)).

Example: Prisoner's dilemma

Prisoner's dilemma in extensive form (part (a)) and its normal-form (part (b)).

 Every normal-form game can be expressed as an imperfect-information extensive game.

- Extensive game consists of a directed tree where nodes represent game states.
- The game starts at the root of the tree and ends at a leaf, where each player receives a payoff. Each node that is not a leaf is a decision node.
- Moves a player can made in a given state are assigned to the outgoing edges of the corresponding decision node.
- We partition decision nodes into information sets where all nodes in an information set belong to the same player and have the same moves.
- For player *i*, we let *H_i* be the set of information sets of *i* and, for an information set *h* ∈ *H_i*, we let *C_h* be the set of moves at *h*.
- In perfect-information games all information sets are singletons.

• An example of a perfect-information game in extensive form (part (a)) and its normal-form (part (b)).

(b)

	(C, E)	(C, F)	(D, E)	(D,F)
(A,G)	(3,8)	(3,8)	(8,3)	(8,3)
(A, H)	(3,8)	(3,8)	(8,3)	(8,3)
(B,G)	(5,5)	(2,10)	(5,5)	(2,10)
(B,H)	(5,5)	(1,0)	(5,5)	(1,0)

• An example of a perfect-information game in extensive form (part (a)) and its normal-form (part (b)).

(C, E)

(3,8)

(3,8)

(5.5)

(5.5)

(C, F)

(3,8)

(3,8)

(2.10)

(1.0)

(D, E)

(8,3)

(8,3)

(5.5)

(5.5)

(D, F

(8,3)

(8,3)

(2.10)

(1.0)

• A strategy of player 1 that selects A with probability $\frac{1}{2}$ and G with probability $\frac{1}{3}$ is a behavioral strategy.

 An example of a perfect-information game in extensive form (part (a)) and its normal-form (part (b)).

(C, E)

(3,8)

(3,8)

(5.5)

(5.5)

(C, F)

(3.8)

(3,8)

(2.10)

(1.0)

(D, E)

(8,3)

(8,3)

(5.5)

(5.5)

(D, F

(8,3)

(8,3)

(2.10)

(1.0)

- A strategy of player 1 that selects A with probability $\frac{1}{2}$ and G with probability $\frac{1}{3}$ is a behavioral strategy.
- The mixed strategy (³/₅(A, G), ²/₅(B, H)) is not a behavioral strategy for 1 as the choices made by him at the two nodes are not independent.

Kuhn's Theorem

Kuhn's Theorem

• In a game of perfect recall, any mixed strategy of a given player can be replaced by an equivalent behavioral strategy, and any behavioral strategy can be replaced by an equivalent mixed strategy.

Kuhn's Theorem

• In a game of perfect recall, any mixed strategy of a given player can be replaced by an equivalent behavioral strategy, and any behavioral strategy can be replaced by an equivalent mixed strategy.

Figure: Harold William Kuhn (1925–2014).

Sources: https://alchetron.com/Harold-W-Kuhn and https://www.cantorsparadise.com/

Example: sequence form constraints

Example: sequence form constraints

 An example of an imperfect-information game in extensive form (part (a)) and linear constraints in its sequence form (part (b)).

Example: sequence form payoff matrices

Example: sequence form payoff matrices

• An example of an imperfect-information game in extensive form (part (a)) and its sequence form payoff matrices (part (b)).

• More about games in extensive form + implementation of the algorithms is taught in a new lecture by Martin Schmid.

• More about games in extensive form + implementation of the algorithms is taught in a new lecture by Martin Schmid.

Novinky.cz

Novinky.cz » Internet a PC » Češi vytvořili umělou inteligenci, která drtí v ... Podrubríky: Hardware • Software • Testy • Hry a herní systémy • Mobil

Češi vytvořili umělou inteligenci, která drtí v pokeru jednoho hráče za druhým

3. 3. 2017, 15:44 - mif, Novinky

Vědci z Matematicko-fyzikální fakulty Univerzity Karlovy a Fakulty elektrotechnické ČVUT v Praze pracovali několik posledních měsiců na vývoji umělé inteligence, jejímž hlavním úkolem bude stát se špičkou v karetní hře Poker Texas Hold'em. A to se skutečně podařilo, program porzall hned několik profesionálních hráčů.

• More about games in extensive form + implementation of the algorithms is taught in a new lecture by Martin Schmid.

Novinky.cz

Novinky.cz » Internet a PC » Češi vytvořili umělou inteligenci, která drtí v ... Podrubríky: Hardware • Software • Testy • Hry a herní systémy • Mobi

Češi vytvořili umělou inteligenci, která drtí v pokeru jednoho hráče za druhým

3. 3. 2017, 15:44 - mif, <u>Novinky</u>

Vědci z Matematicko-fyzikální fakulty Univerzity Karlovy a Fakulty elektrotechnické ČVUT v Praze pracovali několik posledních měsíců na vývoji umělé inteligence, jejímž hlavním úkolem bude stát se špičkou v karetní hře Poker Texas Hold'em. A to se skutečně podařilo, program porazil hned několik profesionálních hráčů.

Thank you for your attention.