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The definitions

• Extensive game consists of a directed tree where nodes represent game
states.

• The game starts at the root of the tree and ends at a leaf, where each
player receives a payoff. Each node that is not a leaf is a decision node.

• Moves a player can made in a given state are assigned to the outgoing
edges of the corresponding decision node.

• We partition decision nodes into information sets where all nodes in an
information set belong to the same player and have the same moves.

• For player i , we let Hi be the set of information sets of i and, for an
information set h ∈ Hi , we let Ch be the set of moves at h.

• In perfect-information games all information sets are singletons.
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Example

• An example of an imperfect-information game in extensive form
(part (a)) and its normal-form (part (b)).
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• An example of a perfect-information game in extensive form (part (a))
and its normal-form (part (b)).
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2

and G with
probability 1
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is a behavioral strategy.

• The mixed strategy (3
5
(A,G ), 2

5
(B ,H)) is not a behavioral strategy for

1 as the choices made by him at the two nodes are not independent.
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Kuhn’s Theorem

• In a game of perfect recall, any mixed strategy of a given player can be
replaced by an equivalent behavioral strategy, and any behavioral
strategy can be replaced by an equivalent mixed strategy.

Figure: Harold William Kuhn (1925–2014).

Sources: https://alchetron.com/Harold-W-Kuhn and https://www.cantorsparadise.com/
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Example: sequence form constraints

• An example of an imperfect-information game in extensive form
(part (a)) and linear constraints in its sequence form (part (b)).
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Example: sequence form payoff matrices

• An example of an imperfect-information game in extensive form
(part (a)) and its sequence form payoff matrices (part (b)).
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• More about games in extensive form + implementation of the
algorithms is taught in a new lecture by Martin Schmid.
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