Algorithmic game theory

Martin Balko

9th lecture

December 7th 2023

Games in extensive form

Games in extensive form

Games in extensive form

- Last lecture, we introduced a new notion of games, so-called games in extensive form, which are described using trees.

Games in extensive form

- Last lecture, we introduced a new notion of games, so-called games in extensive form, which are described using trees.

- Today, we describe strategies for such games and how to compute Nash equilibria.

The definitions

The definitions

- Extensive game consists of a directed tree where nodes represent game states.

The definitions

- Extensive game consists of a directed tree where nodes represent game states.
- The game starts at the root of the tree and ends at a leaf, where each player receives a payoff.

The definitions

- Extensive game consists of a directed tree where nodes represent game states.
- The game starts at the root of the tree and ends at a leaf, where each player receives a payoff. Each node that is not a leaf is a decision node.

The definitions

- Extensive game consists of a directed tree where nodes represent game states.
- The game starts at the root of the tree and ends at a leaf, where each player receives a payoff. Each node that is not a leaf is a decision node.
- Moves a player can made in a given state are assigned to the outgoing edges of the corresponding decision node.

The definitions

- Extensive game consists of a directed tree where nodes represent game states.
- The game starts at the root of the tree and ends at a leaf, where each player receives a payoff. Each node that is not a leaf is a decision node.
- Moves a player can made in a given state are assigned to the outgoing edges of the corresponding decision node.
- We partition decision nodes into information sets where all nodes in an information set belong to the same player and have the same moves.

The definitions

- Extensive game consists of a directed tree where nodes represent game states.
- The game starts at the root of the tree and ends at a leaf, where each player receives a payoff. Each node that is not a leaf is a decision node.
- Moves a player can made in a given state are assigned to the outgoing edges of the corresponding decision node.
- We partition decision nodes into information sets where all nodes in an information set belong to the same player and have the same moves.
- For player i, we let H_{i} be the set of information sets of i and, for an information set $h \in H_{i}$, we let C_{h} be the set of moves at h.

The definitions

- Extensive game consists of a directed tree where nodes represent game states.
- The game starts at the root of the tree and ends at a leaf, where each player receives a payoff. Each node that is not a leaf is a decision node.
- Moves a player can made in a given state are assigned to the outgoing edges of the corresponding decision node.
- We partition decision nodes into information sets where all nodes in an information set belong to the same player and have the same moves.
- For player i, we let H_{i} be the set of information sets of i and, for an information set $h \in H_{i}$, we let C_{h} be the set of moves at h.
- In perfect-information games all information sets are singletons.

Example

Example

- An example of an imperfect-information game in extensive form (part (a)) and its normal-form (part (b)).

(b)

	(ℓ)	(r)
(L, S)	$(2,2)$	$(5,6)$
(L, T)	$(0,3)$	$(6,1)$
(R, S)	$(3,3)$	$(3,3)$
(R, T)	$(3,3)$	$(3,3)$

Example: Prisoner's dilemma

Example: Prisoner's dilemma

- Prisoner's dilemma in extensive form (part (a)) and its normal-form (part (b)).

(b)

Example: Prisoner's dilemma

- Prisoner's dilemma in extensive form (part (a)) and its normal-form (part (b)).
(a)

$$
(-1,-1) \quad(-3,0) \quad(0,-3) \quad(-2,-2)
$$

- Every normal-form game can be expressed as an imperfect-information extensive game.

The definitions

- Extensive game consists of a directed tree where nodes represent game states.
- The game starts at the root of the tree and ends at a leaf, where each player receives a payoff. Each node that is not a leaf is a decision node.
- Moves a player can made in a given state are assigned to the outgoing edges of the corresponding decision node.
- We partition decision nodes into information sets where all nodes in an information set belong to the same player and have the same moves.
- For player i, we let H_{i} be the set of information sets of i and, for an information set $h \in H_{i}$, we let C_{h} be the set of moves at h.
- In perfect-information games all information sets are singletons.

Example: behavioral strategy

Example: behavioral strategy

- An example of a perfect-information game in extensive form (part (a)) and its normal-form (part (b)).

(b)

	(C, E)	(C, F)	(D, E)	(D, F)
(A, G)	$(3,8)$	$(3,8)$	$(8,3)$	$(8,3)$
(A, H)	$(3,8)$	$(3,8)$	$(8,3)$	$(8,3)$
(B, G)	$(5,5)$	$(2,10)$	$(5,5)$	$(2,10)$
(B, H)	$(5,5)$	$(1,0)$	$(5,5)$	$(1,0)$

Example: behavioral strategy

- An example of a perfect-information game in extensive form (part (a)) and its normal-form (part (b)).

- A strategy of player 1 that selects A with probability $\frac{1}{2}$ and G with probability $\frac{1}{3}$ is a behavioral strategy.

Example: behavioral strategy

- An example of a perfect-information game in extensive form (part (a)) and its normal-form (part (b)).
(a)

(b)

	(C, E)	(C, F)	(D, E)	(D, F)
(A, G)	$(3,8)$	$(3,8)$	$(8,3)$	$(8,3)$
(A, H)	$(3,8)$	$(3,8)$	$(8,3)$	$(8,3)$
(B, G)	$(5,5)$	$(2,10)$	$(5,5)$	$(2,10)$
(B, H)	$(5,5)$	$(1,0)$	$(5,5)$	$(1,0)$

- A strategy of player 1 that selects A with probability $\frac{1}{2}$ and G with probability $\frac{1}{3}$ is a behavioral strategy.
- The mixed strategy $\left(\frac{3}{5}(A, G), \frac{2}{5}(B, H)\right)$ is not a behavioral strategy for 1 as the choices made by him at the two nodes are not independent.

Kuhn's Theorem

Kuhn's Theorem

- In a game of perfect recall, any mixed strategy of a given player can be replaced by an equivalent behavioral strategy, and any behavioral strategy can be replaced by an equivalent mixed strategy.

Kuhn's Theorem

- In a game of perfect recall, any mixed strategy of a given player can be replaced by an equivalent behavioral strategy, and any behavioral strategy can be replaced by an equivalent mixed strategy.

Figure: Harold William Kuhn (1925-2014).

Example: sequence form constraints

Example: sequence form constraints

- An example of an imperfect-information game in extensive form (part (a)) and linear constraints in its sequence form (part (b)).

(b)
$E=\left(\begin{array}{ccccc}1 & & & & \\ -1 & 1 & 1 & & \\ & -1 & & 1 & 1\end{array}\right), \quad e=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$,

$$
F=\left(\begin{array}{ccc}
1 & & \\
-1 & 1 & 1
\end{array}\right), \quad f=\binom{1}{0} .
$$

Example: sequence form payoff matrices

Example: sequence form payoff matrices

- An example of an imperfect-information game in extensive form (part (a)) and its sequence form payoff matrices (part (b)).

(b)

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
\emptyset & \ell & r \\
& & \\
& & \\
3 & & \\
& & \\
& 2 & 5 \\
& 0 & 6
\end{array}\right) \quad L \begin{array}{l}
L \\
\\
\end{array} \\
& B=\left(\begin{array}{ccc}
\emptyset & \ell & r \\
\\
& & \\
3 & & \\
3 & & \\
& 2 & 6 \\
& 3 & 1
\end{array}\right) \quad \begin{array}{l}
L S \\
\\
\\
\end{array}
\end{aligned}
$$

- More about games in extensive form + implementation of the algorithms is taught in a new lecture by Martin Schmid.
- More about games in extensive form + implementation of the algorithms is taught in a new lecture by Martin Schmid.

Novinky.cz

Novinky.cz » Internet a PC » Češi vytvorili umèlou inteligenci, která drti v ... Podrubriky: Hardware - Software - Testy - Hry a herni systémy - Mobil
Češi vytvořili umělou inteligenci, která drtí v pokeru jednoho hráče za druhým
3. 3. 2017, $15: 44$ - mif, Novinky
f Facebook \vee Twitter
Vědci z Matematicko-fyzikální fakulty Univerzity Karlovy a Fakulty elektrotechnické ČVUT
v Praze pracovali několik posledních měsíců na vývoji umělé inteligence, jejímž hlavním úkolem bude stát se špičkou v karetní hře Poker Texas Hold'em. A to se skutečně podařilo, program porazil hned několik profesionálních hráčủ.

- More about games in extensive form + implementation of the algorithms is taught in a new lecture by Martin Schmid.

Novinky.cz

Novinky.cz » Internet a PC » Češi vytvorili umělou inteligenci, která drti v... Podrubriky: Hardware - Software - Testy - Hry a herní systémy - Mobil
Češi vytvořili umělou inteligenci, která drtí v pokeru jednoho hráče za druhým
3. 3. 2017, $15: 44$ - mif, Novinky

Vědci z Matematicko-fyzikální fakulty Univerzity Karlovy a Fakulty elektrotechnické ČVUT
v Praze pracovali několik posledních měsíců na vývoji umělé inteligence, jejímž hlavním úkolem bude stát se špičkou v karetní hře Poker Texas Hold'em. A to se skutečně podařilo, program porazil hned několik profesionálních hráčủ.

Thank you for your attention.

