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Applications of

regret minimization



Concluding the story of NE

• We learned that Nash equilibria (NE) always exist. However, there
seem to be no polynomial algorithm for computing NE.

• Therefore we came up with “relaxations” of NE. Correlated equilibria
(CE) look particularly interesting as we can compute them in
polynomial time using linear programming.

• Using external regret minimization, we can apply no-regret dynamics to
converge to coarse correlated equilibria (CCE).
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• Today, we introduce a new notion of regret that will converge to CE.
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Our notation

• Agent A with actions X = {1, . . . ,N} selects a probability distribution
pt = (pt1, . . . , p

t
N) at every step t = 1, . . . ,T .

• After that, the adversary environment selects a loss vector
`t = (`t1, . . . , `

t
N) ∈ [−1, 1]N at every step t = 1, . . . ,T .

• The agent A receives loss `tA =
∑N

i=1 p
t
i `

t
i at step t. The cumulative

loss of A is LTA =
∑T

t=1 `
t
A. The cumulative loss of i is LTi =

∑T
t=1 `

t
i .

• Given a comparison class AX of agents Ai that select a single action i
in all steps, we let LTmin = mini∈X{LTAi

} be the minimum cumulative loss
of an agent from AX .

• Our goal is to minimize the external regret RT
A = LTA − LTmin.
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The No-swap-regret dynamics

• Using swap regret instead of external regret, we get:

Algorithm 0.1: No-swap-regret dynamics(G ,T , ε)

Input : A normal-form game G = (P,A,C ) of n players, T ∈ N, and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and t ∈ {1, . . . ,T}.
for every step t = 1, . . . ,T

do



Each player i ∈ P independently chooses a mixed strategy pti
using an algorithm with average swap regret at most ε, with
actions corresponding to pure strategies.
Each player i ∈ P receives a loss vector `ti = (`ti (ai ))ai∈Ai

, where
`ti (ai )← Eat−i∼p

t
−i
[Ci (ai ; a

t
−i )] for the product distribution

pt−i =
∏

j 6=i p
t
j .

Output {pt : t ∈ {1, . . . ,T}}.

• No-swap-regret dynamics then converges to a correlated equilibrium.
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Games in extensive form

• In normal-form games, players act simultaneously resulting in a static
description of a game.
• Today, we describe a different representation of games which provides a

dynamic description where players act sequentially.
• Instead of tables, we describe games using trees.

Zdroj: https://cz.pinterest.com

• For some of these games, we show how to compute NE.
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Example: normal-form of chess

Source: https://edition.cnn.com/

• Chess as a normal-form game: Each action of player i ∈ {black,white}
is a list of all possible situations that can happen on the board together
with the move player i would make in that situation. Then we can
simulate the whole game of chess in one round.
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Example: extensive form of chess

• Root corresponds to the initial position of the chessboard. Each
decision node represents a position on the chessboard and its outgoing
edges correspond to possible moves in such a position.
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Example

• An example of an imperfect-information game in extensive form
(part (a)) and its normal-form (part (b)).

1

1

2

L R

` r

S T S T

(3, 3)

(6, 1)(5, 6)(0, 3)(2, 2)

(a) (b)

(`) (r)
(L, S) (2,2) (5,6)
(L, T ) (0,3) (6,1)
(R,S) (3,3) (3,3)
(R, T ) (3,3) (3,3)
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Example: Prisoner’s dilemma

• Prisoner’s dilemma in extensive form (part (a)) and its normal-form
(part (b)).
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Example: Russian roulette

• We have two players with a six-shot revolver containing a single bullet.
Each player has two moves: shoot or give up. If player gives up, he
loses the game immediately. If he shoots, then he either dies or
survives, in which case the other player is on turn.

Source: https://www.memedroid.com/

• Consider that player 1 has payoffs (10, 2, 1) for (Win, Loss, Death) and
that player 2 has payoffs (10, 0, 0).
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Example: Russian roulette

• The Russian roulette in the extensive form using the random player.
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Thank you for your attention.
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