
Algorithmic game theory

Martin Balko

7th lecture

November 23rd 2023



Applications of

regret minimization



Our notation

• Agent A with actions X = {1, . . . ,N} selects a probability distribution
pt = (pt1, . . . , p

t
N) at every step t = 1, . . . ,T .

• After that, the adversary environment selects a loss vector
`t = (`t1, . . . , `

t
N) ∈ [−1, 1]N at every step t = 1, . . . ,T .

• The agent A receives loss `tA =
∑N

i=1 p
t
i `

t
i at step t. His cumulative loss

after all steps is LTA =
∑T

t=1 `
t
A. The cumulative loss of action i is

LTi =
∑T

t=1 `
t
i .

• Given a comparison class AX of agents Ai that select a single action i
in all steps, we let LTmin = mini∈X{LTAi

} be the minimum cumulative loss
of an agent from AX .

• Our goal is to minimize the external regret RT
A = LTA − LTmin.



Our notation

• Agent A with actions X = {1, . . . ,N} selects a probability distribution
pt = (pt1, . . . , p

t
N) at every step t = 1, . . . ,T .

• After that, the adversary environment selects a loss vector
`t = (`t1, . . . , `

t
N) ∈ [−1, 1]N at every step t = 1, . . . ,T .

• The agent A receives loss `tA =
∑N

i=1 p
t
i `

t
i at step t. His cumulative loss

after all steps is LTA =
∑T

t=1 `
t
A. The cumulative loss of action i is

LTi =
∑T

t=1 `
t
i .

• Given a comparison class AX of agents Ai that select a single action i
in all steps, we let LTmin = mini∈X{LTAi

} be the minimum cumulative loss
of an agent from AX .

• Our goal is to minimize the external regret RT
A = LTA − LTmin.



Our notation

• Agent A with actions X = {1, . . . ,N} selects a probability distribution
pt = (pt1, . . . , p

t
N) at every step t = 1, . . . ,T .

• After that, the adversary environment selects a loss vector
`t = (`t1, . . . , `

t
N) ∈ [−1, 1]N at every step t = 1, . . . ,T .

• The agent A receives loss `tA =
∑N

i=1 p
t
i `

t
i at step t. His cumulative loss

after all steps is LTA =
∑T

t=1 `
t
A. The cumulative loss of action i is

LTi =
∑T

t=1 `
t
i .

• Given a comparison class AX of agents Ai that select a single action i
in all steps, we let LTmin = mini∈X{LTAi

} be the minimum cumulative loss
of an agent from AX .

• Our goal is to minimize the external regret RT
A = LTA − LTmin.



Our notation

• Agent A with actions X = {1, . . . ,N} selects a probability distribution
pt = (pt1, . . . , p

t
N) at every step t = 1, . . . ,T .

• After that, the adversary environment selects a loss vector
`t = (`t1, . . . , `

t
N) ∈ [−1, 1]N at every step t = 1, . . . ,T .

• The agent A receives loss `tA =
∑N

i=1 p
t
i `

t
i at step t.

His cumulative loss

after all steps is LTA =
∑T

t=1 `
t
A. The cumulative loss of action i is

LTi =
∑T

t=1 `
t
i .

• Given a comparison class AX of agents Ai that select a single action i
in all steps, we let LTmin = mini∈X{LTAi

} be the minimum cumulative loss
of an agent from AX .

• Our goal is to minimize the external regret RT
A = LTA − LTmin.



Our notation

• Agent A with actions X = {1, . . . ,N} selects a probability distribution
pt = (pt1, . . . , p

t
N) at every step t = 1, . . . ,T .

• After that, the adversary environment selects a loss vector
`t = (`t1, . . . , `

t
N) ∈ [−1, 1]N at every step t = 1, . . . ,T .

• The agent A receives loss `tA =
∑N

i=1 p
t
i `

t
i at step t. His cumulative loss

after all steps is LTA =
∑T

t=1 `
t
A.

The cumulative loss of action i is

LTi =
∑T

t=1 `
t
i .

• Given a comparison class AX of agents Ai that select a single action i
in all steps, we let LTmin = mini∈X{LTAi

} be the minimum cumulative loss
of an agent from AX .

• Our goal is to minimize the external regret RT
A = LTA − LTmin.



Our notation

• Agent A with actions X = {1, . . . ,N} selects a probability distribution
pt = (pt1, . . . , p

t
N) at every step t = 1, . . . ,T .

• After that, the adversary environment selects a loss vector
`t = (`t1, . . . , `

t
N) ∈ [−1, 1]N at every step t = 1, . . . ,T .

• The agent A receives loss `tA =
∑N

i=1 p
t
i `

t
i at step t. His cumulative loss

after all steps is LTA =
∑T

t=1 `
t
A. The cumulative loss of action i is

LTi =
∑T

t=1 `
t
i .

• Given a comparison class AX of agents Ai that select a single action i
in all steps, we let LTmin = mini∈X{LTAi

} be the minimum cumulative loss
of an agent from AX .

• Our goal is to minimize the external regret RT
A = LTA − LTmin.



Our notation

• Agent A with actions X = {1, . . . ,N} selects a probability distribution
pt = (pt1, . . . , p

t
N) at every step t = 1, . . . ,T .

• After that, the adversary environment selects a loss vector
`t = (`t1, . . . , `

t
N) ∈ [−1, 1]N at every step t = 1, . . . ,T .

• The agent A receives loss `tA =
∑N

i=1 p
t
i `

t
i at step t. His cumulative loss

after all steps is LTA =
∑T

t=1 `
t
A. The cumulative loss of action i is

LTi =
∑T

t=1 `
t
i .

• Given a comparison class AX of agents Ai that select a single action i
in all steps, we let LTmin = mini∈X{LTAi

} be the minimum cumulative loss
of an agent from AX .

• Our goal is to minimize the external regret RT
A = LTA − LTmin.



Our notation

• Agent A with actions X = {1, . . . ,N} selects a probability distribution
pt = (pt1, . . . , p

t
N) at every step t = 1, . . . ,T .

• After that, the adversary environment selects a loss vector
`t = (`t1, . . . , `

t
N) ∈ [−1, 1]N at every step t = 1, . . . ,T .

• The agent A receives loss `tA =
∑N

i=1 p
t
i `

t
i at step t. His cumulative loss

after all steps is LTA =
∑T

t=1 `
t
A. The cumulative loss of action i is

LTi =
∑T

t=1 `
t
i .

• Given a comparison class AX of agents Ai that select a single action i
in all steps, we let LTmin = mini∈X{LTAi

} be the minimum cumulative loss
of an agent from AX .

• Our goal is to minimize the external regret RT
A = LTA − LTmin.



Example

Source: No regret algorithms in games (Georgios Piliouras)



Example

Source: No regret algorithms in games (Georgios Piliouras)



The polynomial weights algorithm

Algorithm 0.1: Polynomial weights algorithm(X ,T , η)

Input : A set of actions X = {1, . . . ,N}, T ∈ N, and η ∈ (0, 1/2].
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
w 1
i ← 1 for every i ∈ X ,

p1 ← (1/N , . . . , 1/N),
for t = 2, . . . ,T

do

w t
i ← w t−1

i (1− η`t−1i ),
W t ←

∑
i∈X w t

i ,
pti ← w t

i /W
t for every i ∈ X .

Output {pt : t ∈ {1, . . . ,T}}.

Theorem

For any sequence of loss vectors, we have RT
PW ≤ 2

√
T lnN .



The polynomial weights algorithm

Algorithm 0.2: Polynomial weights algorithm(X ,T , η)

Input : A set of actions X = {1, . . . ,N}, T ∈ N, and η ∈ (0, 1/2].
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
w 1
i ← 1 for every i ∈ X ,

p1 ← (1/N , . . . , 1/N),
for t = 2, . . . ,T

do

w t
i ← w t−1

i (1− η`t−1i ),
W t ←

∑
i∈X w t

i ,
pti ← w t

i /W
t for every i ∈ X .

Output {pt : t ∈ {1, . . . ,T}}.

Theorem

For any sequence of loss vectors, we have RT
PW ≤ 2

√
T lnN .



The polynomial weights algorithm

Algorithm 0.3: Polynomial weights algorithm(X ,T , η)

Input : A set of actions X = {1, . . . ,N}, T ∈ N, and η ∈ (0, 1/2].
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
w 1
i ← 1 for every i ∈ X ,

p1 ← (1/N , . . . , 1/N),
for t = 2, . . . ,T

do

w t
i ← w t−1

i (1− η`t−1i ),
W t ←

∑
i∈X w t

i ,
pti ← w t

i /W
t for every i ∈ X .

Output {pt : t ∈ {1, . . . ,T}}.

Theorem

For any sequence of loss vectors, we have RT
PW ≤ 2

√
T lnN .



The No-regret dynamics

• “Players in a normal-form game play against each other by selecting
actions according to the Polynomial-weights algorithm.”

Algorithm 0.4: No-regret dynamics(G ,T , ε)

Input : A normal-form game G = (P,A,C ) of n players, T ∈ N, and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and t ∈ {1, . . . ,T}.
for every step t = 1, . . . ,T

do



Each player i ∈ P independently chooses a mixed strategy pti
using an algorithm with average regret at most ε, with actions
corresponding to pure strategies.
Each player i ∈ P receives a loss vector `ti = (`ti (ai ))ai∈Ai

, where
`ti (ai )← Eat−i∼p

t
−i
[Ci (ai ; a

t
−i )] for the product distribution

pt−i =
∏

j 6=i p
t
j .

Output {pt : t ∈ {1, . . . ,T}}.



The No-regret dynamics

• “Players in a normal-form game play against each other by selecting
actions according to the Polynomial-weights algorithm.”

Algorithm 0.5: No-regret dynamics(G ,T , ε)

Input : A normal-form game G = (P,A,C ) of n players, T ∈ N, and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and t ∈ {1, . . . ,T}.
for every step t = 1, . . . ,T

do



Each player i ∈ P independently chooses a mixed strategy pti
using an algorithm with average regret at most ε, with actions
corresponding to pure strategies.
Each player i ∈ P receives a loss vector `ti = (`ti (ai ))ai∈Ai

, where
`ti (ai )← Eat−i∼p

t
−i
[Ci (ai ; a

t
−i )] for the product distribution

pt−i =
∏

j 6=i p
t
j .

Output {pt : t ∈ {1, . . . ,T}}.



The No-regret dynamics

• “Players in a normal-form game play against each other by selecting
actions according to the Polynomial-weights algorithm.”

Algorithm 0.6: No-regret dynamics(G ,T , ε)

Input : A normal-form game G = (P,A,C ) of n players, T ∈ N, and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and t ∈ {1, . . . ,T}.
for every step t = 1, . . . ,T

do



Each player i ∈ P independently chooses a mixed strategy pti
using an algorithm with average regret at most ε, with actions
corresponding to pure strategies.
Each player i ∈ P receives a loss vector `ti = (`ti (ai ))ai∈Ai

, where
`ti (ai )← Eat−i∼p

t
−i
[Ci (ai ; a

t
−i )] for the product distribution

pt−i =
∏

j 6=i p
t
j .

Output {pt : t ∈ {1, . . . ,T}}.



Application: Modern proof of the Minimax Theorem

• A new proof of the Minimax theorem.

• A zero-sum game G = ({1, 2},A,C ) with
A1 = {a1, . . . , am}, A2 = {b1, . . . , bn} is
represented with an m×n matrix M where
Mi ,j = −C1(ai , bj) = C2(ai , bj) ∈ [−1, 1].

• The expected cost C2(s) for player 2
equals x>My , where x and y are the
mixed strategy vectors.

• The Minimax theorem then states

max
x∈S1

min
y∈S2

x>My = min
y∈S2

max
x∈S1

x>My .

Source: https://www.privatdozent.co/



Application: Modern proof of the Minimax Theorem

• A new proof of the Minimax theorem.

• A zero-sum game G = ({1, 2},A,C ) with
A1 = {a1, . . . , am}, A2 = {b1, . . . , bn} is
represented with an m×n matrix M where
Mi ,j = −C1(ai , bj) = C2(ai , bj) ∈ [−1, 1].

• The expected cost C2(s) for player 2
equals x>My , where x and y are the
mixed strategy vectors.

• The Minimax theorem then states

max
x∈S1

min
y∈S2

x>My = min
y∈S2

max
x∈S1

x>My .

Source: https://www.privatdozent.co/



Application: Modern proof of the Minimax Theorem

• A new proof of the Minimax theorem.

• A zero-sum game G = ({1, 2},A,C ) with
A1 = {a1, . . . , am}, A2 = {b1, . . . , bn} is
represented with an m×n matrix M where
Mi ,j = −C1(ai , bj) = C2(ai , bj) ∈ [−1, 1].

• The expected cost C2(s) for player 2
equals x>My , where x and y are the
mixed strategy vectors.

• The Minimax theorem then states

max
x∈S1

min
y∈S2

x>My = min
y∈S2

max
x∈S1

x>My .

Source: https://www.privatdozent.co/



Application: Modern proof of the Minimax Theorem

• A new proof of the Minimax theorem.

• A zero-sum game G = ({1, 2},A,C ) with
A1 = {a1, . . . , am}, A2 = {b1, . . . , bn} is
represented with an m×n matrix M where
Mi ,j = −C1(ai , bj) = C2(ai , bj) ∈ [−1, 1].

• The expected cost C2(s) for player 2
equals x>My , where x and y are the
mixed strategy vectors.

• The Minimax theorem then states

max
x∈S1

min
y∈S2

x>My = min
y∈S2

max
x∈S1

x>My .

Source: https://www.privatdozent.co/



Application: Modern proof of the Minimax Theorem

• A new proof of the Minimax theorem.

• A zero-sum game G = ({1, 2},A,C ) with
A1 = {a1, . . . , am}, A2 = {b1, . . . , bn} is
represented with an m×n matrix M where
Mi ,j = −C1(ai , bj) = C2(ai , bj) ∈ [−1, 1].

• The expected cost C2(s) for player 2
equals x>My , where x and y are the
mixed strategy vectors.

• The Minimax theorem then states

max
x∈S1

min
y∈S2

x>My = min
y∈S2

max
x∈S1

x>My .

Source: https://www.privatdozent.co/



Application: Coarse correlated equilibria

• Recall that a prob. distribution p on A is a correlated equilibrium if∑
a−i∈A−i

Ci(ai ; a−i)p(ai ; a−i) ≤
∑

a−i∈A−i

Ci(a
′
i ; a−i)p(ai ; a−i)

for every player i ∈ P and all pure strategies ai , a
′
i ∈ Ai .

• In other words,

Ea∼p[Ci(a) | ai ] ≤ Ea∼p[Ci(a
′
i ; a−i) | ai ].

• We define an even more tractable concept.



Application: Coarse correlated equilibria

• Recall that a prob. distribution p on A is a correlated equilibrium if∑
a−i∈A−i

Ci(ai ; a−i)p(ai ; a−i) ≤
∑

a−i∈A−i

Ci(a
′
i ; a−i)p(ai ; a−i)

for every player i ∈ P and all pure strategies ai , a
′
i ∈ Ai .

• In other words,

Ea∼p[Ci(a) | ai ] ≤ Ea∼p[Ci(a
′
i ; a−i) | ai ].

• We define an even more tractable concept.



Application: Coarse correlated equilibria

• Recall that a prob. distribution p on A is a correlated equilibrium if∑
a−i∈A−i

Ci(ai ; a−i)p(ai ; a−i) ≤
∑

a−i∈A−i

Ci(a
′
i ; a−i)p(ai ; a−i)

for every player i ∈ P and all pure strategies ai , a
′
i ∈ Ai .

• In other words,

Ea∼p[Ci(a) | ai ] ≤ Ea∼p[Ci(a
′
i ; a−i) | ai ].

• We define an even more tractable concept.



Application: Coarse correlated equilibria

• Recall that a prob. distribution p on A is a correlated equilibrium if∑
a−i∈A−i

Ci(ai ; a−i)p(ai ; a−i) ≤
∑

a−i∈A−i

Ci(a
′
i ; a−i)p(ai ; a−i)

for every player i ∈ P and all pure strategies ai , a
′
i ∈ Ai .

• In other words,

Ea∼p[Ci(a) | ai ] ≤ Ea∼p[Ci(a
′
i ; a−i) | ai ].

• We define an even more tractable concept.



Example: Coarse correlated equilibrium

• Giving probability 1/6 to each red outcome gives coarse correlated
equilibrium in the Rock-Paper-Scissors game.

Rock Paper Scissors

Rock (0,0) (-1,1) (1,-1)

Paper (1,-1) (0,0) (-1,1)

Scissors (-1,1) (1,-1) (0,0)

• Then, the expected payoff of each player is 0 and deviating to any pure
strategy gives the expected payoff 0.

• It is not a correlated equilibrium though.



Example: Coarse correlated equilibrium

• Giving probability 1/6 to each red outcome gives coarse correlated
equilibrium in the Rock-Paper-Scissors game.

Rock Paper Scissors

Rock (0,0) (-1,1) (1,-1)

Paper (1,-1) (0,0) (-1,1)

Scissors (-1,1) (1,-1) (0,0)

• Then, the expected payoff of each player is 0 and deviating to any pure
strategy gives the expected payoff 0.

• It is not a correlated equilibrium though.



Example: Coarse correlated equilibrium

• Giving probability 1/6 to each red outcome gives coarse correlated
equilibrium in the Rock-Paper-Scissors game.

Rock Paper Scissors

Rock (0,0) (-1,1) (1,-1)

Paper (1,-1) (0,0) (-1,1)

Scissors (-1,1) (1,-1) (0,0)

• Then, the expected payoff of each player is 0 and deviating to any pure
strategy gives the expected payoff 0.

• It is not a correlated equilibrium though.



Example: Coarse correlated equilibrium

• Giving probability 1/6 to each red outcome gives coarse correlated
equilibrium in the Rock-Paper-Scissors game.

Rock Paper Scissors

Rock (0,0) (-1,1) (1,-1)

Paper (1,-1) (0,0) (-1,1)

Scissors (-1,1) (1,-1) (0,0)

• Then, the expected payoff of each player is 0 and deviating to any pure
strategy gives the expected payoff 0.

• It is not a correlated equilibrium though.



Hierarchy of Nash equilibria

Pure Nash equilibria,

PNE
not always exist

In general normal-form game, no-regret dynamics converges to a coarse
correlated equilibrium.



Hierarchy of Nash equilibria

Pure Nash equilibria,

PNE
not always exist

In general normal-form game, no-regret dynamics converges to a coarse
correlated equilibrium.



Hierarchy of Nash equilibria

Mixed Nash equilibria,

Pure Nash equilibria,

MNE

PNE
not always exist

always exist, hard to compute

In general normal-form game, no-regret dynamics converges to a coarse
correlated equilibrium.



Hierarchy of Nash equilibria

Correlated equilibria,

Mixed Nash equilibria,

Pure Nash equilibria,

CE

MNE

PNE
not always exist

always exist, hard to compute

easy to compute

In general normal-form game, no-regret dynamics converges to a coarse
correlated equilibrium.



Hierarchy of Nash equilibria

Coarse correlated equilibria,

Correlated equilibria,

Mixed Nash equilibria,

Pure Nash equilibria,

CCE

CE

MNE

PNE
not always exist

always exist, hard to compute

easy to compute

even easier to compute

• In general normal-form game, no-regret dynamics converges to a coarse
correlated equilibrium.



Hierarchy of Nash equilibria

Coarse correlated equilibria,

Correlated equilibria,

Mixed Nash equilibria,

Pure Nash equilibria,

CCE

CE

MNE

PNE
not always exist

always exist, hard to compute

easy to compute

even easier to compute

• In general normal-form game, no-regret dynamics converges to a coarse
correlated equilibrium.



The No-swap-regret dynamics

• Using swap regret instead of external regret, we get:

Algorithm 0.7: No-swap-regret dynamics(G ,T , ε)

Input : A normal-form game G = (P,A,C ) of n players, T ∈ N, and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and t ∈ {1, . . . ,T}.
for every step t = 1, . . . ,T

do



Each player i ∈ P independently chooses a mixed strategy pti
using an algorithm with average swap regret at most ε, with
actions corresponding to pure strategies.
Each player i ∈ P receives a loss vector `ti = (`ti (ai ))ai∈Ai

, where
`ti (ai )← Eat−i∼p

t
−i
[Ci (ai ; a

t
−i )] for the product distribution

pt−i =
∏

j 6=i p
t
j .

Output {pt : t ∈ {1, . . . ,T}}.

• No-swap-regret dynamics then converges to a correlated equilibrium.



The No-swap-regret dynamics

• Using swap regret instead of external regret, we get:

Algorithm 0.8: No-swap-regret dynamics(G ,T , ε)

Input : A normal-form game G = (P,A,C ) of n players, T ∈ N, and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and t ∈ {1, . . . ,T}.
for every step t = 1, . . . ,T

do



Each player i ∈ P independently chooses a mixed strategy pti
using an algorithm with average swap regret at most ε, with
actions corresponding to pure strategies.
Each player i ∈ P receives a loss vector `ti = (`ti (ai ))ai∈Ai

, where
`ti (ai )← Eat−i∼p

t
−i
[Ci (ai ; a

t
−i )] for the product distribution

pt−i =
∏

j 6=i p
t
j .

Output {pt : t ∈ {1, . . . ,T}}.

• No-swap-regret dynamics then converges to a correlated equilibrium.



The No-swap-regret dynamics

• Using swap regret instead of external regret, we get:

Algorithm 0.9: No-swap-regret dynamics(G ,T , ε)

Input : A normal-form game G = (P,A,C ) of n players, T ∈ N, and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and t ∈ {1, . . . ,T}.
for every step t = 1, . . . ,T

do



Each player i ∈ P independently chooses a mixed strategy pti
using an algorithm with average swap regret at most ε, with
actions corresponding to pure strategies.
Each player i ∈ P receives a loss vector `ti = (`ti (ai ))ai∈Ai

, where
`ti (ai )← Eat−i∼p

t
−i
[Ci (ai ; a

t
−i )] for the product distribution

pt−i =
∏

j 6=i p
t
j .

Output {pt : t ∈ {1, . . . ,T}}.

• No-swap-regret dynamics then converges to a correlated equilibrium.



The No-swap-regret dynamics

• Using swap regret instead of external regret, we get:

Algorithm 0.10: No-swap-regret dynamics(G ,T , ε)

Input : A normal-form game G = (P,A,C ) of n players, T ∈ N, and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and t ∈ {1, . . . ,T}.
for every step t = 1, . . . ,T

do



Each player i ∈ P independently chooses a mixed strategy pti
using an algorithm with average swap regret at most ε, with
actions corresponding to pure strategies.
Each player i ∈ P receives a loss vector `ti = (`ti (ai ))ai∈Ai

, where
`ti (ai )← Eat−i∼p

t
−i
[Ci (ai ; a

t
−i )] for the product distribution

pt−i =
∏

j 6=i p
t
j .

Output {pt : t ∈ {1, . . . ,T}}.

• No-swap-regret dynamics then converges to a correlated equilibrium.



Thank you for your attention.



Thank you for your attention.



Thank you for your attention.


