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Applications of

regret minimization



Our notation

• Agent A with actions X = {1, . . . ,N} selects a probability distribution
pt = (pt1, . . . , p

t
N) at every step t = 1, . . . ,T .

• After that, the adversary environment selects a loss vector
`t = (`t1, . . . , `

t
N) ∈ [−1, 1]N at every step t = 1, . . . ,T .

• The agent A receives loss `tA =
∑N

i=1 p
t
i `

t
i at step t. His cumulative loss

after all steps is LTA =
∑T

t=1 `
t
A. The cumulative loss of action i is

LTi =
∑T

t=1 `
t
i .

• Given a comparison class AX of agents Ai that select a single action i
in all steps, we let LTmin = mini∈X{LTAi

} be the minimum cumulative loss
of an agent from AX .

• Our goal is to minimize the external regret RT
A = LTA − LTmin.
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The polynomial weights algorithm

Algorithm 0.1: Polynomial weights algorithm(X ,T , η)

Input : A set of actions X = {1, . . . ,N}, T ∈ N, and η ∈ (0, 1/2].
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
w 1
i ← 1 for every i ∈ X ,

p1 ← (1/N , . . . , 1/N),
for t = 2, . . . ,T

do

w t
i ← w t−1

i (1− η`t−1i ),
W t ←

∑
i∈X w t

i ,
pti ← w t

i /W
t for every i ∈ X .

Output {pt : t ∈ {1, . . . ,T}}.

Theorem

For any sequence of loss vectors, we have RT
PW ≤ 2

√
T lnN .



The polynomial weights algorithm

Algorithm 0.2: Polynomial weights algorithm(X ,T , η)

Input : A set of actions X = {1, . . . ,N}, T ∈ N, and η ∈ (0, 1/2].
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
w 1
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W t ←

∑
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i ,
pti ← w t

i /W
t for every i ∈ X .

Output {pt : t ∈ {1, . . . ,T}}.

Theorem

For any sequence of loss vectors, we have RT
PW ≤ 2

√
T lnN .



The polynomial weights algorithm

Algorithm 0.3: Polynomial weights algorithm(X ,T , η)

Input : A set of actions X = {1, . . . ,N}, T ∈ N, and η ∈ (0, 1/2].
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
w 1
i ← 1 for every i ∈ X ,

p1 ← (1/N , . . . , 1/N),
for t = 2, . . . ,T

do

w t
i ← w t−1

i (1− η`t−1i ),
W t ←

∑
i∈X w t

i ,
pti ← w t

i /W
t for every i ∈ X .

Output {pt : t ∈ {1, . . . ,T}}.

Theorem

For any sequence of loss vectors, we have RT
PW ≤ 2

√
T lnN .



The No-regret dynamics

• “Players in a normal-form game play against each other by selecting
actions according to the Polynomial-weights algorithm.”

Algorithm 0.4: No-regret dynamics(G ,T , ε)

Input : A normal-form game G = (P,A,C ) of n players, T ∈ N, and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and t ∈ {1, . . . ,T}.
for every step t = 1, . . . ,T

do



Each player i ∈ P independently chooses a mixed strategy pti
using an algorithm with average regret at most ε, with actions
corresponding to pure strategies.
Each player i ∈ P receives a loss vector `ti = (`ti (ai ))ai∈Ai

, where
`ti (ai )← Eat−i∼p

t
−i
[Ci (ai ; a

t
−i )] for the product distribution

pt−i =
∏

j 6=i p
t
j .

Output {pt : t ∈ {1, . . . ,T}}.



The No-regret dynamics

• “Players in a normal-form game play against each other by selecting
actions according to the Polynomial-weights algorithm.”

Algorithm 0.5: No-regret dynamics(G ,T , ε)

Input : A normal-form game G = (P,A,C ) of n players, T ∈ N, and ε > 0.
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The No-regret dynamics

• “Players in a normal-form game play against each other by selecting
actions according to the Polynomial-weights algorithm.”

Algorithm 0.6: No-regret dynamics(G ,T , ε)

Input : A normal-form game G = (P,A,C ) of n players, T ∈ N, and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and t ∈ {1, . . . ,T}.
for every step t = 1, . . . ,T

do



Each player i ∈ P independently chooses a mixed strategy pti
using an algorithm with average regret at most ε, with actions
corresponding to pure strategies.
Each player i ∈ P receives a loss vector `ti = (`ti (ai ))ai∈Ai

, where
`ti (ai )← Eat−i∼p

t
−i
[Ci (ai ; a

t
−i )] for the product distribution

pt−i =
∏

j 6=i p
t
j .

Output {pt : t ∈ {1, . . . ,T}}.



Application: Modern proof of the Minimax Theorem

• A new proof of the Minimax theorem.

• A zero-sum game G = ({1, 2},A,C ) with
A1 = {a1, . . . , am}, A2 = {b1, . . . , bn} is
represented with an m×n matrix M where
Mi ,j = −C1(ai , bj) = C2(ai , bj) ∈ [−1, 1].

• The expected cost C2(s) for player 2
equals x>My , where x and y are the
mixed strategy vectors.

• The Minimax theorem then states

max
x∈S1

min
y∈S2

x>My = min
y∈S2

max
x∈S1

x>My .

Source: https://www.privatdozent.co/
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Application: Coarse correlated equilibria

• Recall that a prob. distribution p on A is a correlated equilibrium if∑
a−i∈A−i

Ci(ai ; a−i)p(ai ; a−i) ≤
∑

a−i∈A−i

Ci(a
′
i ; a−i)p(ai ; a−i)

for every player i ∈ P and all pure strategies ai , a
′
i ∈ Ai .

• In other words,

Ea∼p[Ci(a) | ai ] ≤ Ea∼p[Ci(a
′
i ; a−i) | ai ].

• We define an even more tractable concept.
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Example: Coarse correlated equilibrium

• Giving probability 1/6 to each red outcome gives coarse correlated
equilibrium in the Rock-Paper-Scissors game.

Rock Paper Scissors

Rock (0,0) (-1,1) (1,-1)

Paper (1,-1) (0,0) (-1,1)

Scissors (-1,1) (1,-1) (0,0)

• Then, the expected payoff of each player is 0 and deviating to any pure
strategy gives the expected payoff 0.

• It is not a correlated equilibrium though.
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PNE
not always exist

In general normal-form game, no-regret dynamics converges to a coarse
correlated equilibrium.
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The No-swap-regret dynamics

• Using swap regret instead of external regret, we get:

Algorithm 0.7: No-swap-regret dynamics(G ,T , ε)

Input : A normal-form game G = (P,A,C ) of n players, T ∈ N, and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and t ∈ {1, . . . ,T}.
for every step t = 1, . . . ,T

do



Each player i ∈ P independently chooses a mixed strategy pti
using an algorithm with average swap regret at most ε, with
actions corresponding to pure strategies.
Each player i ∈ P receives a loss vector `ti = (`ti (ai ))ai∈Ai

, where
`ti (ai )← Eat−i∼p

t
−i
[Ci (ai ; a

t
−i )] for the product distribution

pt−i =
∏

j 6=i p
t
j .

Output {pt : t ∈ {1, . . . ,T}}.

• No-swap-regret dynamics then converges to a correlated equilibrium.
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• Using swap regret instead of external regret, we get:

Algorithm 0.8: No-swap-regret dynamics(G ,T , ε)

Input : A normal-form game G = (P,A,C ) of n players, T ∈ N, and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and t ∈ {1, . . . ,T}.
for every step t = 1, . . . ,T

do



Each player i ∈ P independently chooses a mixed strategy pti
using an algorithm with average swap regret at most ε, with
actions corresponding to pure strategies.
Each player i ∈ P receives a loss vector `ti = (`ti (ai ))ai∈Ai

, where
`ti (ai )← Eat−i∼p

t
−i
[Ci (ai ; a

t
−i )] for the product distribution

pt−i =
∏

j 6=i p
t
j .

Output {pt : t ∈ {1, . . . ,T}}.

• No-swap-regret dynamics then converges to a correlated equilibrium.



The No-swap-regret dynamics

• Using swap regret instead of external regret, we get:

Algorithm 0.9: No-swap-regret dynamics(G ,T , ε)

Input : A normal-form game G = (P,A,C ) of n players, T ∈ N, and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and t ∈ {1, . . . ,T}.
for every step t = 1, . . . ,T

do



Each player i ∈ P independently chooses a mixed strategy pti
using an algorithm with average swap regret at most ε, with
actions corresponding to pure strategies.
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Output {pt : t ∈ {1, . . . ,T}}.

• No-swap-regret dynamics then converges to a correlated equilibrium.



The No-swap-regret dynamics

• Using swap regret instead of external regret, we get:

Algorithm 0.10: No-swap-regret dynamics(G ,T , ε)

Input : A normal-form game G = (P,A,C ) of n players, T ∈ N, and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and t ∈ {1, . . . ,T}.
for every step t = 1, . . . ,T

do



Each player i ∈ P independently chooses a mixed strategy pti
using an algorithm with average swap regret at most ε, with
actions corresponding to pure strategies.
Each player i ∈ P receives a loss vector `ti = (`ti (ai ))ai∈Ai

, where
`ti (ai )← Eat−i∼p

t
−i
[Ci (ai ; a

t
−i )] for the product distribution

pt−i =
∏

j 6=i p
t
j .

Output {pt : t ∈ {1, . . . ,T}}.

• No-swap-regret dynamics then converges to a correlated equilibrium.
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