
Algorithmic game theory

Martin Balko

6th lecture

November 16th 2023

Regret minimization

Regret minimization

• We introduce a completely new model of interactions based on
so-called regret minimization. We apply online learning.

Sources: https://towardsdatascience.com/

• Later, we apply these new methods to design new fast algorithms to
approximate correlated equilibria.

• Today, we introduce the model and some basic algorithms how to
minimize regret.

Regret minimization

• We introduce a completely new model of interactions based on
so-called regret minimization.

We apply online learning.

Sources: https://towardsdatascience.com/

• Later, we apply these new methods to design new fast algorithms to
approximate correlated equilibria.

• Today, we introduce the model and some basic algorithms how to
minimize regret.

Regret minimization

• We introduce a completely new model of interactions based on
so-called regret minimization. We apply online learning.

Sources: https://towardsdatascience.com/

• Later, we apply these new methods to design new fast algorithms to
approximate correlated equilibria.

• Today, we introduce the model and some basic algorithms how to
minimize regret.

Regret minimization

• We introduce a completely new model of interactions based on
so-called regret minimization. We apply online learning.

Sources: https://towardsdatascience.com/

• Later, we apply these new methods to design new fast algorithms to
approximate correlated equilibria.

• Today, we introduce the model and some basic algorithms how to
minimize regret.

Regret minimization

• We introduce a completely new model of interactions based on
so-called regret minimization. We apply online learning.

Sources: https://towardsdatascience.com/

• Later, we apply these new methods to design new fast algorithms to
approximate correlated equilibria.

• Today, we introduce the model and some basic algorithms how to
minimize regret.

Example

Source: No regret algorithms in games (Georgios Piliouras)

Example

Source: No regret algorithms in games (Georgios Piliouras)

Example

Source: No regret algorithms in games (Georgios Piliouras)

The greedy algorithm

Algorithm 0.1: Greedy algorithm(X ,T)

Input : A set of actions X = {1, . . . ,N} and number of steps T ∈ N.
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
p1 ← (1, 0, . . . , 0),
for t = 2, . . . ,T

do


Lt−1min ← minj∈X{Lt−1j },
S t−1 ← {i ∈ X : Lt−1i = Lt−1min },
k ← min S t−1,
ptk ← 1, pti ← 0 for i 6= k ,

Output {pt : t ∈ {1, . . . ,T}}.

The greedy algorithm

Algorithm 0.2: Greedy algorithm(X ,T)

Input : A set of actions X = {1, . . . ,N} and number of steps T ∈ N.
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
p1 ← (1, 0, . . . , 0),
for t = 2, . . . ,T

do


Lt−1min ← minj∈X{Lt−1j },
S t−1 ← {i ∈ X : Lt−1i = Lt−1min },
k ← min S t−1,
ptk ← 1, pti ← 0 for i 6= k ,

Output {pt : t ∈ {1, . . . ,T}}.

The randomized greedy algorithm

Algorithm 0.3: Randomized greedy algorithm(X ,T)

Input : A set of actions X = {1, . . . ,N} and number of steps T ∈ N.
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
p1 ← (1/N , . . . , 1/N),
for t = 2, . . . ,T

do


Lt−1min ← minj∈X{Lt−1j },
S t−1 ← {i ∈ X : Lt−1i = Lt−1min },
pti ← 1/|S t−1| for every i ∈ S t−1 and pti ← 0 otherwise.

Output {pt : t ∈ {1, . . . ,T}}.

The randomized greedy algorithm

Algorithm 0.4: Randomized greedy algorithm(X ,T)

Input : A set of actions X = {1, . . . ,N} and number of steps T ∈ N.
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
p1 ← (1/N , . . . , 1/N),
for t = 2, . . . ,T

do


Lt−1min ← minj∈X{Lt−1j },
S t−1 ← {i ∈ X : Lt−1i = Lt−1min },
pti ← 1/|S t−1| for every i ∈ S t−1 and pti ← 0 otherwise.

Output {pt : t ∈ {1, . . . ,T}}.

The randomized greedy algorithm

Algorithm 0.5: Randomized greedy algorithm(X ,T)

Input : A set of actions X = {1, . . . ,N} and number of steps T ∈ N.
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
p1 ← (1/N , . . . , 1/N),
for t = 2, . . . ,T

do


Lt−1min ← minj∈X{Lt−1j },
S t−1 ← {i ∈ X : Lt−1i = Lt−1min },
pti ← 1/|S t−1| for every i ∈ S t−1 and pti ← 0 otherwise.

Output {pt : t ∈ {1, . . . ,T}}.

The polynomial weights algorithm

Algorithm 0.6: Polynomial weights algorithm(X ,T , η)

Input : A set of actions X = {1, . . . ,N}, T ∈ N, and η ∈ (0, 1/2].
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
w 1
i ← 1 for every i ∈ X ,

p1 ← (1/N , . . . , 1/N),
for t = 2, . . . ,T

do

w t
i ← w t−1

i (1− η`t−1i),
W t ←

∑
i∈X w t

i ,
pti ← w t

i /W
t for every i ∈ X .

Output {pt : t ∈ {1, . . . ,T}}.

The polynomial weights algorithm

Algorithm 0.7: Polynomial weights algorithm(X ,T , η)

Input : A set of actions X = {1, . . . ,N}, T ∈ N, and η ∈ (0, 1/2].
Output : A probability distribution pt for every t ∈ {1, . . . ,T}.
w 1
i ← 1 for every i ∈ X ,

p1 ← (1/N , . . . , 1/N),
for t = 2, . . . ,T

do

w t
i ← w t−1

i (1− η`t−1i),
W t ←

∑
i∈X w t

i ,
pti ← w t

i /W
t for every i ∈ X .

Output {pt : t ∈ {1, . . . ,T}}.

• Besides game theory, the “multiplicative weight update method” has
many applications in various fields of science, for example in
optimization, theoretical computer science, and machine learning.

Sources: https://clubitc.ro

• See https://en.wikipedia.org/wiki/Multiplicative_weight_

update_method#Applications

https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications
https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications

• Besides game theory, the “multiplicative weight update method” has
many applications in various fields of science, for example in
optimization, theoretical computer science, and machine learning.

Sources: https://clubitc.ro

• See https://en.wikipedia.org/wiki/Multiplicative_weight_

update_method#Applications

https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications
https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications

• Besides game theory, the “multiplicative weight update method” has
many applications in various fields of science, for example in
optimization, theoretical computer science, and machine learning.

Sources: https://clubitc.ro

• See https://en.wikipedia.org/wiki/Multiplicative_weight_

update_method#Applications

https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications
https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications

The No-regret dynamics

• “Players in a normal-form game play against each other by selecting
actions according to the Polynomial-weights algorithm.”

Algorithm 0.8: No-regret dynamics(G ,T , ε)

Input : A normal-form game G = (P,A,C) of n players, T ∈ N, and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and t ∈ {1, . . . ,T}.
for every step t = 1, . . . ,T

do



Each player i ∈ P independently chooses a mixed strategy pti
using an algorithm with average regret at most ε, with actions
corresponding to pure strategies.
Each player i ∈ P receives a loss vector `ti = (`ti (ai))ai∈Ai

, where
`ti (ai)← Eat−i∼p

t
−i
[Ci (ai ; a

t
−i)] for the product distribution

pt−i =
∏

j 6=i p
t
j .

Output {pt : t ∈ {1, . . . ,T}}.

The No-regret dynamics

• “Players in a normal-form game play against each other by selecting
actions according to the Polynomial-weights algorithm.”

Algorithm 0.9: No-regret dynamics(G ,T , ε)

Input : A normal-form game G = (P,A,C) of n players, T ∈ N, and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and t ∈ {1, . . . ,T}.
for every step t = 1, . . . ,T

do



Each player i ∈ P independently chooses a mixed strategy pti
using an algorithm with average regret at most ε, with actions
corresponding to pure strategies.
Each player i ∈ P receives a loss vector `ti = (`ti (ai))ai∈Ai

, where
`ti (ai)← Eat−i∼p

t
−i
[Ci (ai ; a

t
−i)] for the product distribution

pt−i =
∏

j 6=i p
t
j .

Output {pt : t ∈ {1, . . . ,T}}.

The No-regret dynamics

• “Players in a normal-form game play against each other by selecting
actions according to the Polynomial-weights algorithm.”

Algorithm 0.10: No-regret dynamics(G ,T , ε)

Input : A normal-form game G = (P,A,C) of n players, T ∈ N, and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and t ∈ {1, . . . ,T}.
for every step t = 1, . . . ,T

do



Each player i ∈ P independently chooses a mixed strategy pti
using an algorithm with average regret at most ε, with actions
corresponding to pure strategies.
Each player i ∈ P receives a loss vector `ti = (`ti (ai))ai∈Ai

, where
`ti (ai)← Eat−i∼p

t
−i
[Ci (ai ; a

t
−i)] for the product distribution

pt−i =
∏

j 6=i p
t
j .

Output {pt : t ∈ {1, . . . ,T}}.

Sources: Students of MFF UK

Thank you for your attention.

Sources: Students of MFF UK

Thank you for your attention.

Sources: Students of MFF UK

Thank you for your attention.

