Algorithmic game theory

Martin Balko

6th lecture

November 16th 2023

Regret minimization

BN
Regret minimization

Regret minimization

e We introduce a completely new model of interactions based on
so-called regret minimization.

Regret minimization

e We introduce a completely new model of interactions based on
so-called regret minimization. We apply online learning.

r

Sources: https://towardsdatascience.com/

Regret minimization

e We introduce a completely new model of interactions based on
so-called regret minimization. We apply online learning.

Sources: https://towardsdatascience.com/

e Later, we apply these new methods to design new fast algorithms to
approximate correlated equilibria.

Regret minimization

e We introduce a completely new model of interactions based on
so-called regret minimization. We apply online learning.

Sources: https://towardsdatascience.com/

e Later, we apply these new methods to design new fast algorithms to
approximate correlated equilibria.

e Today, we introduce the model and some basic algorithms how to
minimize regret.

BN
Example

Example

No Regret Learning -
i (review) E} m
o 0 1

No single action significantly

outperforms the dynamic. , ; 1 0
Weather E —
Algorithm : 1

J

Source: No regret algorithms in games (Georgios Piliouras)

Example

No Regret Learning -
(review) | E} m

No single action significantly

outperforms the dynamic.

Weather Loss
Algorithm 1
Umbrella ; 1

B J J J
Sunscreen 3

Source: No regret algorithms in games (Georgios Piliouras)

NN
The greedy algorithm

The greedy algorithm

Algorithm 0.2: GREEDY ALGORITHM(X, T)

Input = A set of actions X = {1,..., N} and number of steps T € N.
Output : A probability distribution p* for every t € {1,..., T}.
pt + (1,0,...,0),

fort=2,..., T
Ly = minjex{Li1},
4o ST liex =1,
k < min St 1,

pi < 1,pf < 0 for i # k,
Output {p*: t € {1,..., T}}.

BN
The randomized greedy algorithm

The randomized greedy algorithm

Algorithm 0.4: RANDOMIZED GREEDY ALGORITHM(X, T)

Input = A set of actions X = {1,..., N} and number of steps T € N.
Output : A probability distribution p* for every t € {1,..., T}.
pt <+ (1/N,...,1/N),

fort=2,..., T
Lf;”;l — minjex{Lf_l},
do { Stle {ieX: L=t

pf <+ 1/|St1 for every i € S*~! and pf < 0 otherwise.
Output {p*: t € {1,..., T}}.

The randomized greedy algorithm

Algorithm 0.5: RANDOMIZED GREEDY ALGORITHM(X, T)

Input = A set of actions X = {1,..., N} and number of steps T € N.
Output : A probability distribution p* for every t € {1,..., T}.
p1<_(1/N~1/N)a

fort=2,..., T
Lf;”;l — minjex{Lf_l},
do { STl {ieX: L=t

pf« 1/|St! for every i € St~ and p! < 0 otherwise.
Output {p*: t € {1,..., T}}.

BN
The polynomial weights algorithm

The polynomial weights algorithm

Algorithm 0.7: POLYNOMIAL WEIGHTS ALGORITHM(X, T,7)

Input : A set of actions X = {1,...,N}, T € N, and 7 € (0,1/2].
Output : A probability distribution p* for every t € {1,..., T}.
wl < 1 for every i € X,
pt <+ (1/N,...,1/N),
fort=2,..., T
wi < wi T 1 =l
do ¢ W'« 3\ wf,
pi < wi/W* for every i € X.
Output {p*: t € {1,..., T}}.

https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications
https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications

Besides game theory, the “multiplicative weight update method” has
many applications in various fields of science, for example in
optimization, theoretical computer science, and machine learning.

X*-4 5
X'-4x <0

n(BNC)=2
n(8) =68
n(c) =84

n(BUC) =n(B)+n(C)n(BNC) glons
He = 4,002602 !

log,x + log,y

log,x - log.y a(be) = (ab)c
atb=b+a (1002)a+100b
a(b+c) = ab+ac 100002 +100b-

126 =6xy
2x+2y=20

Sources: https://clubitc.ro

https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications
https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications

e Besides game theory, the “multiplicative weight update method” has
many applications in various fields of science, for example in
optimization, theoretical computer science, and machine learning.

X-4 5
X-4x <0

n(BNC)=2
n(B) =68
n(c) =84

n(BUC) =n(B)+n(C)n(BNC) e
He = 4002602 !

log,x + log,y

log,x - log.y a(be) = (ab)c
atb=b+a (1002)a+100b
a(b+c) = ab+ac 100002 +100b-

126 =6xy
2x+2y=20

Sources: https://clubitc.ro
e See https://en.wikipedia.org/wiki/Multiplicative_weight_
update_method#Applications

https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications
https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications

NN
The No-regret dynamics

The No-regret dynamics

e “Players in a normal-form game play against each other by selecting
actions according to the Polynomial-weights algorithm.”

The No-regret dynamics

e “Players in a normal-form game play against each other by selecting
actions according to the Polynomial-weights algorithm.”

Algorithm 0.10: NO-REGRET DYNAMICS(G, T ,¢)

Input : A normal-form game G = (P, A, C) of n players, T € N, and £ > 0.
Output : A prob. distribution pf on A; for each i € P and t € {1,..., T}.
for every stept=1,..., T

Each player i € P independently chooses a mixed strategy pf
using an algorithm with average regret at most ¢, with actions
corresponding to pure strategies.

Each player / € P receives a loss vector ¢} = (¢(a;))aea;, where
li(aj) < E e Npr [Ci(aj; at ;)] for the product distribution

pt Pi= Hﬂé, PJ

Output {p*: t € {1,..., T}}.

do

"ENROLL IN AGT" THEY SAID

Algorithm 2.6.4: No-REGRET DYNaMICS(G, T, ¢)

Input : A normal-form game & = (P, A, C') of n players, T € N and = > (.
Output : A probability distribution p! on A; foreachi € Pandt € {1,..., T}.
foreverystept =1,..., T

Each player i € P independently chooses a mixed strategy p! using

an algorithm with average regret at most =, with actions

corresponding to pure strategies.

do Each player i € P receives a loss vector {! = ((*(a;))a,c.4,, where
.":{a,] —E,t ot |Cilag;al ;)] for the product distribution
ﬂ’ i l_[_;:rp.:"
Output {p': t e {1,....T}}.

“THERE'LL BE NO REGRET" THEY SAID

Sources: Students of MFF UK

"ENROLL IN AGT" THEY SAID

Algorithm 2.6.4: No-REGRET DYNaMICS(G, T, ¢)

Input : A normal-form game & = (P, A, C') of n players, T € N and = > (.
Output : A probability distribution p! on A; foreachi € Pandt € {1,..., T}.
foreverystept =1,..., T

Each player i € P independently chooses a mixed strategy p! using

an algorithm with average regret at most =, with actions
corresponding to pure strategies.

Each player i € F receives a loss vector ff = ({:(m))a,ea,, where
fi(a;) « Epe o0 |Cilajzal)] for the product distribution

a: i = l_[.r.-‘r p_:,.

Output {p': t e {1,....T}}.

“THERE'LL BE NO REGRET" THEY SAID

Sources: Students of MFF UK

Thank you for your attention.

do

