Algorithmic game theory

Martin Balko

5th lecture

November 9th 2023

Nash equilibria in bimatrix games

What have we learned so far

What have we learned so far

- We have seen three algorithms to find NE in bimatrix games:

What have we learned so far

- We have seen three algorithms to find NE in bimatrix games:
- the brute-force algorithm with support enumeration,

What have we learned so far

- We have seen three algorithms to find NE in bimatrix games:
- the brute-force algorithm with support enumeration,
- the algorithm with vertex enumeration,

What have we learned so far

- We have seen three algorithms to find NE in bimatrix games:
- the brute-force algorithm with support enumeration,
- the algorithm with vertex enumeration,
- the Lemke-Howson algorithm.

What have we learned so far

- We have seen three algorithms to find NE in bimatrix games:
- the brute-force algorithm with support enumeration,
- the algorithm with vertex enumeration,
- the Lemke-Howson algorithm.
- All these algorithms have exponential running time in the worst case.

Source: https://www.shutterstock.com/

What have we learned so far

- We have seen three algorithms to find NE in bimatrix games:
- the brute-force algorithm with support enumeration,
- the algorithm with vertex enumeration,
- the Lemke-Howson algorithm.
- All these algorithms have exponential running time in the worst case.

Source: https://www.shutterstock.com/

- Is there a chance to get an efficient algorithm?

What have we learned so far

- We have seen three algorithms to find NE in bimatrix games:
- the brute-force algorithm with support enumeration,
- the algorithm with vertex enumeration,
- the Lemke-Howson algorithm.
- All these algorithms have exponential running time in the worst case.

Source: https://www.shutterstock.com/

- Is there a chance to get an efficient algorithm?
- $\mathrm{NASH}=$ the problem of finding NE in bimatrix games.

What have we learned so far

- We have seen three algorithms to find NE in bimatrix games:
- the brute-force algorithm with support enumeration,
- the algorithm with vertex enumeration,
- the Lemke-Howson algorithm.
- All these algorithms have exponential running time in the worst case.

Source: https://www.shutterstock.com/

- Is there a chance to get an efficient algorithm?
- NASH = the problem of finding NE in bimatrix games.
- Today, we discuss the computational complexity of NASH.

The class PPAD

The class PPAD

- The class PPAD was introduced in 1994 by Papadimitrou.

The class PPAD

- The class PPAD was introduced in 1994 by Papadimitrou.

Figure: Christos Papadimitriou (born 1949).
Source: https://cs.columbia.edu

The class PPAD

- The class PPAD was introduced in 1994 by Papadimitrou.

Figure: Christos Papadimitriou (born 1949).
Source: https://cs.columbia.edu

- Abbreviation for "Polynomial Parity Arguments on Directed graphs".

Problems from PPAD: End-of-the-line

Problems from PPAD: End-of-the-line

- For an oriented graph G with max. indegree and outdegree 1 and a source in G, find a target in G. The graph is given by a polynomial-time computable function $f(v)$ that returns predecessor and successor of v.

Problems from PPAD: End-of-the-line

- For an oriented graph G with max. indegree and outdegree 1 and a source in G, find a target in G. The graph is given by a polynomial-time computable function $f(v)$ that returns predecessor and successor of v.

Problems from PPAD: Sperner's lemma

Problems from PPAD: Sperner's lemma

- Given a legal 3-coloring of a triangulated triangle, find a triangle with vertices colored by all 3 colors.

Problems from PPAD: Sperner's lemma

- Given a legal 3-coloring of a triangulated triangle, find a triangle with vertices colored by all 3 colors.

Source: https://lesswrong.com

Problems from PPAD: Sperner's lemma

- Given a legal 3-coloring of a triangulated triangle, find a triangle with vertices colored by all 3 colors.

Source: https://lesswrong.com

- Discrete version of the Brouwer's fixed point theorem.

Problems from PPAD: Brouwer's fixed point theorem

Problems from PPAD: Brouwer's fixed point theorem

- An approximate version of the following theorem is in PPAD: For each $d \in \mathbb{N}$, a non-empty compact convex set K in \mathbb{R}^{d}, and a continuous mapping $f: K \rightarrow K$, there exists $x_{0} \in K$ such that $f\left(x_{0}\right)=x_{0}$.

Figure: L. E. J. Brouwer (1881-1966).

Problems from PPAD: Ham sandwich theorem

Source: https://www.seekpng.com/

Problems from PPAD: Ham sandwich theorem

Problems from PPAD: Ham sandwich theorem

- Given n sets of $2 n$ points in \mathbb{R}^{n}, find a hyperplane H that contains exactly n points from each of the sets in each open halfspace determined by H.

Problems from PPAD: Ham sandwich theorem

- Given n sets of $2 n$ points in \mathbb{R}^{n}, find a hyperplane H that contains exactly n points from each of the sets in each open halfspace determined by H.

Sources: https://ejarzo.github.io and https://curiosamathematica.tumblr.com

Problems from PPAD: The Borsuk-Ulam theorem

Problems from PPAD: The Borsuk-Ulam theorem

- An approximate version of the following theorem is in PPAD: For every continuous $f: S^{n} \rightarrow \mathbb{R}^{n}$ there is $x \in S^{n}$ with $f(x)=f(-x)$.

Problems from PPAD: The Borsuk-Ulam theorem

- An approximate version of the following theorem is in PPAD: For every continuous $f: S^{n} \rightarrow \mathbb{R}^{n}$ there is $x \in S^{n}$ with $f(x)=f(-x)$.

Other notions of equilibria

- The concept of correlated equilibria was introduced by Robert Aumann, who received a Nobel prize in economics for his work in game theory.

Figure: Robert Aumann (born 1930).

- The concept of correlated equilibria was introduced by Robert Aumann, who received a Nobel prize in economics for his work in game theory.

Figure: Robert Aumann (born 1930).
Sources: https://en.wikipedia.org and https://slideslive.com/38910863/strategic-information-theory

- In 2018, Robert Aumann visited Prague and gave a lecture at Prague mathematical colloquium. You can see the lecture here: https: //slideslive.com/38910863/strategic-information-theory.
- " $\mathrm{P}=\mathrm{NP}$ " is one of the most important problems in computer science. The website https://www.win.tue.nl/~gwoegi/P-versus-NP.htm contains a collection of over 100 attempts to solve it.
- " $\mathrm{P}=\mathrm{NP}$ " is one of the most important problems in computer science. The website https://www.win.tue.nl/~gwoegi/P-versus-NP.htm contains a collection of over 100 attempts to solve it.

Source: Students of MFF UK

- " $\mathrm{P}=\mathrm{NP}$ " is one of the most important problems in computer science. The website https://www.win.tue.nl/~gwoegi/P-versus-NP.htm contains a collection of over 100 attempts to solve it.

Source: Students of MFF UK

Thank you for your attention.

