Algorithmic game theory

Martin Balko

4th lecture

October 26th 2023

Nash equilibria in bimatrix games

What we learned last time

What we learned last time

- Last lecture we introduced a brute-force algorithm to find all Nash equilibria in bimatrix games.

What we learned last time

- Last lecture we introduced a brute-force algorithm to find all Nash equilibria in bimatrix games.
- Recall that we have payoff matrices M and N with $(M)_{i, j}=u_{1}(i, j)$ and $(N)_{i, j}=u_{2}(i, j)$.

What we learned last time

- Last lecture we introduced a brute-force algorithm to find all Nash equilibria in bimatrix games.
- Recall that we have payoff matrices M and N with $(M)_{i, j}=u_{1}(i, j)$ and $(N)_{i, j}=u_{2}(i, j)$.
- The best response condition: If x and y are mixed strategy vectors of players 1 and 2 , respectively, then x is a best response to y if and only if for all $i \in A_{1}$,

$$
x_{i}>0 \Longrightarrow(M)_{i} y=\max \left\{(M)_{k} y: k \in A_{1}\right\} .
$$

Analogously, y is the best response to x if and only if for all $j \in A_{2}$,

$$
y_{j}>0 \Longrightarrow\left(N^{\top}\right)_{j} x=\max \left\{\left(N^{\top}\right)_{k} x: k \in A_{2}\right\} .
$$

What we learned last time

- Last lecture we introduced a brute-force algorithm to find all Nash equilibria in bimatrix games.
- Recall that we have payoff matrices M and N with $(M)_{i, j}=u_{1}(i, j)$ and $(N)_{i, j}=u_{2}(i, j)$.
- The best response condition: If x and y are mixed strategy vectors of players 1 and 2 , respectively, then x is a best response to y if and only if for all $i \in A_{1}$,

$$
x_{i}>0 \Longrightarrow(M)_{i} y=\max \left\{(M)_{k} y: k \in A_{1}\right\} .
$$

Analogously, y is the best response to x if and only if for all $j \in A_{2}$,

$$
y_{j}>0 \Longrightarrow\left(N^{\top}\right)_{j} x=\max \left\{\left(N^{\top}\right)_{k} x: k \in A_{2}\right\} .
$$

- Today, we reveal a geometric structure behind finding NE in bimatrix games and show one of the fastest known algorithms for this task.

Best response polyhedra \bar{P} and \bar{Q} for the Battle of sexes

Best response polyhedra \bar{P} and \bar{Q} for the Battle of sexes

$$
\bar{P}=\left\{\left(x_{1}, x_{2}, v\right) \in \mathbb{R}^{2} \times \mathbb{R}: x_{1}, x_{2} \geq 0, x_{1}+x_{2}=1, x_{1} \leq v, 2 x_{2} \leq v\right\}
$$

$$
\bar{Q}=\left\{\left(y_{3}, y_{4}, u\right) \in \mathbb{R}^{2} \times \mathbb{R}: y_{3}, y_{4} \geq 0, y_{3}+y_{4}=1,2 y_{3} \leq u, y_{4} \leq u\right\}
$$

Best response polytopes P and Q for the Battle of sexes

$$
\begin{aligned}
& \begin{array}{r|ll}
(0,1) & { }^{2} \cdot\left(\frac{1}{2}, 1\right) \\
3 & Q & 1 \\
(0,0) & & \bullet\left(\frac{1}{2}, 0\right)
\end{array} \\
& P=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}, x_{2} \geq 0, x_{1} \leq 1,2 x_{2} \leq 1\right\} \\
& Q=\left\{\left(y_{3}, y_{4}\right) \in \mathbb{R}^{2}: y_{3}, y_{4} \geq 0,2 y_{3} \leq 1, y_{4} \leq 1\right\} .
\end{aligned}
$$

Algorithm for finding NE with vertex enumeration

Algorithm for finding NE with vertex enumeration

Algorithm 0.2: Vertex enumeration (G)
Input : A non-degenerate bimatrix game G.
Output : All Nash equilibria of G.
for each pair (x, y) of vertices from $(P \backslash\{\mathbf{0}\}) \times(Q \backslash\{\mathbf{0}\})$
$\{$ if (x, y) is completely labeled,
$\left\{\right.$ then return $\left(x /\left(\mathbf{1}^{\top} x\right), y /\left(\mathbf{1}^{\top} y\right)\right)$ as a Nash equilibrium

Algorithm for finding NE with vertex enumeration

Algorithm 0.3: Vertex enumeration(G)
Input : A non-degenerate bimatrix game G.
Output : All Nash equilibria of G.
for each pair (x, y) of vertices from $(P \backslash\{\mathbf{0}\}) \times(Q \backslash\{\mathbf{0}\})$
$\{$ if (x, y) is completely labeled,
\{ then return $\left(x /\left(\mathbf{1}^{\top} x\right), y /\left(\mathbf{1}^{\top} y\right)\right)$ as a Nash equilibrium

- All vertices of a simple polytope in \mathbb{R}^{d} with v vertices and N defining inequalities can be found in time $O(d N v)$ (Avis and Fukuda).

Algorithm for finding NE with vertex enumeration

Algorithm 0.4: Vertex enumeration(G)
Input : A non-degenerate bimatrix game G.
Output : All Nash equilibria of G.
for each pair (x, y) of vertices from $(P \backslash\{\mathbf{0}\}) \times(Q \backslash\{\mathbf{0}\})$
$\{$ if (x, y) is completely labeled,
\{ then return $\left(x /\left(\mathbf{1}^{\top} x\right), y /\left(\mathbf{1}^{\top} y\right)\right)$ as a Nash equilibrium

- All vertices of a simple polytope in \mathbb{R}^{d} with v vertices and N defining inequalities can be found in time $O(d N v)$ (Avis and Fukuda).
- However, if $m=n$, the best response polytopes can have c^{n} vertices for some constant c with $1<c<2.9$.

Polytopes can be weird and complex!

Figure: Schlegel diagram for the truncated 120 -cell.

Algorithm for finding NE with vertex enumeration

Algorithm 0.5: Vertex enumeration(G)

Input : A non-degenerate bimatrix game G.
Output: All Nash equilibria of G.
for each pair (x, y) of vertices from $(P \backslash\{\mathbf{0}\}) \times(Q \backslash\{\mathbf{0}\})$
$\{$ if (x, y) is completely labeled,
\{ then return $\left(x /\left(\mathbf{1}^{\top} x\right), y /\left(\mathbf{1}^{\top} y\right)\right)$ as a Nash equilibrium

- All vertices of a simple polytope in \mathbb{R}^{d} with v vertices and N defining inequalities can be found in time $O(d N v)$ (Avis and Fukuda).
- However, if $m=n$, the best response polytopes can have c^{n} vertices for some constant c with $1<c<2.9$.

Algorithm for finding NE with vertex enumeration

Algorithm 0.6: Vertex enumeration (G)

Input : A non-degenerate bimatrix game G.
Output: All Nash equilibria of G.
for each pair (x, y) of vertices from $(P \backslash\{\mathbf{0}\}) \times(Q \backslash\{\mathbf{0}\})$
$\{$ if (x, y) is completely labeled,
\{ then return $\left(x /\left(\mathbf{1}^{\top} x\right), y /\left(\mathbf{1}^{\top} y\right)\right)$ as a Nash equilibrium

- All vertices of a simple polytope in \mathbb{R}^{d} with v vertices and N defining inequalities can be found in time $O(d N v)$ (Avis and Fukuda).
- However, if $m=n$, the best response polytopes can have c^{n} vertices for some constant c with $1<c<2.9$.
- We can speed up the search by performing a walk on $(P \backslash\{\mathbf{0}\}) \times(Q \backslash\{\mathbf{0}\})$ guided by labels.

Lemke-Howson on the Battle of sexes $(k=3)$

Lemke-Howson on the Battle of sexes $(k=3)$

Lemke-Howson on the Battle of sexes $(k=3)$

Lemke-Howson on the Battle of sexes $(k=3)$

Lemke-Howson on the Battle of sexes $(k=3)$

The Lemke-Howson algorithm

The Lemke-Howson algorithm

- Known as one of the best algorithms to find NE in bimatrix games.

The Lemke-Howson algorithm

- Known as one of the best algorithms to find NE in bimatrix games.
- Discovered by Lemke and Howson in 1964.

The Lemke-Howson algorithm

- Known as one of the best algorithms to find NE in bimatrix games.
- Discovered by Lemke and Howson in 1964.

Figure: Carlton E. Lemke (1920-2004) and J. T. Howson (1937-2022).

The Lemke-Howson algorithm: pseudocode

The Lemke-Howson algorithm: pseudocode

Algorithm 0.8: LEMKE-Howson(G)

Input : A nondegenerate bimatrix game G.
Output: One Nash equilibrium of G.
$(x, y) \leftarrow(\mathbf{0}, \mathbf{0}) \in \mathbb{R}^{m} \times \mathbb{R}^{n}$,
$k \leftarrow$ arbitrary label from $A_{1} \cup A_{2}, l \leftarrow k$,
while (true)
(In P, drop $/$ from x and redefine x as the new vertex, redefine I as the newly picked up label. Switch to Q. If $I=k$, stop looping.
In Q, drop I from y and redefine y as the new vertex, redefine I as the newly picked up label. Switch to P.
If $I=k$, stop looping.
Output $\left(x /\left(\mathbf{1}^{\top} x\right), y /\left(\mathbf{1}^{\top} y\right)\right)$.

Figure: A view on the complexity classes classification.
Source: https://complexityzoo.uwaterloo.ca/Complexity_Zoo

Figure: A view on the complexity classes classification.
Source: https://complexityzoo.uwaterloo.ca/Complexity_Zoo

Thank you for your attention.

