Algorithmic game theory

Martin Balko

4th lecture

October 26th 2023




Nash equilibria in bimatrix games



BN
What we learned last time



What we learned last time

e Last lecture we introduced a brute-force algorithm to find all Nash
equilibria in bimatrix games.



What we learned last time

e Last lecture we introduced a brute-force algorithm to find all Nash
equilibria in bimatrix games.

e Recall that we have payoff matrices M and N with (M);; = u1(i, /) and
(N)ij = ua(i,J)-



What we learned last time

e Last lecture we introduced a brute-force algorithm to find all Nash
equilibria in bimatrix games.

e Recall that we have payoff matrices M and N with (M);; = u1(i, /) and
(N)ij = (7))

e The best response condition: If x and y are mixed strategy vectors of
players 1 and 2, respectively, then x is a best response to y if and only
if for all i € Ay,

xi > 0= (M);y = max{(M)xy: k € Ar}.
Analogously, y is the best response to x if and only if for all j € A,

y; > 0= (N");x = max{(N")ex: k € Ay}



What we learned last time

e Last lecture we introduced a brute-force algorithm to find all Nash
equilibria in bimatrix games.

e Recall that we have payoff matrices M and N with (M);; = u1(i, /) and
(N)ij = (7))

e The best response condition: If x and y are mixed strategy vectors of
players 1 and 2, respectively, then x is a best response to y if and only
if for all i € Ay,

xi > 0= (M);y = max{(M)xy: k € Ar}.
Analogously, y is the best response to x if and only if for all j € A,
y; > 0= (N");x = max{(N")ex: k € Ay}

e Today, we reveal a geometric structure behind finding NE in bimatrix
games and show one of the fastest known algorithms for this task.
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Best response polyhedra P and Q for the Battle of sexes

P={(x,x,vV) ER*XR:x3,% >0,x +% =1,x < v,2x < v}

Q={(ys,ya,u) ER*XR: ys,y4 > 0,y5+ys = 1,2y < u, ys < u}.
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Best response polytopes P and  for the Battle of sexes

(0,1) (3,1)
(0,1) gumme (1, 1) 31Q 1
1 3
(0,0)-2(1,0) (0,0) p (3,0)

P={(x1,x%) €ER?* x1,x0 >0,x <1,2x <1}

Q = {(y37.y4) € Rz: Y3, Ya Z 072)’3 S 1,)/4 S 1}
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Algorithm 0.2: VERTEX ENUMERATION(G)

Input : A non-degenerate bimatrix game G.

Output : All Nash equilibria of G.

for each pair (x, y) of vertices from (P \ {0}) x (Q \ {0})
if (x,y) is completely labeled,

{ then return (x/(1"x),y/(17y)) as a Nash equilibrium
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Algorithm 0.3: VERTEX ENUMERATION(G)
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Algorithm for finding NE with vertex enumeration

Algorithm 0.4: VERTEX ENUMERATION(G)

Input : A non-degenerate bimatrix game G.
Output : All Nash equilibria of G.

for each pair (x,y) of vertices from (P \ {0}) x (Q \ {0})
{ if (x,y) is completely labeled,

then return (x/(1"x),y/(1"y)) as a Nash equilibrium

e All vertices of a simple polytope in R with v vertices and N defining
inequalities can be found in time O(dNv) (Avis and Fukuda).

e However, if m = n, the best response polytopes can have c¢” vertices for
some constant ¢ with 1 < ¢ < 2.9.



Polytopes can be weird and complex!

Figure: Schlegel diagram for the truncated 120-cell.

Source: https://en.wikipedia.org/
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Algorithm 0.5: VERTEX ENUMERATION(G)

Input : A non-degenerate bimatrix game G.
Output : All Nash equilibria of G.

for each pair (x,y) of vertices from (P \ {0}) x (Q \ {0})
{ if (x,y) is completely labeled,

then return (x/(17x),y/(17y)) as a Nash equilibrium

e All vertices of a simple polytope in R with v vertices and N defining
inequalities can be found in time O(dNv) (Avis and Fukuda).

e However, if m = n, the best response polytopes can have c¢” vertices for
some constant ¢ with 1 < ¢ < 2.9.



Algorithm for finding NE with vertex enumeration

Algorithm 0.6: VERTEX ENUMERATION(G)

Input : A non-degenerate bimatrix game G.

Output : All Nash equilibria of G.

for each pair (x,y) of vertices from (P \ {0}) x (Q \ {0})
if (x,y) is completely labeled,

{ then return (x/(17x),y/(1"y)) as a Nash equilibrium

e All vertices of a simple polytope in R with v vertices and N defining
inequalities can be found in time O(dNv) (Avis and Fukuda).

e However, if m = n, the best response polytopes can have c¢” vertices for
some constant ¢ with 1 < ¢ < 2.9.

e We can speed up the search by performing a walk on

(P\{0}) x (Q\ {0}) guided by labels.
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Lemke—Howson on the Battle of sexes (k = 3)

0.1) s s (11)
(0,) s (1,) 3E1
(0,0)1- %1, 0) (0,0) > (%, 0)
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The Lemke—Howson algorithm

e Known as one of the best algorithms to find NE in bimatrix games.

e Discovered by Lemke and Howson in 1964.

Figure: Carlton E. Lemke (1920-2004) and J. T. Howson (1937-2022).

Source: https://oldurls.inf.ethz.ch
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The Lemke—Howson algorithm: pseudocode

Algorithm 0.8: LEMKE-HOWSON(G)

Input : A nondegenerate bimatrix game G.

Output : One Nash equilibrium of G.

(x,¥) < (0,0) e R” x R",

k < arbitrary label from A; U Ay, | + Kk,

while (true)

(In P, drop / from x and redefine x as the new vertex,
redefine / as the newly picked up label. Switch to Q.
If I = k, stop looping.

do
In Q, drop / from y and redefine y as the new vertex,
redefine / as the newly picked up label. Switch to P.
| If / = k, stop looping.

Output (x/(1"x),y/(1"y)).







Figure: A view on the complexity classes classification.

Source: https://complexityzoo.uwaterloo.ca/Complexity_Zoo



Figure: A view on the complexity classes classification.

Source: https://complexityzoo.uwaterloo.ca/Complexity_Zoo

Thank you for your attention.



