
Algorithmic game theory

Martin Balko

4th lecture

October 26th 2023



Nash equilibria in bimatrix games



What we learned last time

• Last lecture we introduced a brute-force algorithm to find all Nash
equilibria in bimatrix games.

• Recall that we have payoff matrices M and N with (M)i ,j = u1(i , j) and
(N)i ,j = u2(i , j).

• The best response condition: If x and y are mixed strategy vectors of
players 1 and 2, respectively, then x is a best response to y if and only
if for all i ∈ A1,

xi > 0 =⇒ (M)iy = max{(M)ky : k ∈ A1}.

Analogously, y is the best response to x if and only if for all j ∈ A2,

yj > 0 =⇒ (N>)jx = max{(N>)kx : k ∈ A2}.

• Today, we reveal a geometric structure behind finding NE in bimatrix
games and show one of the fastest known algorithms for this task.



What we learned last time

• Last lecture we introduced a brute-force algorithm to find all Nash
equilibria in bimatrix games.

• Recall that we have payoff matrices M and N with (M)i ,j = u1(i , j) and
(N)i ,j = u2(i , j).

• The best response condition: If x and y are mixed strategy vectors of
players 1 and 2, respectively, then x is a best response to y if and only
if for all i ∈ A1,

xi > 0 =⇒ (M)iy = max{(M)ky : k ∈ A1}.

Analogously, y is the best response to x if and only if for all j ∈ A2,

yj > 0 =⇒ (N>)jx = max{(N>)kx : k ∈ A2}.

• Today, we reveal a geometric structure behind finding NE in bimatrix
games and show one of the fastest known algorithms for this task.



What we learned last time

• Last lecture we introduced a brute-force algorithm to find all Nash
equilibria in bimatrix games.

• Recall that we have payoff matrices M and N with (M)i ,j = u1(i , j) and
(N)i ,j = u2(i , j).

• The best response condition: If x and y are mixed strategy vectors of
players 1 and 2, respectively, then x is a best response to y if and only
if for all i ∈ A1,

xi > 0 =⇒ (M)iy = max{(M)ky : k ∈ A1}.

Analogously, y is the best response to x if and only if for all j ∈ A2,

yj > 0 =⇒ (N>)jx = max{(N>)kx : k ∈ A2}.

• Today, we reveal a geometric structure behind finding NE in bimatrix
games and show one of the fastest known algorithms for this task.



What we learned last time

• Last lecture we introduced a brute-force algorithm to find all Nash
equilibria in bimatrix games.

• Recall that we have payoff matrices M and N with (M)i ,j = u1(i , j) and
(N)i ,j = u2(i , j).

• The best response condition: If x and y are mixed strategy vectors of
players 1 and 2, respectively, then x is a best response to y if and only
if for all i ∈ A1,

xi > 0 =⇒ (M)iy = max{(M)ky : k ∈ A1}.

Analogously, y is the best response to x if and only if for all j ∈ A2,

yj > 0 =⇒ (N>)jx = max{(N>)kx : k ∈ A2}.

• Today, we reveal a geometric structure behind finding NE in bimatrix
games and show one of the fastest known algorithms for this task.



What we learned last time

• Last lecture we introduced a brute-force algorithm to find all Nash
equilibria in bimatrix games.

• Recall that we have payoff matrices M and N with (M)i ,j = u1(i , j) and
(N)i ,j = u2(i , j).

• The best response condition: If x and y are mixed strategy vectors of
players 1 and 2, respectively, then x is a best response to y if and only
if for all i ∈ A1,

xi > 0 =⇒ (M)iy = max{(M)ky : k ∈ A1}.

Analogously, y is the best response to x if and only if for all j ∈ A2,

yj > 0 =⇒ (N>)jx = max{(N>)kx : k ∈ A2}.

• Today, we reveal a geometric structure behind finding NE in bimatrix
games and show one of the fastest known algorithms for this task.



Best response polyhedra P and Q for the Battle of sexes

P (0, 1, 2)

(1, 0, 1)
(2
3
, 1
3
, 2
3
)

2

1

4

3

Q(1, 0, 2)

(0, 1, 1)
(1
3
, 2
3
, 2
3
)

3
4

1
2

P = {(x1, x2, v) ∈ R2 × R : x1, x2 ≥ 0, x1 + x2 = 1, x1 ≤ v , 2x2 ≤ v}

Q = {(y3, y4, u) ∈ R2 × R : y3, y4 ≥ 0, y3 + y4 = 1, 2y3 ≤ u, y4 ≤ u}.



Best response polyhedra P and Q for the Battle of sexes

P (0, 1, 2)

(1, 0, 1)
(2
3
, 1
3
, 2
3
)

2

1

4

3

Q(1, 0, 2)

(0, 1, 1)
(1
3
, 2
3
, 2
3
)

3
4

1
2

P = {(x1, x2, v) ∈ R2 × R : x1, x2 ≥ 0, x1 + x2 = 1, x1 ≤ v , 2x2 ≤ v}

Q = {(y3, y4, u) ∈ R2 × R : y3, y4 ≥ 0, y3 + y4 = 1, 2y3 ≤ u, y4 ≤ u}.



Best response polytopes P and Q for the Battle of sexes

P
(0, 0) (1, 0)

(1, 1
2
)(0, 1

2
)

2

1

4

3
Q

(0, 0) (1
2
, 0)

(1
2
, 1)(0, 1)

4

3 1

2

P = {(x1, x2) ∈ R2 : x1, x2 ≥ 0, x1 ≤ 1, 2x2 ≤ 1}

Q = {(y3, y4) ∈ R2 : y3, y4 ≥ 0, 2y3 ≤ 1, y4 ≤ 1}.



Best response polytopes P and Q for the Battle of sexes

P
(0, 0) (1, 0)

(1, 1
2
)(0, 1

2
)

2

1

4

3
Q

(0, 0) (1
2
, 0)

(1
2
, 1)(0, 1)

4

3 1

2

P = {(x1, x2) ∈ R2 : x1, x2 ≥ 0, x1 ≤ 1, 2x2 ≤ 1}

Q = {(y3, y4) ∈ R2 : y3, y4 ≥ 0, 2y3 ≤ 1, y4 ≤ 1}.



Algorithm for finding NE with vertex enumeration

Algorithm 0.1: Vertex enumeration(G )

Input : A non-degenerate bimatrix game G .
Output : All Nash equilibria of G .
for each pair (x , y) of vertices from (P \ {0})× (Q \ {0}){

if (x , y) is completely labeled,

then return (x/(1>x), y/(1>y)) as a Nash equilibrium

• All vertices of a simple polytope in Rd with v vertices and N defining
inequalities can be found in time O(dNv) (Avis and Fukuda).

• However, if m = n, the best response polytopes can have cn vertices for
some constant c with 1 < c < 2.9.



Algorithm for finding NE with vertex enumeration

Algorithm 0.2: Vertex enumeration(G )

Input : A non-degenerate bimatrix game G .
Output : All Nash equilibria of G .
for each pair (x , y) of vertices from (P \ {0})× (Q \ {0}){

if (x , y) is completely labeled,

then return (x/(1>x), y/(1>y)) as a Nash equilibrium

• All vertices of a simple polytope in Rd with v vertices and N defining
inequalities can be found in time O(dNv) (Avis and Fukuda).

• However, if m = n, the best response polytopes can have cn vertices for
some constant c with 1 < c < 2.9.



Algorithm for finding NE with vertex enumeration

Algorithm 0.3: Vertex enumeration(G )

Input : A non-degenerate bimatrix game G .
Output : All Nash equilibria of G .
for each pair (x , y) of vertices from (P \ {0})× (Q \ {0}){

if (x , y) is completely labeled,

then return (x/(1>x), y/(1>y)) as a Nash equilibrium

• All vertices of a simple polytope in Rd with v vertices and N defining
inequalities can be found in time O(dNv) (Avis and Fukuda).

• However, if m = n, the best response polytopes can have cn vertices for
some constant c with 1 < c < 2.9.



Algorithm for finding NE with vertex enumeration

Algorithm 0.4: Vertex enumeration(G )

Input : A non-degenerate bimatrix game G .
Output : All Nash equilibria of G .
for each pair (x , y) of vertices from (P \ {0})× (Q \ {0}){

if (x , y) is completely labeled,

then return (x/(1>x), y/(1>y)) as a Nash equilibrium

• All vertices of a simple polytope in Rd with v vertices and N defining
inequalities can be found in time O(dNv) (Avis and Fukuda).

• However, if m = n, the best response polytopes can have cn vertices for
some constant c with 1 < c < 2.9.



Polytopes can be weird and complex!

Figure: Schlegel diagram for the truncated 120-cell.

Source: https://en.wikipedia.org/



Algorithm for finding NE with vertex enumeration

Algorithm 0.5: Vertex enumeration(G )

Input : A non-degenerate bimatrix game G .
Output : All Nash equilibria of G .
for each pair (x , y) of vertices from (P \ {0})× (Q \ {0}){

if (x , y) is completely labeled,

then return (x/(1>x), y/(1>y)) as a Nash equilibrium

• All vertices of a simple polytope in Rd with v vertices and N defining
inequalities can be found in time O(dNv) (Avis and Fukuda).

• However, if m = n, the best response polytopes can have cn vertices for
some constant c with 1 < c < 2.9.

• We can speed up the search by performing a walk on
(P \ {0})× (Q \ {0}) guided by labels.



Algorithm for finding NE with vertex enumeration

Algorithm 0.6: Vertex enumeration(G )

Input : A non-degenerate bimatrix game G .
Output : All Nash equilibria of G .
for each pair (x , y) of vertices from (P \ {0})× (Q \ {0}){

if (x , y) is completely labeled,

then return (x/(1>x), y/(1>y)) as a Nash equilibrium

• All vertices of a simple polytope in Rd with v vertices and N defining
inequalities can be found in time O(dNv) (Avis and Fukuda).

• However, if m = n, the best response polytopes can have cn vertices for
some constant c with 1 < c < 2.9.

• We can speed up the search by performing a walk on
(P \ {0})× (Q \ {0}) guided by labels.



Lemke–Howson on the Battle of sexes (k = 3)

P
(0, 0) (1, 0)

(1, 1
2
)(0, 1

2
)

2

1

4

3
Q

(0, 0) (1
2
, 0)

(1
2
, 1)(0, 1)

4

3 1

2



Lemke–Howson on the Battle of sexes (k = 3)

P
(0, 0) (1, 0)

(1, 1
2
)(0, 1

2
)

2

1

4

3
Q

(0, 0) (1
2
, 0)

(1
2
, 1)(0, 1)

4

3 1

2



Lemke–Howson on the Battle of sexes (k = 3)

P
(0, 0) (1, 0)

(1, 1
2
)(0, 1

2
)

2

1

4

3
Q

(0, 0) (1
2
, 0)

(1
2
, 1)(0, 1)

4

3 1

2



Lemke–Howson on the Battle of sexes (k = 3)

P
(0, 0) (1, 0)

(1, 1
2
)(0, 1

2
)

2

1

4

3
Q

(0, 0) (1
2
, 0)

(1
2
, 1)(0, 1)

4

3 1

2



Lemke–Howson on the Battle of sexes (k = 3)

P
(0, 0) (1, 0)

(1, 1
2
)(0, 1

2
)

2

1

4

3
Q

(0, 0) (1
2
, 0)

(1
2
, 1)(0, 1)

4

3 1

2



The Lemke–Howson algorithm

• Known as one of the best algorithms to find NE in bimatrix games.

• Discovered by Lemke and Howson in 1964.

Figure: Carlton E. Lemke (1920–2004) and J. T. Howson (1937–2022).
Source: https://oldurls.inf.ethz.ch



The Lemke–Howson algorithm

• Known as one of the best algorithms to find NE in bimatrix games.

• Discovered by Lemke and Howson in 1964.

Figure: Carlton E. Lemke (1920–2004) and J. T. Howson (1937–2022).
Source: https://oldurls.inf.ethz.ch



The Lemke–Howson algorithm

• Known as one of the best algorithms to find NE in bimatrix games.

• Discovered by Lemke and Howson in 1964.

Figure: Carlton E. Lemke (1920–2004) and J. T. Howson (1937–2022).
Source: https://oldurls.inf.ethz.ch



The Lemke–Howson algorithm

• Known as one of the best algorithms to find NE in bimatrix games.

• Discovered by Lemke and Howson in 1964.

Figure: Carlton E. Lemke (1920–2004) and J. T. Howson (1937–2022).
Source: https://oldurls.inf.ethz.ch



The Lemke–Howson algorithm: pseudocode

Algorithm 0.7: Lemke–Howson(G )

Input : A nondegenerate bimatrix game G .
Output : One Nash equilibrium of G .
(x , y)← (0, 0) ∈ Rm × Rn,
k ← arbitrary label from A1 ∪ A2, l ← k ,
while (true)

do



In P , drop l from x and redefine x as the new vertex,
redefine l as the newly picked up label. Switch to Q.

If l = k , stop looping.

In Q, drop l from y and redefine y as the new vertex,
redefine l as the newly picked up label. Switch to P .

If l = k , stop looping.

Output (x/(1>x), y/(1>y)).



The Lemke–Howson algorithm: pseudocode

Algorithm 0.8: Lemke–Howson(G )

Input : A nondegenerate bimatrix game G .
Output : One Nash equilibrium of G .
(x , y)← (0, 0) ∈ Rm × Rn,
k ← arbitrary label from A1 ∪ A2, l ← k ,
while (true)

do



In P , drop l from x and redefine x as the new vertex,
redefine l as the newly picked up label. Switch to Q.

If l = k , stop looping.

In Q, drop l from y and redefine y as the new vertex,
redefine l as the newly picked up label. Switch to P .

If l = k , stop looping.

Output (x/(1>x), y/(1>y)).



Figure: A view on the complexity classes classification.

Source: https://complexityzoo.uwaterloo.ca/Complexity Zoo

Thank you for your attention.



Figure: A view on the complexity classes classification.

Source: https://complexityzoo.uwaterloo.ca/Complexity Zoo

Thank you for your attention.



Figure: A view on the complexity classes classification.

Source: https://complexityzoo.uwaterloo.ca/Complexity Zoo

Thank you for your attention.


