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Figure: John von Neumann (1903-1957) and Oskar Morgenstern (1902-1977).

Sources: https://en.wikiquote.org and https://austriainusa.org
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for any worst-case optimal strategies x* and y*, the strategy profile
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e Recall that 3(x) = minyes, x" My and a(y) = max,cs, x' My are the
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e Also, the worst-case optimal strategy x for player 1, satisfies
X) = max p(x).
5(x) = max B(x)
e The worst-case optimal strategy y for player 2, satisfies

o(y) = min a(y).
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Duality of linear programming

Primal linear program

Dual linear program

Variables
Matrix
Right-hand side
Objective function

Constraints

X1y 3 Xm
A 6 RnXm
beR"
max c ' x
ith constraint has <
>
x>0
xp <0

x;€R

Yi,--+5Yn
AT € Rm*n
ceR”
minb'y
yi =0
yi<0
yieR
Jth constraint has >
<

Table: A recipe for making dual programs.
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Bimatrix games

e We try to efficiently find Nash equilibria in bimatrix games, that is,
games of 2-players (not necessarily zero-sum).
e Example: Prisoner’'s dilemma

‘ Testify ‘ Remain silent
Testify (-2,-2) (-3,0)
Remain silent | (0,-3) (-1,-1)

Sources: https://sciworthy.com/



Bimatrix games examples: collaborative projects

Source: https://filestage.io



Bimatrix games examples: education, knowledge sharing
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Source: https://www.123rf.com/



Bimatrix games examples: the battle for Gotham's soul

‘ Cooperate ‘ Detonate
Cooperate (0,0) (0,1)
Detonate (1,0) (0,0)

Sources: https://www.cbr.com
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e Later, we show the currently best known algorithm for this problem.
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Example: Battle of sexes

We show the brute-force algorithm on the Battle of sexes game.
‘ Football (1) ‘ Opera (2)

Football (1) (2,1) (0,0)

Opera (2) (0,0) (1,2)

That is, we have M = (29) and N = (}9)=N".

If | ={1,2} and J = {1,2}, then we want to solve the following
system of 6 equations with 6 variables xq, xo, y1, Vo, U, V:

X1=V, 2=V, xq+tx =1

2vi=u, yo=u,; n+y2=1

This yields a unique solution (xi, ) = (£,1) and (y1,12) = (3, 2).
Since x,y > 0 and there is no better pure strategy, we have NE.
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Best response polyhedra P and Q for the Battle of sexes



Best response polyhedra P and Q for the Battle of sexes

3
3

P={(x,x,Vv) ER*xR:x;,0>0,x +x=1,x <v,2x% < v}

Q = {(}/37}/47’-’) € Rz X R: Y3, Ya Z 0,}/3"‘)/4 = 172}/3 S u,ys S U}.
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Thank you for your attention.




