Algorithmic game theory

Martin Balko

3rd lecture

October 19th 2023

Proof of the Minimax Theorem

For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number *v* such that, for any worst-case optimal strategies *x*^{*} and *y*^{*}, the strategy profile (*x*^{*}, *y*^{*}) is a Nash equilibrium and β(*x*^{*}) = (*x*^{*})^TM*y*^{*} = α(*y*^{*}) = *v*.

For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number *v* such that, for any worst-case optimal strategies *x*^{*} and *y*^{*}, the strategy profile (*x*^{*}, *y*^{*}) is a Nash equilibrium and β(*x*^{*}) = (*x*^{*})^TM*y*^{*} = α(*y*^{*}) = *v*.

Figure: John von Neumann (1903–1957) and Oskar Morgenstern (1902–1977).

Sources: https://en.wikiquote.org and https://austriainusa.org

For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number *v* such that, for any worst-case optimal strategies *x*^{*} and *y*^{*}, the strategy profile (*x*^{*}, *y*^{*}) is a Nash equilibrium and β(*x*^{*}) = (*x*^{*})^TM*y*^{*} = α(*y*^{*}) = *v*.

For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number *v* such that, for any worst-case optimal strategies *x*^{*} and *y*^{*}, the strategy profile (*x*^{*}, *y*^{*}) is a Nash equilibrium and β(*x*^{*}) = (*x*^{*})^TM*y*^{*} = α(*y*^{*}) = *v*.

Recall that β(x) = min_{y∈S2} x^TMy and α(y) = max_{x∈S1} x^TMy are the best possible payoffs of player 2 to x and of player 1 to y, respectively.

For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number *v* such that, for any worst-case optimal strategies *x*^{*} and *y*^{*}, the strategy profile (*x*^{*}, *y*^{*}) is a Nash equilibrium and β(*x*^{*}) = (*x*^{*})^TM*y*^{*} = α(*y*^{*}) = *v*.

- Recall that β(x) = min_{y∈S2} x^TMy and α(y) = max_{x∈S1} x^TMy are the best possible payoffs of player 2 to x and of player 1 to y, respectively.
- Also, the worst-case optimal strategy \overline{x} for player 1, satisfies

$$\beta(\overline{x}) = \max_{x \in S_1} \beta(x).$$

For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number *v* such that, for any worst-case optimal strategies *x*^{*} and *y*^{*}, the strategy profile (*x*^{*}, *y*^{*}) is a Nash equilibrium and β(*x*^{*}) = (*x*^{*})^TM*y*^{*} = α(*y*^{*}) = *v*.

- Recall that β(x) = min_{y∈S2} x^TMy and α(y) = max_{x∈S1} x^TMy are the best possible payoffs of player 2 to x and of player 1 to y, respectively.
- Also, the worst-case optimal strategy \overline{x} for player 1, satisfies

$$\beta(\overline{x}) = \max_{x \in S_1} \beta(x).$$

• The worst-case optimal strategy \overline{y} for player 2, satisfies

$$\alpha(\overline{y}) = \min_{y \in S_2} \alpha(y).$$

Duality of linear programming

Duality of linear programming

	Primal linear program	Dual linear program
Variables	x_1,\ldots,x_m	y_1,\ldots,y_n
Matrix	$A \in \mathbb{R}^{n \times m}$	$A^{ op} \in \mathbb{R}^{m imes n}$
Right-hand side	$m{b} \in \mathbb{R}^n$	$c \in \mathbb{R}^m$
Objective function	$\max c^{ op} x$	min $b^{ op}y$
Constraints	i th constraint has \leq	$y_i \ge 0$
	2	$y_i \leq 0$
	=	$y_i \in \mathbb{R}$
	$x_j \ge 0$	j th constraint has \geq
	$x_j \leq 0$	≤
	$x_j \in \mathbb{R}$	=

Table: A recipe for making dual programs.

Nash equilibria in bimatrix games

Bimatrix games

• We try to efficiently find Nash equilibria in bimatrix games, that is, games of 2-players (not necessarily zero-sum).

Bimatrix games

- We try to efficiently find Nash equilibria in bimatrix games, that is, games of 2-players (not necessarily zero-sum).
- Example: Prisoner's dilemma

Bimatrix games

- We try to efficiently find Nash equilibria in bimatrix games, that is, games of 2-players (not necessarily zero-sum).
- Example: Prisoner's dilemma

	Testify	Remain silent
Testify	(-2,-2)	(- <mark>3</mark> ,0)
Remain silent	(<mark>0,-3</mark>)	(-1,-1)

Sources: https://sciworthy.com/

Bimatrix games examples: collaborative projects

Source: https://filestage.io/

Bimatrix games examples: education, knowledge sharing

Source: https://www.123rf.com/

Bimatrix games examples: the battle for Gotham's soul

	Cooperate	Detonate
Cooperate	(<mark>0,0</mark>)	(0,1)
Detonate	(1,0)	(<mark>0</mark> ,0)

Sources: https://www.cbr.com/

• We try to design an algorithm for finding Nash equilibria in games of two players (bimatrix games).

- We try to design an algorithm for finding Nash equilibria in games of two players (bimatrix games).
- We state some observations that yield a brute-force algorithm.

SIMPLY EXPLAINED: BRUTE FORCE ATTACK

Source: https://pinterest.com

• We try to design an algorithm for finding Nash equilibria in games of two players (bimatrix games).

SIMPLY EXPLAINED:

• We state some observations that yield a brute-force algorithm.

Source: https://pinterest.com

• Later, we show the currently best known algorithm for this problem.

• We show the brute-force algorithm on the Battle of sexes game.

	Football (1)	Opera (2)
Football (1)	(<mark>2</mark> ,1)	(<mark>0</mark> ,0)
Opera (2)	(<mark>0,0</mark>)	(<mark>1</mark> ,2)

• We show the brute-force algorithm on the Battle of sexes game.

	Football (1)	Opera (2)
Football (1)	(<mark>2</mark> ,1)	(<mark>0</mark> ,0)
Opera (2)	(<mark>0,0</mark>)	(<mark>1</mark> ,2)

• That is, we have $M = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$ and $N = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} = N^{\top}$.

• We show the brute-force algorithm on the Battle of sexes game.

	Football (1)	Opera (2)
Football (1)	(<mark>2</mark> ,1)	(<mark>0</mark> ,0)
Opera (2)	(<mark>0,0</mark>)	(1,2)

- That is, we have $M = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$ and $N = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} = N^{\top}$.
- If I = {1,2} and J = {1,2}, then we want to solve the following system of 6 equations with 6 variables x₁, x₂, y₁, y₂, u, v:

$$x_1 = v$$
, $2x_2 = v$, $x_1 + x_2 = 1$
 $2y_1 = u$, $y_2 = u$, ; $y_1 + y_2 = 1$

• We show the brute-force algorithm on the Battle of sexes game.

	Football (1)	Opera (2)
Football (1)	(<mark>2</mark> ,1)	(<mark>0</mark> ,0)
Opera (2)	(<mark>0,0</mark>)	(<mark>1</mark> ,2)

- That is, we have $M = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$ and $N = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} = N^{\top}$.
- If I = {1,2} and J = {1,2}, then we want to solve the following system of 6 equations with 6 variables x₁, x₂, y₁, y₂, u, v:

$$x_1 = v$$
, $2x_2 = v$, $x_1 + x_2 = 1$
 $2y_1 = u$, $y_2 = u$, ; $y_1 + y_2 = 1$

• This yields a unique solution $(x_1, x_2) = (\frac{2}{3}, \frac{1}{3})$ and $(y_1, y_2) = (\frac{1}{3}, \frac{2}{3})$.

• We show the brute-force algorithm on the Battle of sexes game.

	Football (1)	Opera (2)
Football (1)	(<mark>2</mark> ,1)	(<mark>0</mark> ,0)
Opera (2)	(<mark>0,0</mark>)	(<mark>1</mark> ,2)

- That is, we have $M = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$ and $N = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} = N^{\top}$.
- If I = {1,2} and J = {1,2}, then we want to solve the following system of 6 equations with 6 variables x₁, x₂, y₁, y₂, u, v:

$$x_1 = v$$
, $2x_2 = v$, $x_1 + x_2 = 1$
 $2y_1 = u$, $y_2 = u$, ; $y_1 + y_2 = 1$

• This yields a unique solution $(x_1, x_2) = (\frac{2}{3}, \frac{1}{3})$ and $(y_1, y_2) = (\frac{1}{3}, \frac{2}{3})$. Since $x, y \ge 0$ and there is no better pure strategy, we have NE.

• A hyperplane in \mathbb{R}^d is a set $\{x \in \mathbb{R}^d : v^\top x = w\}$ for some $v \in \mathbb{R}^d$ and $w \in \mathbb{R}$.

- A hyperplane in \mathbb{R}^d is a set $\{x \in \mathbb{R}^d : v^\top x = w\}$ for some $v \in \mathbb{R}^d$ and $w \in \mathbb{R}$.
- A halfspace in \mathbb{R}^d is a set $\{x \in \mathbb{R}^d : v^\top x \le w\}$.

- A hyperplane in ℝ^d is a set {x ∈ ℝ^d : v^Tx = w} for some v ∈ ℝ^d and w ∈ ℝ.
- A halfspace in \mathbb{R}^d is a set $\{x \in \mathbb{R}^d : v^\top x \le w\}$.

- A hyperplane in \mathbb{R}^d is a set $\{x \in \mathbb{R}^d : v^\top x = w\}$ for some $v \in \mathbb{R}^d$ and $w \in \mathbb{R}$.
- A halfspace in \mathbb{R}^d is a set $\{x \in \mathbb{R}^d : v^\top x \leq w\}$.

• A (convex) polyhedron *P* in \mathbb{R}^d is an intersection of finitely many halfspaces in \mathbb{R}^d .

A (convex) polyhedron P in ℝ^d is an intersection of finitely many halfspaces in ℝ^d. That is, P = {x ∈ ℝ^d: Vx ≤ u} for some V ∈ ℝ^{n×d} and u ∈ ℝⁿ, where n is the number of halfspaces determining P.

- A (convex) polyhedron P in ℝ^d is an intersection of finitely many halfspaces in ℝ^d. That is, P = {x ∈ ℝ^d: Vx ≤ u} for some V ∈ ℝ^{n×d} and u ∈ ℝⁿ, where n is the number of halfspaces determining P.
- A bounded polyhedron is called polytope.

- A (convex) polyhedron P in ℝ^d is an intersection of finitely many halfspaces in ℝ^d. That is, P = {x ∈ ℝ^d: Vx ≤ u} for some V ∈ ℝ^{n×d} and u ∈ ℝⁿ, where n is the number of halfspaces determining P.
- A bounded polyhedron is called polytope.

- A (convex) polyhedron P in ℝ^d is an intersection of finitely many halfspaces in ℝ^d. That is, P = {x ∈ ℝ^d: Vx ≤ u} for some V ∈ ℝ^{n×d} and u ∈ ℝⁿ, where n is the number of halfspaces determining P.
- A bounded polyhedron is called polytope.

- A (convex) polyhedron P in ℝ^d is an intersection of finitely many halfspaces in ℝ^d. That is, P = {x ∈ ℝ^d: Vx ≤ u} for some V ∈ ℝ^{n×d} and u ∈ ℝⁿ, where n is the number of halfspaces determining P.
- A bounded polyhedron is called polytope.

- A (convex) polyhedron P in ℝ^d is an intersection of finitely many halfspaces in ℝ^d. That is, P = {x ∈ ℝ^d: Vx ≤ u} for some V ∈ ℝ^{n×d} and u ∈ ℝⁿ, where n is the number of halfspaces determining P.
- A bounded polyhedron is called polytope.

- A (convex) polyhedron P in ℝ^d is an intersection of finitely many halfspaces in ℝ^d. That is, P = {x ∈ ℝ^d: Vx ≤ u} for some V ∈ ℝ^{n×d} and u ∈ ℝⁿ, where n is the number of halfspaces determining P.
- A bounded polyhedron is called polytope.

Examples of polytopes in \mathbb{R}^3

Examples of polytopes in \mathbb{R}^3

Best response polyhedra \overline{P} and \overline{Q} for the Battle of sexes

Best response polyhedra \overline{P} and \overline{Q} for the Battle of sexes

 $\overline{P} = \{(x_1, x_2, v) \in \mathbb{R}^2 \times \mathbb{R} \colon x_1, x_2 \ge \mathbf{0}, x_1 + x_2 = 1, x_1 \le v, 2x_2 \le v\}$

 $\overline{Q} = \{(y_3, y_4, u) \in \mathbb{R}^2 \times \mathbb{R} \colon y_3, y_4 \ge \mathbf{0}, y_3 + y_4 = 1, 2y_3 \le u, y_4 \le u\}.$

• Next lecture we learn the Lemke–Howson algorithm, the best known algorithm to find Nash equilibria in bimatrix games.

• Next lecture we learn the Lemke–Howson algorithm, the best known algorithm to find Nash equilibria in bimatrix games.

• Next lecture we learn the Lemke–Howson algorithm, the best known algorithm to find Nash equilibria in bimatrix games.

Thank you for your attention.