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Proof of the Minimax Theorem



The Minimax Theorem

• For every zero-sum game, worst-case optimal strategies for both players
exist and can be efficiently computed. There is a number v such that,
for any worst-case optimal strategies x∗ and y ∗, the strategy profile
(x∗, y ∗) is a Nash equilibrium and β(x∗) = (x∗)>My ∗ = α(y ∗) = v .

Figure: John von Neumann (1903–1957) and Oskar Morgenstern (1902–1977).

Sources: https://en.wikiquote.org and https://austriainusa.org
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for any worst-case optimal strategies x∗ and y ∗, the strategy profile
(x∗, y ∗) is a Nash equilibrium and β(x∗) = (x∗)>My ∗ = α(y ∗) = v .

• Recall that β(x) = miny∈S2 x
>My and α(y) = maxx∈S1 x

>My are the
best possible payoffs of player 2 to x and of player 1 to y , respectively.

• Also, the worst-case optimal strategy x for player 1, satisfies

β(x) = max
x∈S1

β(x).

• The worst-case optimal strategy y for player 2, satisfies

α(y) = min
y∈S2

α(y).
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Duality of linear programming

Primal linear program Dual linear program

Variables x1, . . . , xm y1, . . . , yn

Matrix A ∈ Rn×m A> ∈ Rm×n

Right-hand side b ∈ Rn c ∈ Rm

Objective function max c>x min b>y

Constraints ith constraint has ≤ yi ≥ 0

≥ yi ≤ 0

= yi ∈ R

xj ≥ 0 jth constraint has ≥
xj ≤ 0 ≤
xj ∈ R =

Table: A recipe for making dual programs.
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Nash equilibria in bimatrix games



Bimatrix games

• We try to efficiently find Nash equilibria in bimatrix games, that is,
games of 2-players (not necessarily zero-sum).
• Example: Prisoner’s dilemma

Testify Remain silent

Testify (-2,-2) (-3,0)

Remain silent (0,-3) (-1,-1)

Sources: https://sciworthy.com/
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Bimatrix games examples: collaborative projects

Source: https://filestage.io/



Bimatrix games examples: education, knowledge sharing

Source: https://www.123rf.com/



Bimatrix games examples: the battle for Gotham’s soul

Cooperate Detonate

Cooperate (0,0) (0,1)

Detonate (1,0) (0,0)

Sources: https://www.cbr.com/



Nash equilibria in bimatrix games by brute force

• We try to design an algorithm for finding Nash equilibria in games of
two players (bimatrix games).

• We state some observations that yield a brute-force algorithm.

Source: https://pinterest.com

• Later, we show the currently best known algorithm for this problem.
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Example: Battle of sexes

• We show the brute-force algorithm on the Battle of sexes game.

Football (1) Opera (2)

Football (1) (2,1) (0,0)

Opera (2) (0,0) (1,2)

• That is, we have M = ( 2 0
0 1 ) and N = ( 1 0

0 2 ) = N>.

• If I = {1, 2} and J = {1, 2}, then we want to solve the following
system of 6 equations with 6 variables x1, x2, y1, y2, u, v :

x1= v , 2x2 = v , x1 + x2 = 1

2y1= u, y2 = u, ; y1 + y2 = 1

• This yields a unique solution (x1, x2) = (2
3
, 1

3
) and (y1, y2) = (1

3
, 2

3
).

Since x , y ≥ 0 and there is no better pure strategy, we have NE.
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Preliminaries from geometry

• A hyperplane in Rd is a set {x ∈ Rd : v>x = w} for some v ∈ Rd and
w ∈ R.

• A halfspace in Rd is a set {x ∈ Rd : v>x ≤ w}.
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Preliminaries from geometry

• A (convex) polyhedron P in Rd is an intersection of finitely many
halfspaces in Rd . That is, P = {x ∈ Rd : Vx ≤ u} for some V ∈ Rn×d

and u ∈ Rn, where n is the number of halfspaces determining P .

• A bounded polyhedron is called polytope.
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Examples of polytopes in R3

Source: https://commons.wikimedia.org
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Best response polyhedra P and Q for the Battle of sexes

P (0, 1, 2)

(1, 0, 1)
( 2

3
, 1

3
, 2

3
)

2

1

4

3

Q(1, 0, 2)

(0, 1, 1)
( 1

3
, 2

3
, 2

3
)

3
4

1
2

P = {(x1, x2, v) ∈ R2 × R : x1, x2 ≥ 0, x1 + x2 = 1, x1 ≤ v , 2x2 ≤ v}

Q = {(y3, y4, u) ∈ R2 × R : y3, y4 ≥ 0, y3 + y4 = 1, 2y3 ≤ u, y4 ≤ u}.
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• Next lecture we learn the Lemke–Howson algorithm, the best known
algorithm to find Nash equilibria in bimatrix games.

Thank you for your attention.
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