Algorithmic game theory

Martin Balko

3rd lecture

October 19th 2023

Proof of the Minimax Theorem

The Minimax Theorem

The Minimax Theorem

- For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number v such that, for any worst-case optimal strategies x^{*} and y^{*}, the strategy profile $\left(x^{*}, y^{*}\right)$ is a Nash equilibrium and $\beta\left(x^{*}\right)=\left(x^{*}\right)^{\top} M y^{*}=\alpha\left(y^{*}\right)=v$.

The Minimax Theorem

- For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number v such that, for any worst-case optimal strategies x^{*} and y^{*}, the strategy profile $\left(x^{*}, y^{*}\right)$ is a Nash equilibrium and $\beta\left(x^{*}\right)=\left(x^{*}\right)^{\top} M y^{*}=\alpha\left(y^{*}\right)=v$.

Figure: John von Neumann (1903-1957) and Oskar Morgenstern (1902-1977).

The Minimax Theorem

- For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number v such that, for any worst-case optimal strategies x^{*} and y^{*}, the strategy profile $\left(x^{*}, y^{*}\right)$ is a Nash equilibrium and $\beta\left(x^{*}\right)=\left(x^{*}\right)^{\top} M y^{*}=\alpha\left(y^{*}\right)=v$.

The Minimax Theorem

- For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number v such that, for any worst-case optimal strategies x^{*} and y^{*}, the strategy profile $\left(x^{*}, y^{*}\right)$ is a Nash equilibrium and $\beta\left(x^{*}\right)=\left(x^{*}\right)^{\top} M y^{*}=\alpha\left(y^{*}\right)=v$.
- Recall that $\beta(x)=\min _{y \in S_{2}} x^{\top} M y$ and $\alpha(y)=\max _{x \in S_{1}} x^{\top} M y$ are the best possible payoffs of player 2 to x and of player 1 to y, respectively.

The Minimax Theorem

- For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number v such that, for any worst-case optimal strategies x^{*} and y^{*}, the strategy profile $\left(x^{*}, y^{*}\right)$ is a Nash equilibrium and $\beta\left(x^{*}\right)=\left(x^{*}\right)^{\top} M y^{*}=\alpha\left(y^{*}\right)=v$.
- Recall that $\beta(x)=\min _{y \in S_{2}} x^{\top} M y$ and $\alpha(y)=\max _{x \in S_{1}} x^{\top} M y$ are the best possible payoffs of player 2 to x and of player 1 to y, respectively.
- Also, the worst-case optimal strategy \bar{x} for player 1 , satisfies

$$
\beta(\bar{x})=\max _{x \in S_{1}} \beta(x)
$$

The Minimax Theorem

- For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number v such that, for any worst-case optimal strategies x^{*} and y^{*}, the strategy profile $\left(x^{*}, y^{*}\right)$ is a Nash equilibrium and $\beta\left(x^{*}\right)=\left(x^{*}\right)^{\top} M y^{*}=\alpha\left(y^{*}\right)=v$.
- Recall that $\beta(x)=\min _{y \in S_{2}} x^{\top} M y$ and $\alpha(y)=\max _{x \in S_{1}} x^{\top} M y$ are the best possible payoffs of player 2 to x and of player 1 to y, respectively.
- Also, the worst-case optimal strategy \bar{x} for player 1 , satisfies

$$
\beta(\bar{x})=\max _{x \in S_{1}} \beta(x) .
$$

- The worst-case optimal strategy \bar{y} for player 2 , satisfies

$$
\alpha(\bar{y})=\min _{y \in S_{2}} \alpha(y)
$$

Duality of linear programming

Duality of linear programming

	Primal linear program	Dual linear program
Variables	x_{1}, \ldots, x_{m}	y_{1}, \ldots, y_{n}
Matrix	$A \in \mathbb{R}^{n \times m}$	$A^{\top} \in \mathbb{R}^{m \times n}$
Right-hand side	$b \in \mathbb{R}^{n}$	$c \in \mathbb{R}^{m}$
Objective function	$\max C^{\top} x$	$\min b^{\top} y$
Constraints	i th constraint has \leq	$y_{i} \geq 0$
	\geq	$y_{i} \leq 0$
	$=$	$y_{i} \in \mathbb{R}$
	$x_{j} \geq 0$	j th constraint has \geq
	$x_{j} \leq 0$	\leq
	$x_{j} \in \mathbb{R}$	$=$

Table: A recipe for making dual programs.

Nash equilibria in bimatrix games

Bimatrix games

Bimatrix games

- We try to efficiently find Nash equilibria in bimatrix games, that is, games of 2-players (not necessarily zero-sum).

Bimatrix games

- We try to efficiently find Nash equilibria in bimatrix games, that is, games of 2-players (not necessarily zero-sum).
- Example: Prisoner's dilemma

Bimatrix games

- We try to efficiently find Nash equilibria in bimatrix games, that is, games of 2-players (not necessarily zero-sum).
- Example: Prisoner's dilemma

	Testify	Remain silent
Testify	$(-2,-2)$	$(-3,0)$
Remain silent	$(0,-3)$	$(-1,-1)$

Sources: https://sciworthy.com/

Bimatrix games examples: collaborative projects

Source: https://filestage.io/

Bimatrix games examples: education, knowledge sharing

Source: https://www.123rf.com/

Bimatrix games examples: the battle for Gotham's soul

	Cooperate	Detonate
Cooperate	$(0,0)$	$(0,1)$
Detonate	$(1,0)$	$(0,0)$

Nash equilibria in bimatrix games by brute force

Nash equilibria in bimatrix games by brute force

- We try to design an algorithm for finding Nash equilibria in games of two players (bimatrix games).

Nash equilibria in bimatrix games by brute force

- We try to design an algorithm for finding Nash equilibria in games of two players (bimatrix games).
- We state some observations that yield a brute-force algorithm.

SIMPLY EXPLAINED:
BRLITE FORCE ATTACK

Nash equilibria in bimatrix games by brute force

- We try to design an algorithm for finding Nash equilibria in games of two players (bimatrix games).
- We state some observations that yield a brute-force algorithm.

SIMPLY EXPLAINED:
BRLITE FORCE ATTACK

MEETING AN OLD SCHOOLMATE
Source: https://pinterest.com

- Later, we show the currently best known algorithm for this problem.

Example: Battle of sexes

Example: Battle of sexes

- We show the brute-force algorithm on the Battle of sexes game.

	Football (1)	Opera (2)
Football (1)	$(2,1)$	$(0,0)$
Opera (2)	$(0,0)$	$(1,2)$

Example: Battle of sexes

- We show the brute-force algorithm on the Battle of sexes game.

	Football (1)	Opera (2)
Football (1)	$(2,1)$	$(0,0)$
Opera (2)	$(0,0)$	$(1,2)$

- That is, we have $M=\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$ and $N=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)=N^{\top}$.

Example: Battle of sexes

- We show the brute-force algorithm on the Battle of sexes game.

	Football (1)	Opera (2)
Football (1)	$(2,1)$	$(0,0)$
Opera (2)	$(0,0)$	$(1,2)$

- That is, we have $M=\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$ and $N=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)=N^{\top}$.
- If $I=\{1,2\}$ and $J=\{1,2\}$, then we want to solve the following system of 6 equations with 6 variables $x_{1}, x_{2}, y_{1}, y_{2}, u, v$:

$$
\begin{aligned}
x_{1}=v, & 2 x_{2}=v, \quad x_{1}+x_{2}=1 \\
2 y_{1}=u, & y_{2}=u, \quad ; \quad y_{1}+y_{2}=1
\end{aligned}
$$

Example: Battle of sexes

- We show the brute-force algorithm on the Battle of sexes game.

	Football (1)	Opera (2)
Football (1)	$(2,1)$	$(0,0)$
Opera (2)	$(0,0)$	$(1,2)$

- That is, we have $M=\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$ and $N=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)=N^{\top}$.
- If $I=\{1,2\}$ and $J=\{1,2\}$, then we want to solve the following system of 6 equations with 6 variables $x_{1}, x_{2}, y_{1}, y_{2}, u, v$:

$$
\begin{aligned}
& x_{1}=v, \quad 2 x_{2}=v, \quad x_{1}+x_{2}=1 \\
& 2 y_{1}=u, \quad y_{2}=u, ; y_{1}+y_{2}=1
\end{aligned}
$$

- This yields a unique solution $\left(x_{1}, x_{2}\right)=\left(\frac{2}{3}, \frac{1}{3}\right)$ and $\left(y_{1}, y_{2}\right)=\left(\frac{1}{3}, \frac{2}{3}\right)$.

Example: Battle of sexes

- We show the brute-force algorithm on the Battle of sexes game.

	Football (1)	Opera (2)
Football (1)	$(2,1)$	$(0,0)$
Opera (2)	$(0,0)$	$(1,2)$

- That is, we have $M=\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$ and $N=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)=N^{\top}$.
- If $I=\{1,2\}$ and $J=\{1,2\}$, then we want to solve the following system of 6 equations with 6 variables $x_{1}, x_{2}, y_{1}, y_{2}, u, v$:

$$
\begin{aligned}
& x_{1}=v, 2 x_{2}=v, \\
& 2 y_{1}=u, y_{2}=u, \quad ; \quad y_{1}+y_{2}=1 \\
& 2=1
\end{aligned}
$$

- This yields a unique solution $\left(x_{1}, x_{2}\right)=\left(\frac{2}{3}, \frac{1}{3}\right)$ and $\left(y_{1}, y_{2}\right)=\left(\frac{1}{3}, \frac{2}{3}\right)$. Since $x, y \geq \mathbf{0}$ and there is no better pure strategy, we have NE.

Preliminaries from geometry

Preliminaries from geometry

- A hyperplane in \mathbb{R}^{d} is a set $\left\{x \in \mathbb{R}^{d}: v^{\top} x=w\right\}$ for some $v \in \mathbb{R}^{d}$ and $w \in \mathbb{R}$.

Preliminaries from geometry

- A hyperplane in \mathbb{R}^{d} is a set $\left\{x \in \mathbb{R}^{d}: v^{\top} x=w\right\}$ for some $v \in \mathbb{R}^{d}$ and $w \in \mathbb{R}$.
- A halfspace in \mathbb{R}^{d} is a set $\left\{x \in \mathbb{R}^{d}: v^{\top} x \leq w\right\}$.

Preliminaries from geometry

- A hyperplane in \mathbb{R}^{d} is a set $\left\{x \in \mathbb{R}^{d}: v^{\top} x=w\right\}$ for some $v \in \mathbb{R}^{d}$ and $w \in \mathbb{R}$.
- A halfspace in \mathbb{R}^{d} is a set $\left\{x \in \mathbb{R}^{d}: v^{\top} x \leq w\right\}$.

Preliminaries from geometry

- A hyperplane in \mathbb{R}^{d} is a set $\left\{x \in \mathbb{R}^{d}: v^{\top} x=w\right\}$ for some $v \in \mathbb{R}^{d}$ and $w \in \mathbb{R}$.
- A halfspace in \mathbb{R}^{d} is a set $\left\{x \in \mathbb{R}^{d}: v^{\top} x \leq w\right\}$.

Preliminaries from geometry

Preliminaries from geometry

- A (convex) polyhedron P in \mathbb{R}^{d} is an intersection of finitely many halfspaces in \mathbb{R}^{d}.

Preliminaries from geometry

- A (convex) polyhedron P in \mathbb{R}^{d} is an intersection of finitely many halfspaces in \mathbb{R}^{d}. That is, $P=\left\{x \in \mathbb{R}^{d}: V x \leq u\right\}$ for some $V \in \mathbb{R}^{n \times d}$ and $u \in \mathbb{R}^{n}$, where n is the number of halfspaces determining P.

Preliminaries from geometry

- A (convex) polyhedron P in \mathbb{R}^{d} is an intersection of finitely many halfspaces in \mathbb{R}^{d}. That is, $P=\left\{x \in \mathbb{R}^{d}: V x \leq u\right\}$ for some $V \in \mathbb{R}^{n \times d}$ and $u \in \mathbb{R}^{n}$, where n is the number of halfspaces determining P.
- A bounded polyhedron is called polytope.

Preliminaries from geometry

- A (convex) polyhedron P in \mathbb{R}^{d} is an intersection of finitely many halfspaces in \mathbb{R}^{d}. That is, $P=\left\{x \in \mathbb{R}^{d}: V x \leq u\right\}$ for some $V \in \mathbb{R}^{n \times d}$ and $u \in \mathbb{R}^{n}$, where n is the number of halfspaces determining P.
- A bounded polyhedron is called polytope.

Preliminaries from geometry

- A (convex) polyhedron P in \mathbb{R}^{d} is an intersection of finitely many halfspaces in \mathbb{R}^{d}. That is, $P=\left\{x \in \mathbb{R}^{d}: V x \leq u\right\}$ for some $V \in \mathbb{R}^{n \times d}$ and $u \in \mathbb{R}^{n}$, where n is the number of halfspaces determining P.
- A bounded polyhedron is called polytope.

Preliminaries from geometry

- A (convex) polyhedron P in \mathbb{R}^{d} is an intersection of finitely many halfspaces in \mathbb{R}^{d}. That is, $P=\left\{x \in \mathbb{R}^{d}: V x \leq u\right\}$ for some $V \in \mathbb{R}^{n \times d}$ and $u \in \mathbb{R}^{n}$, where n is the number of halfspaces determining P.
- A bounded polyhedron is called polytope.

Preliminaries from geometry

- A (convex) polyhedron P in \mathbb{R}^{d} is an intersection of finitely many halfspaces in \mathbb{R}^{d}. That is, $P=\left\{x \in \mathbb{R}^{d}: V x \leq u\right\}$ for some $V \in \mathbb{R}^{n \times d}$ and $u \in \mathbb{R}^{n}$, where n is the number of halfspaces determining P.
- A bounded polyhedron is called polytope.

Preliminaries from geometry

- A (convex) polyhedron P in \mathbb{R}^{d} is an intersection of finitely many halfspaces in \mathbb{R}^{d}. That is, $P=\left\{x \in \mathbb{R}^{d}: V x \leq u\right\}$ for some $V \in \mathbb{R}^{n \times d}$ and $u \in \mathbb{R}^{n}$, where n is the number of halfspaces determining P.
- A bounded polyhedron is called polytope.

$$
V=\left(\begin{array}{cc}
1 & \frac{1}{2} \\
\frac{1}{3} & 1 \\
-\frac{1}{2} & -\frac{1}{2}
\end{array}\right)
$$

Examples of polytopes in \mathbb{R}^{3}

Examples of polytopes in \mathbb{R}^{3}

Best response polyhedra \bar{P} and \bar{Q} for the Battle of sexes

Best response polyhedra \bar{P} and \bar{Q} for the Battle of sexes

$$
\bar{P}=\left\{\left(x_{1}, x_{2}, v\right) \in \mathbb{R}^{2} \times \mathbb{R}: x_{1}, x_{2} \geq \mathbf{0}, x_{1}+x_{2}=1, x_{1} \leq v, 2 x_{2} \leq v\right\}
$$

$$
\bar{Q}=\left\{\left(y_{3}, y_{4}, u\right) \in \mathbb{R}^{2} \times \mathbb{R}: y_{3}, y_{4} \geq \mathbf{0}, y_{3}+y_{4}=1,2 y_{3} \leq u, y_{4} \leq u\right\}
$$

- Next lecture we learn the Lemke-Howson algorithm, the best known algorithm to find Nash equilibria in bimatrix games.
- Next lecture we learn the Lemke-Howson algorithm, the best known algorithm to find Nash equilibria in bimatrix games.

- Next lecture we learn the Lemke-Howson algorithm, the best known algorithm to find Nash equilibria in bimatrix games.

Thank you for your attention.

