Algorithmic game theory

Martin Balko

2nd lecture

October 12th 2023

Proof of Nash's Theorem

Nash's Theorem

• Every normal-form game has a Nash equilibrium.

Figure: John Forbes Nash Jr. (1928–2015) and his depiction in the movie A Beautiful mind.

Brouwer's Fixed Point Theorem

Brouwer's Fixed Point Theorem

• For each $d \in \mathbb{N}$, let K be a non-empty compact convex set in \mathbb{R}^d and $f: K \to K$ be a continuous mapping. Then, there exists a fixed point $x_0 \in K$ for f, that is, $f(x_0) = x_0$.

Figure: L. E. J. Brouwer (1881–1966).

Source: https://arxiv.org/pdf/1612.06820.pdf

• https://www.youtube.com/watch?v=csInNn6pfT4&t=268s&ab_

Pareto optimality

• an Italian engineer, sociologist, economist, political scientist, and philosopher.

• an Italian engineer, sociologist, economist, political scientist, and philosopher.

Figure: Vilfredo Pareto (1848-1923).

Sources: https://en.wikipedia.org and https://medium.com/

• an Italian engineer, sociologist, economist, political scientist, and philosopher.

Figure: Vilfredo Pareto (1848-1923).

Sources: https://en.wikipedia.org and https://medium.com/

• Pareto principle: for many outcomes roughly 80% of consequences come from 20% of the causes.

Finding Nash equilibria in zero-sum games

• Two-player games (P, A, u) where $u_1(a) = -u_2(a)$ for every $a \in A$.

Zero-sum games

• Two-player games (P, A, u) where $u_1(a) = -u_2(a)$ for every $a \in A$.

	Rock	Paper	Scissors
Rock	(<mark>0</mark> ,0)	(- <mark>1</mark> ,1)	(1,-1)
Paper	(1,-1)	(<mark>0</mark> ,0)	(-1,1)
Scissors	(- <mark>1</mark> ,1)	(1 ,-1)	(<mark>0</mark> ,0)

Sources: https://en.wikipedia.org/

Zero-sum games examples: chess

Source: https://edition.cnn.com/

Zero-sum games examples: table tennis

Source: https://www.reddit.com/

Zero-sum games examples: derivative trading

Source: https://www.linkedin.com/

Zero-sum games examples: elections

Source: https://www.theguardian.com/

Zero-sum games examples: many more

Source: https://lhongtortai.com/collection/what-is-a-non-zero-sum-game

The Minimax Theorem

The Minimax Theorem

For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number *v* such that, for any worst-case optimal strategies *x*^{*} and *y*^{*}, the strategy profile (*x*^{*}, *y*^{*}) is a Nash equilibrium and β(*x*^{*}) = (*x*^{*})^TM*y*^{*} = α(*y*^{*}) = *v*.

The Minimax Theorem

For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number *v* such that, for any worst-case optimal strategies *x*^{*} and *y*^{*}, the strategy profile (*x*^{*}, *y*^{*}) is a Nash equilibrium and β(*x*^{*}) = (*x*^{*})^TM*y*^{*} = α(*y*^{*}) = *v*.

Figure: John von Neumann (1903–1957) and Oskar Morgenstern (1902–1977).

Sources: https://en.wikiquote.org and https://austriainusa.org

Duality of linear programming

	Primal linear program	Dual linear program
Variables	x_1,\ldots,x_m	y_1,\ldots,y_n
Matrix	$A \in \mathbb{R}^{n \times m}$	$A^{ op} \in \mathbb{R}^{m imes n}$
Right-hand side	$m{b}\in\mathbb{R}^n$	$c \in \mathbb{R}^m$
Objective function	$\max c^{ op} x$	min $b^{ op}y$
Constraints	i th constraint has \leq	$y_i \ge 0$
	2	$y_i \leq 0$
	=	$y_i \in \mathbb{R}$
	$x_j \geq 0$	j th constraint has \geq
	$x_j \leq 0$	≤
	$x_j \in \mathbb{R}$	=

Table: A recipe for making dual programs.

Source: https://czthomas.files.wordpress.com

Thank you for your attention.