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Revenue maximization: what we know

• For revenue maximization, we had to consider Bayesian model, where
each bidder i draws his valuation according to some probability
distribution Fi (with density fi) that is known to the seller. We then try
to maximize the expected revenue.

• In DSIC mechanisms, maximizing the expected revenue is then the
same as maximizing the expected virtual social surplus∑n

i=1 ϕi(vi)xi(v). (Theorem 3.14) where

ϕi(x) = x − 1 − Fi(x)

fi(x)
.

• If F1 = · · · = Fn = F is regular, then Vickrey’s auction with reserve
ϕ−1(0) maximizes the expected revenue among all single-item auctions.

• What if the seller does not know the distributions F1, . . . ,Fn?
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The Bulow–Klemperer theorem

• If F = F1 = · · · = Fn is a regular probability distribution, then

Ev1,...,vn+1∼F [Rev(VAn+1)] ≥ Ev1,...,vn∼F [Rev(OPTF ,n)].

Figure: Jeremy Bulow and Paul Klemperer.

Sources: https://economics.stanford.edu/ and https://www.economics.ox.ac.uk/

• More competition is better than finding the right auction format.
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of private information—his valuation vi . We consider more general
model where bidders have different private valuations for different items.
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The Vickrey–Clarke–Groves (VCG) mechanism

• In every multi-parameter mechanism design environment, there is a
DSIC social-surplus-maximizing mechanism.

Figure: William Vickrey, Edward H. Clarke, and Theodore Groves.

Sources: : https://en.wikipedia.org, https://www.demandrevelation.com/, and https://www.researchate.net/

• We can still do DSIC social surplus maximization.
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• The government wants to construct roads connecting diverse cities, and
he wants cities to pay for the roads.

Sources: https://www.science4all.org/article/auction-design/
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• Cities pay their negative externalities on the collectivity. Other cities
would be happier without the biggest city (NYC, say). How much
happier they would be is exactly what NYC must pay.
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Sources: https://www.science4all.org/article/auction-design/

• If NYC was not there, then road network number 3 (RN3) would have
been chosen, as opposed to RN4. The value of RN3 for the other cities
would be 35 M$, as opposed to the 26 M$ of RN4. Therefore, the
negative externality of NYC is 35 − 26 = 9 M$.
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