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Myerson’s lemma



What we learned last time

• For single-item auctions we have found an awesome auction (Vickrey’s
auction) with the following three properties:

◦ DSIC: everybody has dominant strategy “bid truthfully” which
guarantees non-negative utility,

◦ strong performance: maximizing social surplus,
◦ computational efficiency: running in polynomial time.

• We then generalized single-item auctions to single-parameter
environments.

◦ 1 seller and n bidders, the seller collects the bids b = (b1, . . . bn),
◦ the seller chooses an allocation x(b) = (x1(b), . . . , xn(b)) from X ,
◦ the seller sets payments p(b) = (p1(b), . . . , pn(b)).

• Is there awesome mechanism (x , p) for single-parameter environments?

• We started by looking for DSIC mechanisms.
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Myerson’s lemma

• A powerful tool for designing DSIC mechanisms.

Figure: Roger Myerson (born 1951) receiving a Nobel prize in economics.

Sources: https://en.wikipedia.org and https://twitter.com
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Statement of Myerson’s lemma

• An allocation rule x is implementable if there is a payment rule p such
that (x , p) is DSIC.

• An allocation rule x is monotone if, for every bidder i and all bids b−i ,
the allocation xi(z ; b−i) is nondecreasing in z .

Myerson’s lemma

In a single-parameter environment, the following three claims hold.

(a) An allocation rule is implementable if and only if it is monotone.

(b) If an allocation rule x is monotone, then there exists a unique payment
rule p such that (x , p) is DSIC (assuming bi = 0 implies pi(b) = 0).

(c) For every i , the payment rule p is given by the following explicit formula

pi(bi ; b−i) =

∫ bi

0

z · d

dz
xi(z ; b−i) dz .
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Proof of Myerson’s lemma
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Auction example: scheduling TV commercials

• Bidders are companies such that each company has its own TV
commercial of length wi and is willing to pay vi in order to have the
commercial presented during a commercial break. The seller is a
television station with a commercial break of length W .

Sources: https://mountain.com/ and https://www.eq-international.com/

• Can we design an awesome mechanism that assigns the slots?
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Knapsack problem

• given a capacity W and n items of values v1, . . . , vn and sizes
w1, . . . ,wn, find a subset of the items having a maximum total value
such that the total size is at most W .

Sources: https://en.wikipedia.org and https://twitter.com/

• This problem is NP-hard.

• There is a pseudo-polynomial time algorithm using dynamic
programming and a fully polynomial-time approximation scheme.



Knapsack problem

• given a capacity W and n items of values v1, . . . , vn and sizes
w1, . . . ,wn, find a subset of the items having a maximum total value
such that the total size is at most W .

Sources: https://en.wikipedia.org and https://twitter.com/

• This problem is NP-hard.

• There is a pseudo-polynomial time algorithm using dynamic
programming and a fully polynomial-time approximation scheme.



Knapsack problem

• given a capacity W and n items of values v1, . . . , vn and sizes
w1, . . . ,wn, find a subset of the items having a maximum total value
such that the total size is at most W .

Sources: https://en.wikipedia.org and https://twitter.com/

• This problem is NP-hard.

• There is a pseudo-polynomial time algorithm using dynamic
programming and a fully polynomial-time approximation scheme.



Knapsack problem

• given a capacity W and n items of values v1, . . . , vn and sizes
w1, . . . ,wn, find a subset of the items having a maximum total value
such that the total size is at most W .

Sources: https://en.wikipedia.org and https://twitter.com/

• This problem is NP-hard.

• There is a pseudo-polynomial time algorithm using dynamic
programming and a fully polynomial-time approximation scheme.



Knapsack problem

• given a capacity W and n items of values v1, . . . , vn and sizes
w1, . . . ,wn, find a subset of the items having a maximum total value
such that the total size is at most W .

Sources: https://en.wikipedia.org and https://twitter.com/

• This problem is NP-hard.

• There is a pseudo-polynomial time algorithm using dynamic
programming and a fully polynomial-time approximation scheme.



• Next lecture, we will focus on revenue maximization.

Source: https://goodgearguide.com.au
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Thank you for your attention and merry Christmas!
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