Algorithmic game theory

Martin Balko
 11th lecture

December 21st 2023

Myerson's lemma

What we learned last time

What we learned last time

- For single-item auctions we have found an awesome auction (Vickrey's auction) with the following three properties:

What we learned last time

- For single-item auctions we have found an awesome auction (Vickrey's auction) with the following three properties:
- DSIC: everybody has dominant strategy "bid truthfully" which guarantees non-negative utility,

What we learned last time

- For single-item auctions we have found an awesome auction (Vickrey's auction) with the following three properties:
- DSIC: everybody has dominant strategy "bid truthfully" which guarantees non-negative utility,
- strong performance: maximizing social surplus,

What we learned last time

- For single-item auctions we have found an awesome auction (Vickrey's auction) with the following three properties:
- DSIC: everybody has dominant strategy "bid truthfully" which guarantees non-negative utility,
- strong performance: maximizing social surplus,
- computational efficiency: running in polynomial time.

What we learned last time

- For single-item auctions we have found an awesome auction (Vickrey's auction) with the following three properties:
- DSIC: everybody has dominant strategy "bid truthfully" which guarantees non-negative utility,
- strong performance: maximizing social surplus,
- computational efficiency: running in polynomial time.
- We then generalized single-item auctions to single-parameter environments.

What we learned last time

- For single-item auctions we have found an awesome auction (Vickrey's auction) with the following three properties:
- DSIC: everybody has dominant strategy "bid truthfully" which guarantees non-negative utility,
- strong performance: maximizing social surplus,
- computational efficiency: running in polynomial time.
- We then generalized single-item auctions to single-parameter environments.
- 1 seller and n bidders, the seller collects the bids $b=\left(b_{1}, \ldots b_{n}\right)$,

What we learned last time

- For single-item auctions we have found an awesome auction (Vickrey's auction) with the following three properties:
- DSIC: everybody has dominant strategy "bid truthfully" which guarantees non-negative utility,
- strong performance: maximizing social surplus,
- computational efficiency: running in polynomial time.
- We then generalized single-item auctions to single-parameter environments.
- 1 seller and n bidders, the seller collects the bids $b=\left(b_{1}, \ldots b_{n}\right)$,
- the seller chooses an allocation $x(b)=\left(x_{1}(b), \ldots, x_{n}(b)\right)$ from X,

What we learned last time

- For single-item auctions we have found an awesome auction (Vickrey's auction) with the following three properties:
- DSIC: everybody has dominant strategy "bid truthfully" which guarantees non-negative utility,
- strong performance: maximizing social surplus,
- computational efficiency: running in polynomial time.
- We then generalized single-item auctions to single-parameter environments.
- 1 seller and n bidders, the seller collects the bids $b=\left(b_{1}, \ldots b_{n}\right)$,
- the seller chooses an allocation $x(b)=\left(x_{1}(b), \ldots, x_{n}(b)\right)$ from X,
- the seller sets payments $p(b)=\left(p_{1}(b), \ldots, p_{n}(b)\right)$.

What we learned last time

- For single-item auctions we have found an awesome auction (Vickrey's auction) with the following three properties:
- DSIC: everybody has dominant strategy "bid truthfully" which guarantees non-negative utility,
- strong performance: maximizing social surplus,
- computational efficiency: running in polynomial time.
- We then generalized single-item auctions to single-parameter environments.
- 1 seller and n bidders, the seller collects the bids $b=\left(b_{1}, \ldots b_{n}\right)$,
- the seller chooses an allocation $x(b)=\left(x_{1}(b), \ldots, x_{n}(b)\right)$ from X,
- the seller sets payments $p(b)=\left(p_{1}(b), \ldots, p_{n}(b)\right)$.
- Is there awesome mechanism (x, p) for single-parameter environments?

What we learned last time

- For single-item auctions we have found an awesome auction (Vickrey's auction) with the following three properties:
- DSIC: everybody has dominant strategy "bid truthfully" which guarantees non-negative utility,
- strong performance: maximizing social surplus,
- computational efficiency: running in polynomial time.
- We then generalized single-item auctions to single-parameter environments.
- 1 seller and n bidders, the seller collects the bids $b=\left(b_{1}, \ldots b_{n}\right)$,
- the seller chooses an allocation $x(b)=\left(x_{1}(b), \ldots, x_{n}(b)\right)$ from X,
- the seller sets payments $p(b)=\left(p_{1}(b), \ldots, p_{n}(b)\right)$.
- Is there awesome mechanism (x, p) for single-parameter environments?
- We started by looking for DSIC mechanisms.

Myerson's lemma

Myerson's lemma

- A powerful tool for designing DSIC mechanisms.

Myerson's lemma

- A powerful tool for designing DSIC mechanisms.

Figure: Roger Myerson (born 1951) receiving a Nobel prize in economics.

Statement of Myerson's lemma

Statement of Myerson's lemma

- An allocation rule x is implementable if there is a payment rule p such that (x, p) is DSIC.

Statement of Myerson's lemma

- An allocation rule x is implementable if there is a payment rule p such that (x, p) is DSIC.
- An allocation rule x is monotone if, for every bidder i and all bids b_{-i}, the allocation $x_{i}\left(z ; b_{-i}\right)$ is nondecreasing in z.

Statement of Myerson's lemma

- An allocation rule x is implementable if there is a payment rule p such that (x, p) is DSIC.
- An allocation rule x is monotone if, for every bidder i and all bids b_{-i}, the allocation $x_{i}\left(z ; b_{-i}\right)$ is nondecreasing in z.

Myerson's lemma

In a single-parameter environment, the following three claims hold.
(a) An allocation rule is implementable if and only if it is monotone.
(b) If an allocation rule x is monotone, then there exists a unique payment rule p such that (x, p) is DSIC (assuming $b_{i}=0$ implies $p_{i}(b)=0$).
(c) For every i, the payment rule p is given by the following explicit formula

$$
p_{i}\left(b_{i} ; b_{-i}\right)=\int_{0}^{b_{i}} z \cdot \frac{\mathrm{~d}}{\mathrm{~d} z} x_{i}\left(z ; b_{-i}\right) \mathrm{d} z .
$$

Proof of Myerson's lemma

Proof of Myerson's lemma

Auction example: scheduling TV commercials

Auction example: scheduling TV commercials

- Bidders are companies such that each company has its own TV commercial of length w_{i} and is willing to pay v_{i} in order to have the commercial presented during a commercial break. The seller is a television station with a commercial break of length W.

[^0]
Auction example: scheduling TV commercials

- Bidders are companies such that each company has its own TV commercial of length w_{i} and is willing to pay v_{i} in order to have the commercial presented during a commercial break. The seller is a television station with a commercial break of length W.

Sources: https://mountain.com/ and https://www.eq-international.com/

- Can we design an awesome mechanism that assigns the slots?

Knapsack problem

Knapsack problem

- given a capacity W and n items of values v_{1}, \ldots, v_{n} and sizes w_{1}, \ldots, w_{n}, find a subset of the items having a maximum total value such that the total size is at most W.

Knapsack problem

- given a capacity W and n items of values v_{1}, \ldots, v_{n} and sizes w_{1}, \ldots, w_{n}, find a subset of the items having a maximum total value such that the total size is at most W.

Sources: https://en.wikipedia.org and https://twitter.com/

Knapsack problem

- given a capacity W and n items of values v_{1}, \ldots, v_{n} and sizes w_{1}, \ldots, w_{n}, find a subset of the items having a maximum total value such that the total size is at most W.

Sources: https://en.wikipedia.org and https://twitter.com/

- This problem is NP-hard.

Knapsack problem

- given a capacity W and n items of values v_{1}, \ldots, v_{n} and sizes w_{1}, \ldots, w_{n}, find a subset of the items having a maximum total value such that the total size is at most W.

Sources: https://en.wikipedia.org and https://twitter.com/

- This problem is NP-hard.
- There is a pseudo-polynomial time algorithm using dynamic programming and a fully polynomial-time approximation scheme.
- Next lecture, we will focus on revenue maximization.

- Next lecture, we will focus on revenue maximization.

CATEGORIES \sim FASHION MOTORS DAILY DEAL
Eack to Search Results \& Listed in category: Musical Instruments $>$ Guitar $>$ Other

Seller info cody2466503 (C

Ask a question Save this seller See other items

Other item inf

Item number: 25
Item location: sh
Ur
Ships to: Ur
Payments: $\begin{array}{r}\mathrm{Pe} \\ \mathrm{Se} \\ \hline\end{array}$

Share
4 Report item

Source: https://www.kindpng.com/
Thank you for your attention and merry Christmas!

[^0]: Sources: https://mountain.com/ and https://www.eq-international.com/

