Algorithmic game theory

Martin Balko

11th lecture

December 21st 2023

• For single-item auctions we have found an awesome auction (Vickrey's auction) with the following three properties:

- For single-item auctions we have found an awesome auction (Vickrey's auction) with the following three properties:
 - DSIC: everybody has dominant strategy "bid truthfully" which guarantees non-negative utility,

- For single-item auctions we have found an awesome auction (Vickrey's auction) with the following three properties:
 - DSIC: everybody has dominant strategy "bid truthfully" which guarantees non-negative utility,
 - o strong performance: maximizing social surplus,

- For single-item auctions we have found an awesome auction (Vickrey's auction) with the following three properties:
 - DSIC: everybody has dominant strategy "bid truthfully" which guarantees non-negative utility,
 - o strong performance: maximizing social surplus,
 - computational efficiency: running in polynomial time.

- For single-item auctions we have found an awesome auction (Vickrey's auction) with the following three properties:
 - DSIC: everybody has dominant strategy "bid truthfully" which guarantees non-negative utility,
 - o strong performance: maximizing social surplus,
 - computational efficiency: running in polynomial time.
- We then generalized single-item auctions to single-parameter environments.

- For single-item auctions we have found an awesome auction (Vickrey's auction) with the following three properties:
 - DSIC: everybody has dominant strategy "bid truthfully" which guarantees non-negative utility,
 - o strong performance: maximizing social surplus,
 - computational efficiency: running in polynomial time.
- We then generalized single-item auctions to single-parameter environments.
 - 1 seller and *n* bidders, the seller collects the bids $b = (b_1, \dots, b_n)$,

- For single-item auctions we have found an awesome auction (Vickrey's auction) with the following three properties:
 - DSIC: everybody has dominant strategy "bid truthfully" which guarantees non-negative utility,
 - o strong performance: maximizing social surplus,
 - computational efficiency: running in polynomial time.
- We then generalized single-item auctions to single-parameter environments.
 - 1 seller and *n* bidders, the seller collects the bids $b = (b_1, \dots, b_n)$,
 - the seller chooses an allocation $x(b) = (x_1(b), \dots, x_n(b))$ from X,

- For single-item auctions we have found an awesome auction (Vickrey's auction) with the following three properties:
 - DSIC: everybody has dominant strategy "bid truthfully" which guarantees non-negative utility,
 - o strong performance: maximizing social surplus,
 - computational efficiency: running in polynomial time.
- We then generalized single-item auctions to single-parameter environments.
 - 1 seller and *n* bidders, the seller collects the bids $b = (b_1, \dots, b_n)$,
 - the seller chooses an allocation $x(b) = (x_1(b), \dots, x_n(b))$ from X,
 - the seller sets payments $p(b) = (p_1(b), \dots, p_n(b))$.

- For single-item auctions we have found an awesome auction (Vickrey's auction) with the following three properties:
 - DSIC: everybody has dominant strategy "bid truthfully" which guarantees non-negative utility,
 - o strong performance: maximizing social surplus,
 - computational efficiency: running in polynomial time.
- We then generalized single-item auctions to single-parameter environments.
 - 1 seller and *n* bidders, the seller collects the bids $b = (b_1, \dots, b_n)$,
 - the seller chooses an allocation $x(b) = (x_1(b), \dots, x_n(b))$ from X,
 - the seller sets payments $p(b) = (p_1(b), \dots, p_n(b))$.
- Is there awesome mechanism (x, p) for single-parameter environments?

- For single-item auctions we have found an awesome auction (Vickrey's auction) with the following three properties:
 - DSIC: everybody has dominant strategy "bid truthfully" which guarantees non-negative utility,
 - o strong performance: maximizing social surplus,
 - computational efficiency: running in polynomial time.
- We then generalized single-item auctions to single-parameter environments.
 - 1 seller and *n* bidders, the seller collects the bids $b = (b_1, \dots, b_n)$,
 - the seller chooses an allocation $x(b) = (x_1(b), \dots, x_n(b))$ from X,
 - the seller sets payments $p(b) = (p_1(b), \dots, p_n(b))$.
- Is there awesome mechanism (x, p) for single-parameter environments?
- We started by looking for DSIC mechanisms.

• A powerful tool for designing DSIC mechanisms.

• A powerful tool for designing DSIC mechanisms.

Figure: Roger Myerson (born 1951) receiving a Nobel prize in economics.

Sources: https://en.wikipedia.org and https://twitter.com

• An allocation rule x is implementable if there is a payment rule p such that (x, p) is DSIC.

- An allocation rule x is implementable if there is a payment rule p such that (x, p) is DSIC.
- An allocation rule x is monotone if, for every bidder i and all bids b_{-i}, the allocation x_i(z; b_{-i}) is nondecreasing in z.

- An allocation rule x is implementable if there is a payment rule p such that (x, p) is DSIC.
- An allocation rule x is monotone if, for every bidder i and all bids b_{-i}, the allocation x_i(z; b_{-i}) is nondecreasing in z.

Myerson's lemma

In a single-parameter environment, the following three claims hold.

- (a) An allocation rule is implementable if and only if it is monotone.
- (b) If an allocation rule x is monotone, then there exists a unique payment rule p such that (x, p) is DSIC (assuming $b_i = 0$ implies $p_i(b) = 0$).
- (c) For every i, the payment rule p is given by the following explicit formula

$$p_i(b_i; b_{-i}) = \int_0^{b_i} z \cdot \frac{\mathrm{d}}{\mathrm{d}z} x_i(z; b_{-i}) \mathrm{d}z.$$

Proof of Myerson's lemma

Proof of Myerson's lemma

Auction example: scheduling TV commercials

Auction example: scheduling TV commercials

• Bidders are companies such that each company has its own TV commercial of length *w_i* and is willing to pay *v_i* in order to have the commercial presented during a commercial break. The seller is a television station with a commercial break of length *W*.

Sources: https://mountain.com/ and https://www.eq-international.com/

Auction example: scheduling TV commercials

• Bidders are companies such that each company has its own TV commercial of length w_i and is willing to pay v_i in order to have the commercial presented during a commercial break. The seller is a television station with a commercial break of length W.

Sources: https://mountain.com/ and https://www.eq-international.com/

• Can we design an awesome mechanism that assigns the slots?

given a capacity W and n items of values v₁,..., v_n and sizes
w₁,..., w_n, find a subset of the items having a maximum total value such that the total size is at most W.

given a capacity W and n items of values v₁,..., v_n and sizes
w₁,..., w_n, find a subset of the items having a maximum total value such that the total size is at most W.

Sources: https://en.wikipedia.org and https://twitter.com/

given a capacity W and n items of values v₁,..., v_n and sizes
w₁,..., w_n, find a subset of the items having a maximum total value such that the total size is at most W.

Sources: https://en.wikipedia.org and https://twitter.com/

• This problem is NP-hard.

given a capacity W and n items of values v₁,..., v_n and sizes
w₁,..., w_n, find a subset of the items having a maximum total value such that the total size is at most W.

Sources: https://en.wikipedia.org and https://twitter.com/

- This problem is NP-hard.
- There is a pseudo-polynomial time algorithm using dynamic programming and a fully polynomial-time approximation scheme.

• Next lecture, we will focus on revenue maximization.

• Next lecture, we will focus on revenue maximization.

Source: https://www.kindpng.com/

Thank you for your attention and merry Christmas!