Algorithmic game theory - Homework 3^{11} Coarse correlated equilibria

assigned 28.11.2022, deadline 12.12.2022

Homework 1. Let $G=(P=\{1,2\}, A, u)$ be a normal-form game of two players with $A_{1}=\{a, b, c\} \quad a A_{2}=\{d, e, f\}$ and with the utility function from Table 1 .

	d	e	f
a	$(1,1)$	$(-1,-1)$	$(0,0)$
b	$(-1,-1)$	$(1,1)$	$(0,0)$
c	$(0,0)$	$(0,0)$	$(-1.1,-1.1)$

Tabulka 1: The game from Exercise 1.
Show that the probability distribution p on A with $p(a, d)=p(b, e)=p(c, f)=1 / 3$ is a coarse correlated equilibrium in $G(C C E)$, but it is not a correlated equilibrium in G (CE).

Homework 2. Let $G=(P=\{1,2\}, A, u)$ be a normal-form game of two players with $A_{1}=\{U, D\}$ and $A_{2}=\{L, R\}$ with payoff function u depicted in Table 2. Determine the set of all correlated equilibria of G.

	L	R
U	$(4,4)$	$(1,5)$
D	$(5,1)$	$(0,0)$

Tabulka 2: The game from Exercise 2.

[^0]
[^0]: ${ }^{1}$ Information about the course can be found at http://kam.mff.cuni.cz/ ${ }^{\sim}$ balko/

