Algorithmic game theory

Martin Balko

9th lecture

December 5th 2022

Games in extensive form

Games in extensive form

Games in extensive form

- In normal-form games, players act simultaneously resulting in a static description of a game.

Games in extensive form

- In normal-form games, players act simultaneously resulting in a static description of a game.
- Today, we describe a different representation of games which provides a dynamic description where players act sequentially.

Games in extensive form

- In normal-form games, players act simultaneously resulting in a static description of a game.
- Today, we describe a different representation of games which provides a dynamic description where players act sequentially.

Games in extensive form

- In normal-form games, players act simultaneously resulting in a static description of a game.
- Today, we describe a different representation of games which provides a dynamic description where players act sequentially.

- For some of these games, we show how to efficiently compute NE.

Example

Example

- An example of an imperfect-information game in extensive form (part (a)) and its normal-form (part (b)).

(b)

	(ℓ)	(r)
(L, S)	$(2,2)$	$(5,6)$
(L, T)	$(0,3)$	$(6,1)$
(R, S)	$(3,3)$	$(3,3)$
(R, T)	$(3,3)$	$(3,3)$

Example: Prisoner's dilemma

Example: Prisoner's dilemma

- Prisoner's dilemma in extensive form (part (a)) and its normal-form (part (b)).
(a)

$$
(-1,-1) \quad(-3,0) \quad(0,-3) \quad(-2,-2)
$$

	T	S
T	$(-2,-2)$	$(0,-3)$
S	$(-3,0)$	$(-1,-1)$

Example: behavioral strategy

Example: behavioral strategy

- An example of a perfect-information game in extensive form (part (a)) and its normal-form (part (b)).

(b)

	(C, E)	(C, F)	(D, E)	(D, F)
(A, G)	$(3,8)$	$(3,8)$	$(8,3)$	$(8,3)$
(A, H)	$(3,8)$	$(3,8)$	$(8,3)$	$(8,3)$
(B, G)	$(5,5)$	$(2,10)$	$(5,5)$	$(2,10)$
(B, H)	$(5,5)$	$(1,0)$	$(5,5)$	$(1,0)$

Example: behavioral strategy

- An example of a perfect-information game in extensive form (part (a)) and its normal-form (part (b)).

- A strategy of player 1 that selects A with probability $\frac{1}{2}$ and G with probability $\frac{1}{3}$ is a behavioral strategy.

Example: behavioral strategy

- An example of a perfect-information game in extensive form (part (a)) and its normal-form (part (b)).
(a)

(b)

	(C, E)	(C, F)	(D, E)	(D, F)
(A, G)	$(3,8)$	$(3,8)$	$(8,3)$	$(8,3)$
(A, H)	$(3,8)$	$(3,8)$	$(8,3)$	$(8,3)$
(B, G)	$(5,5)$	$(2,10)$	$(5,5)$	$(2,10)$
(B, H)	$(5,5)$	$(1,0)$	$(5,5)$	$(1,0)$

- A strategy of player 1 that selects A with probability $\frac{1}{2}$ and G with probability $\frac{1}{3}$ is a behavioral strategy.
- The mixed strategy $\left(\frac{3}{5}(A, G), \frac{2}{5}(B, H)\right)$ is not a behavioral strategy for 1 as the choices made by him at the two nodes are not independent.

Example: Russian roulette

Example: Russian roulette

- We have two players with a six-shot revolver containing a single bullet. Each player has two moves: shoot or give up. If player gives up, he loses the game immediately. If he shoots, then he either dies or survives, in which case the other player is on turn.

Source: https://www.memedroid.com/

Example: Russian roulette

- We have two players with a six-shot revolver containing a single bullet. Each player has two moves: shoot or give up. If player gives up, he loses the game immediately. If he shoots, then he either dies or survives, in which case the other player is on turn.

Source: https://www.memedroid.com/

- Consider that player 1 has payoffs $(10,2,1)$ for (Win,Loss, Death) and that player 2 has payoffs $(10,0,0)$.

Example: Russian roulette

Example: Russian roulette

- The Russian roulette in the extensive form using the random player.

Example: sequence form constraints

Example: sequence form constraints

- An example of an imperfect-information game in extensive form (part (a)) and linear constraints in its sequence form (part (b)).

(b)
$E=\left(\begin{array}{ccccc}1 & & & & \\ -1 & 1 & 1 & & \\ & -1 & & 1 & 1\end{array}\right), \quad e=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$,

$$
F=\left(\begin{array}{ccc}
1 & & \\
-1 & 1 & 1
\end{array}\right), \quad f=\binom{1}{0} .
$$

Example: sequence form payoff matrices

Example: sequence form payoff matrices

- An example of an imperfect-information game in extensive form (part (a)) and its sequence form payoff matrices (part (b)).

(b)

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
\emptyset & \ell & r \\
& & \\
& & \\
3 & & \\
& & \\
& 2 & 5 \\
& 0 & 6
\end{array}\right) \quad L \begin{array}{l}
L \\
\\
\end{array} \\
& B=\left(\begin{array}{ccc}
\emptyset & \ell & r \\
\\
& & \\
3 & & \\
3 & & \\
& 2 & 6 \\
& 3 & 1
\end{array}\right) \quad \begin{array}{l}
L S \\
\\
\\
\end{array}
\end{aligned}
$$

- More about games in extensive form + implementation of the algorithms will be taught in a new lecture by Martin Schmid.
- More about games in extensive form + implementation of the algorithms will be taught in a new lecture by Martin Schmid.

Novinky.cz

Novinky.cz » Internet a PC » Češi vytvorili umèlou inteligenci, která drti v ... Podrubriky: Hardware - Software - Testy - Hry a herni systémy - Mobil
Češi vytvořili umělou inteligenci, která drtí v pokeru jednoho hráče za druhým
3. 3. 2017, $15: 44$ - mif, Novinky
f Facebook \vee Twitter
Vědci z Matematicko-fyzikální fakulty Univerzity Karlovy a Fakulty elektrotechnické ČVUT
v Praze pracovali několik posledních měsíců na vývoji umělé inteligence, jejímž hlavním úkolem bude stát se špičkou v karetní hře Poker Texas Hold'em. A to se skutečně podařilo, program porazil hned několik profesionálních hráčủ.

- More about games in extensive form + implementation of the algorithms will be taught in a new lecture by Martin Schmid.

Novinky.cz

Novinky.cz » Internet a PC » Češi vytvorïli umělou inteligenci, která drti v... Podrubriky: Hardware - Software - Testy - Hry a herní systémy - Mobil
Češi vytvořili umělou inteligenci, která drtí v pokeru jednoho hráče za druhým
3. 3. 2017, $15: 44$ - mif, Novinky

Vědci z Matematicko-fyzikální fakulty Univerzity Karlovy a Fakulty elektrotechnické ČVUT
v Praze pracovali několik posledních měsíců na vývoji umělé inteligence, jejímž hlavním úkolem bude stát se špičkou v karetní hře Poker Texas Hold'em. A to se skutečně podařilo, program porazil hned několik profesionálních hráčủ.

Thank you for your attention.

