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Polynomial weights algorithm

• An algorithm that works with very small external regret.

• The algorithm gives LTPW ≤ LTmin + 2
√
T lnN .

Algorithm 0.1: Polynomial weights algorithm(X ,T , η)

Input : A set of actions X = {1, . . . ,N}, T ∈ N, and η ∈ (0, 1/2].
Output : A probability distribution pt for every time step t.
w 1
i ← 1 for every i ∈ X ,

p1 ← (1/N , . . . , 1/N),
for t = 2, . . . ,T

do

w t
i ← w t−1

i (1− η`t−1i ),
W t ←

∑
i∈X w t

i ,
pti ← w t

i /W
t for every i ∈ X .
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Polynomial weights algorithm

• An algorithm that works with very small external regret.

• The algorithm gives LTPW ≤ LTmin + 2
√
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No-regret dynamics

• The players use PW algorithm against each other.

Algorithm 0.5: No-regret dynamics(G ,T , ε)

Input : A game G = (P ,A,C ) of n players, T ∈ N and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and step t.
for every step t = 1, . . . ,T

do


Each player i ∈ P independently chooses a mixed strategy
pti using an algorithm with average regret at most ε.
Each player i ∈ P receives a loss vector `ti = (`ti (ai))ai∈Ai

,
where `ti (ai)← Eat−i∼

∏
j 6=i p

t
j
[Ci(ai ; a

t
−i)].

• Gave a new proof of the Minimax theorem in zero-sum games.

• Today we will see some new applications in general games.
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Example: Coarse correlated equilibrium

• Giving probability 1/6 to each red outcome gives coarse correlated
equilibrium in the Rock-Paper-Scissors game.

Rock Paper Scissors

Rock (0,0) (-1,1) (1,-1)

Paper (1,-1) (0,0) (-1,1)

Scissors (-1,1) (1,-1) (0,0)

• Then, the expected payoff of each player is 0 and deviating to any pure
strategy gives the expected payoff 0.

• It is not a correlated equilibrium though.
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Hierarchy of Nash equilibria

Coarse correlated equilibria,

Correlated equilibria,

Mixed Nash equilibria,

Pure Nash equilibria,

CCE

CE

MNE

PNE
not always exist

always exist, hard to compute

easy to compute

even easier to compute



No-swap-regret dynamics

• Exactly the same as No-regret dynamics, but operates with swap regret
instead of external regret.

Algorithm 0.10: No-regret dynamics(G ,T , ε)

Input : A game G = (P ,A,C ) of n players, T ∈ N and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and step t.
for every step t = 1, . . . ,T

do


Each player i ∈ P independently chooses a mixed strategy
pti using an algorithm with average swap regret at most ε.
Each player i ∈ P receives a loss vector `ti = (`ti (ai))ai∈Ai

,
where `ti (ai)← Eat−i∼

∏
j 6=i p

t
j
[Ci(ai ; a

t
−i)].
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No-swap-regret dynamics

• Exactly the same as No-regret dynamics, but operates with swap regret
instead of external regret.

Algorithm 0.12: No-regret dynamics(G ,T , ε)

Input : A game G = (P ,A,C ) of n players, T ∈ N and ε > 0.
Output : A prob. distribution pti on Ai for each i ∈ P and step t.
for every step t = 1, . . . ,T

do


Each player i ∈ P independently chooses a mixed strategy
pti using an algorithm with average swap regret at most ε.
Each player i ∈ P receives a loss vector `ti = (`ti (ai))ai∈Ai

,
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t
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• Next week, we will study extensive form games, that is, games
represented by trees.

Source: David Ravn Rasmussen: Parallel Chess Searching and Bitboards
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Thank you for your attention.
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