## Algorithmic game theory

Martin Balko

#### 6th lecture

November 14th 2022



# Other notions of equilibria

• We learned that computing NE is computationally intractable, unless  $PPAD \subseteq P$ .

- We learned that computing NE is computationally intractable, unless  $PPAD \subseteq P$ .
- Thus we want to relax the notion of NE so that we still have an interesting solution concept, which is additionally computationally tractable.

- We learned that computing NE is computationally intractable, unless  $PPAD \subseteq P$ .
- Thus we want to relax the notion of NE so that we still have an interesting solution concept, which is additionally computationally tractable.
- First attempt:  $\varepsilon$ -Nash equilibria ( $\varepsilon$ -NE).

- We learned that computing NE is computationally intractable, unless *PPAD* ⊆ *P*.
- Thus we want to relax the notion of NE so that we still have an interesting solution concept, which is additionally computationally tractable.
- First attempt:  $\varepsilon$ -Nash equilibria ( $\varepsilon$ -NE).
- Though  $\varepsilon$ -NE look natural at first sight, there are some drawbacks.

- We learned that computing NE is computationally intractable, unless *PPAD* ⊆ *P*.
- Thus we want to relax the notion of NE so that we still have an interesting solution concept, which is additionally computationally tractable.
- First attempt:  $\varepsilon$ -Nash equilibria ( $\varepsilon$ -NE).
- Though  $\varepsilon$ -NE look natural at first sight, there are some drawbacks.
- For example, we know only quasi-polynomial algorithm to find  $\varepsilon$ -NE.

- We learned that computing NE is computationally intractable, unless  $PPAD \subseteq P$ .
- Thus we want to relax the notion of NE so that we still have an interesting solution concept, which is additionally computationally tractable.
- First attempt:  $\varepsilon$ -Nash equilibria ( $\varepsilon$ -NE).
- Though  $\varepsilon$ -NE look natural at first sight, there are some drawbacks.
- For example, we know only quasi-polynomial algorithm to find  $\varepsilon$ -NE.
- The solution concept of correlated equilibria (CE) is more promising as it can be found efficiently.

# Regret minimization



### Example



|           | *** | *** | $\mathbf{x}$ | *** | 1035 |
|-----------|-----|-----|--------------|-----|------|
| Algorithm | 5   |     |              | 1   | 1    |
| Umbrella  | 1   | 1   | 5            | 1   | 1    |
| Sunscreen |     |     |              |     | 3    |

Source: No regret algorithms in games (Georgios Piliouras)

• Besides game theory, the "multiplicative weight update method" has many applications in various fields of science, for example in optimization, theoretical computer science, and machine learning.



Sources: https://clubitc.ro

• Besides game theory, the "multiplicative weight update method" has many applications in various fields of science, for example in optimization, theoretical computer science, and machine learning.



Sources: https://clubitc.ro

• See https://en.wikipedia.org/wiki/Multiplicative\_weight\_ update\_method#Applications • Besides game theory, the "multiplicative weight update method" has many applications in various fields of science, for example in optimization, theoretical computer science, and machine learning.



Sources: https://clubitc.ro

• See https://en.wikipedia.org/wiki/Multiplicative\_weight\_ update\_method#Applications Thank you for your attention.