Algorithmic game theory

Martin Balko

4th lecture

October 31th 2022

Nash equilibria in bimatrix games

What we learned last time

What we learned last time

- Last lecture we introduced a greedy algorithm to find all Nash equilibria in bimatrix games.

What we learned last time

- Last lecture we introduced a greedy algorithm to find all Nash equilibria in bimatrix games.
- Recall we have payoff matrices M and N with $(M)_{i, j}=u_{1}(i, j)$ and $(N)_{i, j}=u_{2}(i, j)$.

What we learned last time

- Last lecture we introduced a greedy algorithm to find all Nash equilibria in bimatrix games.
- Recall we have payoff matrices M and N with $(M)_{i, j}=u_{1}(i, j)$ and $(N)_{i, j}=u_{2}(i, j)$.
- The best response condition: If x and y are mixed strategy vectors of players 1 and 2 , respectively, then x is a best response to y if and only if for all $i \in A_{1}$,

$$
x_{i}>0 \Longrightarrow(M)_{i} y=\max \left\{(M)_{k} y: k \in A_{1}\right\} .
$$

Analogously, y is the best response to x if and only if for all $j \in A_{2}$,

$$
y_{j}>0 \Longrightarrow\left(N^{\top}\right)_{j} x=\max \left\{\left(N^{\top}\right)_{k} x: k \in A_{2}\right\} .
$$

What we learned last time

- Last lecture we introduced a greedy algorithm to find all Nash equilibria in bimatrix games.
- Recall we have payoff matrices M and N with $(M)_{i, j}=u_{1}(i, j)$ and $(N)_{i, j}=u_{2}(i, j)$.
- The best response condition: If x and y are mixed strategy vectors of players 1 and 2 , respectively, then x is a best response to y if and only if for all $i \in A_{1}$,

$$
x_{i}>0 \Longrightarrow(M)_{i} y=\max \left\{(M)_{k} y: k \in A_{1}\right\} .
$$

Analogously, y is the best response to x if and only if for all $j \in A_{2}$,

$$
y_{j}>0 \Longrightarrow\left(N^{\top}\right)_{j} x=\max \left\{\left(N^{\top}\right)_{k} x: k \in A_{2}\right\} .
$$

- Today, we notice a geometric structure behind this task and show the fastest known algorithm for computing NE in bimatrix games.

Examples of polytopes

Examples of polytopes

Best response polyhedra \bar{P} and \bar{Q} for the Battle of sexes

Best response polyhedra \bar{P} and \bar{Q} for the Battle of sexes

$$
\bar{P}=\left\{\left(x_{1}, x_{2}, v\right) \in \mathbb{R}^{2} \times \mathbb{R}: x_{1}, x_{2} \geq \mathbf{0}, x_{1}+x_{2}=1, x_{1} \leq v, 2 x_{2} \leq v\right\}
$$

$$
\bar{Q}=\left\{\left(y_{3}, y_{4}, u\right) \in \mathbb{R}^{2} \times \mathbb{R}: y_{3}, y_{4} \geq \mathbf{0}, y_{3}+y_{4}=1,2 y_{3} \leq u, y_{4} \leq u\right\}
$$

Best response polytopes P and Q for the Battle of sexes

$$
\begin{aligned}
& \begin{array}{r|ll}
(0,1) & { }^{2} \cdot\left(\frac{1}{2}, 1\right) \\
3 & Q & 1 \\
(0,0) & & \bullet\left(\frac{1}{2}, 0\right)
\end{array} \\
& P=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}, x_{2} \geq 0, x_{1} \leq 1,2 x_{2} \leq 1\right\} \\
& Q=\left\{\left(y_{3}, y_{4}\right) \in \mathbb{R}^{2}: y_{3}, y_{4} \geq 0,2 y_{3} \leq 1, y_{4} \leq 1\right\} .
\end{aligned}
$$

Lemke-Howson on the Battle of sexes $(k=3)$

Lemke-Howson on the Battle of sexes $(k=3)$

Lemke-Howson on the Battle of sexes $(k=3)$

Lemke-Howson on the Battle of sexes $(k=3)$

Lemke-Howson on the Battle of sexes $(k=3)$

The Lemke-Howson algorithm

The Lemke-Howson algorithm

- Known as one of the best algorithms to find NE in bimatrix games.

The Lemke-Howson algorithm

- Known as one of the best algorithms to find NE in bimatrix games.
- Discovered by Lemke and Howson in 1964.

The Lemke-Howson algorithm

- Known as one of the best algorithms to find NE in bimatrix games.
- Discovered by Lemke and Howson in 1964.

Figure: Carlton E. Lemke (1920-2004) and J. T. Howson (?).

Figure: A view on the complexity classes classification.
Source: https://complexityzoo.uwaterloo.ca/Complexity_Zoo

Figure: A view on the complexity classes classification.
Source: https://complexityzoo.uwaterloo.ca/Complexity_Zoo

Thank you for your attention.

