Algorithmic game theory

Martin Balko

3rd lecture

October 24th 2022

Proof of the Minimax Theorem

The Minimax Theorem

The Minimax Theorem

For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number *v* such that, for any worst-case optimal strategies *x*^{*} and *y*^{*}, the strategy profile (*x*^{*}, *y*^{*}) is a Nash equilibrium and β(*x*^{*}) = (*x*^{*})^TM*y*^{*} = α(*y*^{*}) = *v*.

The Minimax Theorem

For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number *v* such that, for any worst-case optimal strategies *x*^{*} and *y*^{*}, the strategy profile (*x*^{*}, *y*^{*}) is a Nash equilibrium and β(*x*^{*}) = (*x*^{*})^TM*y*^{*} = α(*y*^{*}) = *v*.

Figure: John von Neumann (1903–1957) and Oskar Morgenstern (1902–1977).

Sources: https://en.wikiquote.org and https://austriainusa.org

Duality of linear programming

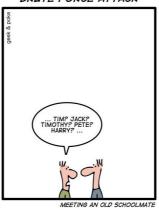
Duality of linear programming

	Primal linear program	Dual linear program
Variables	x_1,\ldots,x_m	y_1,\ldots,y_n
Matrix	$A \in \mathbb{R}^{n \times m}$	$A^{ op} \in \mathbb{R}^{m imes n}$
Right-hand side	$oldsymbol{b}\in\mathbb{R}^n$	$c \in \mathbb{R}^m$
Objective function	$\max c^{ op} x$	min $b^{\top}y$
Constraints	i th constraint has \leq	$y_i \ge 0$
	2	$y_i \leq 0$
	=	$y_i \in \mathbb{R}$
	$x_j \ge 0$	j th constraint has \geq
	$x_j \leq 0$	≤
	$x_j \in \mathbb{R}$	=

Table: A recipe for making dual programs.

• We try to design an algorithm for finding Nash equilibria in games of two players (bimatrix games).

- We try to design an algorithm for finding Nash equilibria in games of two players (bimatrix games).
- We state some observations that yield a brute-force algorithm.



SIMPLY EXPLAINED: BRUTE FORCE ATTACK

Source: https://pinterest.com

- We try to design an algorithm for finding Nash equilibria in games of two players (bimatrix games).
- We state some observations that yield a brute-force algorithm.

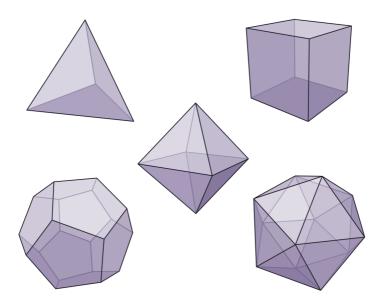
SIMPLY EXPLAINED: BRUTE FORCE ATTACK

Source: https://pinterest.com

• Later, we show the currently best known algorithm for this problem.

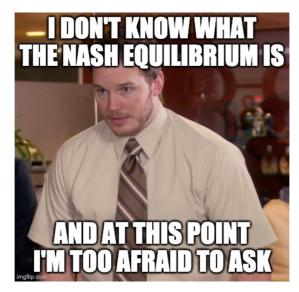
Examples of polytopes

Examples of polytopes

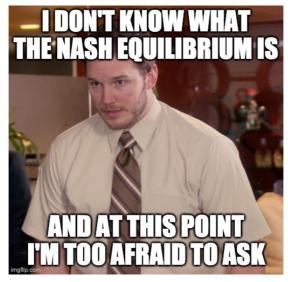


• Next lecture we learn the Lemke–Howson algorithm, the best known algorithm to find Nash equilibria in bimatrix games.

• Next lecture we learn the Lemke–Howson algorithm, the best known algorithm to find Nash equilibria in bimatrix games.



• Next lecture we learn the Lemke–Howson algorithm, the best known algorithm to find Nash equilibria in bimatrix games.



Thank you for your attention.