Algorithmic game theory

Martin Balko

11th lecture

December 19th 2022

• For single-item auctions we have found an awesome auction (Vickrey's auction) with the following three properties:

- For single-item auctions we have found an awesome auction (Vickrey's auction) with the following three properties:
 - DSIC,

- For single-item auctions we have found an awesome auction (Vickrey's auction) with the following three properties:
 - DSIC,
 - strong performance guarantees,

- For single-item auctions we have found an awesome auction (Vickrey's auction) with the following three properties:
 - DSIC,
 - $\circ\,$ strong performance guarantees,
 - $\circ~$ computational efficiency.

- For single-item auctions we have found an awesome auction (Vickrey's auction) with the following three properties:
 - DSIC,
 - $\circ\,$ strong performance guarantees,
 - computational efficiency.
- We then generalized single-item auctions to single-parameter environments.

- For single-item auctions we have found an awesome auction (Vickrey's auction) with the following three properties:
 - DSIC,
 - strong performance guarantees,
 - computational efficiency.
- We then generalized single-item auctions to single-parameter environments.
- Is there an awesome auction for single-parameter environments?

• A powerful tool for designing DSIC mechanisms.

• A powerful tool for designing DSIC mechanisms.

Figure: Roger Myerson (born 1951) receiving a Nobel prize in economics.

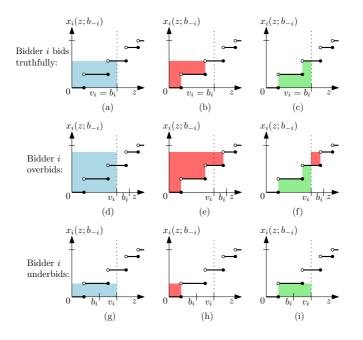
Sources: https://en.wikipedia.org and https://twitter.com

• An allocation rule x is implementable if there is a payment rule p such the mechanism (x, p) is DSIC.

- An allocation rule x is implementable if there is a payment rule p such the mechanism (x, p) is DSIC.
- An allocation rule x is monotone if, for every bidder i and all bids b_{-i}, the allocation x_i(z; b_{-i}) to i is nondecreasing in z.

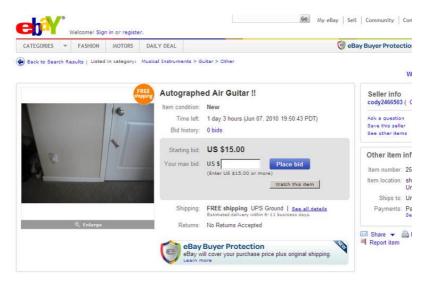
- An allocation rule x is implementable if there is a payment rule p such the mechanism (x, p) is DSIC.
- An allocation rule x is monotone if, for every bidder i and all bids b_{-i}, the allocation x_i(z; b_{-i}) to i is nondecreasing in z.

Theorem (Myerson's lemma)

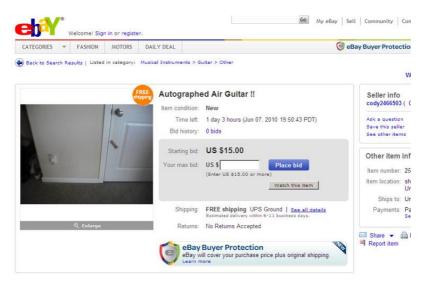

In a single-parameter environment, the following three claims hold.

- (a) An allocation rule is implementable if and only if it is monotone.
- (b) If an allocation rule x is monotone, then there exists a unique payment rule p such that the mechanism (x, p) is DSIC (assuming that $b_i = 0$ implies $p_i(b) = 0$).
- (c) For every $i \in \{1, \ldots, n\}$, the payment rule p is given by

$$p_i(b_i; b_{-i}) = \int_0^{b_i} z \cdot \frac{\mathrm{d}}{\mathrm{d}z} x_i(z; b_{-i}) \, \mathrm{d}z.$$


Proof of Myerson's lemma

Proof of Myerson's lemma


• Next lecture, we will focus on revenue maximization.

• Next lecture, we will focus on revenue maximization.

Source: https://goodgearguide.com.au

• Next lecture, we will focus on revenue maximization.

Source: https://goodgearguide.com.au

Thank you for your attention.