Algorithmic game theory - Tutorial 6 *

December 19, 2022

1 Games in extensive form

The sequence form of an imperfect-information game G is a 4-tuple (P, S, u, C) where P is a set of n players, $S=\left(S_{1}, \ldots, S_{n}\right)$, where S_{i} is a set of sequences of player $i, u=\left(u_{1}, \ldots, u_{n}\right)$, where $u_{i}: S \rightarrow \mathbb{R}$ is the payoff function of player i, and $C=\left(C_{1}, \ldots, C_{n}\right)$ is a set of linear constraints on the realization probabilities of player i.

Exercise 1. Construct an extensive form of the Game of chicken from Table 1 and write its sequence form and the linear complementarity problem for finding Nash equilibria in this game.

	Turn	Straight
Turn	$(0,0)$	$(-1,1)$
Straight	$(1,-1)$	$(-10,-10)$

Table 1: A normal form of the Game of chicken.

2 Mechanism design basics

An auction is dominant-strategy incentive-compatible (DSIC) if it satisfies the following two properties. Every bidder has a dominant strategy: bid truthfully, that is, set his bid b_{i} to his private valuation v_{i}. Moreover, the utility of every truth-telling bidder is guaranteed to be non-negative.

Theorem 1 (Myerson's lemma). In a single-parameter environment, the following three claims hold.
(a) An allocation rule is implementable if and only if it is monotone.
(b) If an allocation rule x is monotone, then there exists a unique payment rule p such that the mechanism (x, p) is DSIC (assuming that $b_{i}=0$ implies $p_{i}(b)=0$).
(c) The payment rule p is given by the following explicit formula

$$
p_{i}\left(b_{i} ; b_{-i}\right)=\int_{0}^{b_{i}} z \cdot \frac{\mathrm{~d}}{\mathrm{~d} z} x_{i}\left(z ; b_{-i}\right) \mathrm{d} z
$$

for every $i \in\{1, \ldots, n\}$.
Exercise 2. Consider a single-item auction with at least three bidders. Prove that selling the item to the highest bidder at a price equal to the third-highest bid, yields an auction that is not dominant-strategy incentive compatible (DSIC).

Exercise 3. Use Myerson's Lemma to prove that the Vickrey auction is the unique single-item auction that is DSIC, always awards the good to the highest bidder, and charges the other bidders 0.

Exercise 4. (a) Prove that the Knapsack auction allocation rule x^{G} induced by the greedy (1/2)approximation algorithm is monotone.
(b) Prove that it suffices to change only two coefficients α_{i} and β_{j} in the proof of the correctness of the (1/2)-approximation algorithm that is based on x^{G}.

[^0]
[^0]: *Information about the course can be found at http://kam.mff.cuni.cz/ ${ }^{\text {balko/ }}$

