Algorithmic game theory - Tutorial 4*

November 14, 2022

1ε-Nash and correlated equilibria

Let $G=(P, A, u)$ be a normal-form game of n players and let $\varepsilon>0$. A strategy profile $s=$ $\left(s_{1}, \ldots, s_{n}\right)$ is an ε-Nash equilibrium if, for every player $i \in P$ and for every strategy $s_{i}^{\prime} \in S_{i}$, we have $u_{i}\left(s_{i} ; s_{-i}\right) \geq u_{i}\left(s_{i}^{\prime} ; s_{-i}\right)-\varepsilon$.

Let p be a probability distribution on A, that is, $p(a) \geq 0$ for every $a \in A$ and $\sum_{a \in A} p(a)=1$. The distribution p is a correlated equilibrium in G if

$$
\sum_{a_{-i} \in A_{-i}} u_{i}\left(a_{i} ; a_{-i}\right) p\left(a_{i} ; a_{-i}\right) \geq \sum_{a_{-i} \in A_{-i}} u_{i}\left(a_{i}^{\prime} ; a_{-i}\right) p\left(a_{i} ; a_{-i}\right)
$$

for every player $i \in P$ and all pure strategies $a_{i}, a_{i}^{\prime} \in A_{i}$.
Exercise 1. Show that, in every normal-form game $G=(P, A, u)$, every convex combination of correlated equilibria is a correlated equilibrium.
Exercise 2. Let $G=(P=\{1,2\}, A, u)$ be a normal-form game of two players with $A_{1}=\{U, D\}$ and $A_{2}=\{L, R\}$ with payoff function u depicted in Table 1 .

	L	R
U	$(1,1)$	$(0,0)$
D	$\left(1+\frac{\varepsilon}{2}, 1\right)$	$(500,500)$

Table 1: The game from Exercise 2.
Show that there is an ε-Nash equilibrium sof G such that $u_{i}\left(s^{\prime}\right)>10 u_{i}(s)$ for every $i \in P$ and every Nash equilibrium s^{\prime} of G. In other words, there might be games where some ε-Nash equilibria are far away from any Nash equilibrium.

Exercise 3. Compute all correlated equilibria in Prisoner's dilemma.

	T	S
T	$(-2,-2)$	$(0,-3)$
S	$(-3,0)$	$(-1,-1)$

Table 2: The game from Exercise 3

Exercise 4. Let $G=(P=\{1,2\}, A, u)$ be a normal-form game of two players with $A_{1}=\{U, D\}$ and $A_{2}=\{L, R\}$ with payoff function u depicted in Table 3 .

	L	R
U	$(6,6)$	$(2,7)$
D	$(7,2)$	$(0,0)$

Table 3: A game from Exercise 4.
(a) Compute all Nash equilibria of G and draw the convex hull of Nash equilibrium payoffs.
(b) Is there any correlated equilibrium of G (for some ditribution p) that yields payoffs outside this convex hull?

[^0]
[^0]: *Information about the course can be found at http://kam.mff.cuni.cz/ ${ }^{\text {b balko/ }}$

