Algorithmic game theory

Martin Balko

9th lecture

December 2nd 2021

Regret minimization

Example

Example

Weather	***	$\text { F } \begin{aligned} & * \\ & * \\ & * \end{aligned}$		***	Profit
Algorithm			前	J	3
Umbrella				$\sqrt{ }$	3
Sunscreen					1

Source: No regret algorithms in games (Georgios Piliouras)

Polynomial weights algorithm

Polynomial weights algorithm

- An algorithm that works with very small external regret.

Polynomial weights algorithm

- An algorithm that works with very small external regret.
- The algorithm gives $L_{\mathrm{PW}}^{T} \leq L_{\text {min }}^{T}+2 \sqrt{T \ln N}$.

Polynomial weights algorithm

- An algorithm that works with very small external regret.
- The algorithm gives $L_{\mathrm{PW}}^{T} \leq L_{\text {min }}^{T}+2 \sqrt{T \ln N}$.

Algorithm 0.4: $\operatorname{Polynomial~weights~algorithm~}(X, T, \eta)$

```
Input: A set of actions }X={1,\ldots,N},T\in\mathbb{N}\mathrm{ , and }\eta\in(0,1/2]
Output: A probability distribution p}\mp@subsup{p}{}{t}\mathrm{ for every time step t.
wi
p
for }t=2,\ldots,
do {l { w wi
```

No-regret dynamics

No-regret dynamics

- The players use PW algorithm against each other.

No-regret dynamics

- The players use PW algorithm against each other.
- Gave a new proof of the Minimax theorem.

No-regret dynamics

- The players use PW algorithm against each other.
- Gave a new proof of the Minimax theorem.

Algorithm 0.8: No-Regret dynamics (G, T, ε)
Input: A game $G=(P, A, C)$ of n players, $T \in \mathbb{N}$ and $\varepsilon>0$. Output: A prob. distribution p_{i}^{t} on A_{i} for each $i \in P$ and step t. for every step $t=1, \ldots, T$
(Each player $i \in P$ independently chooses a mixed strategy
 Each player $i \in P$ receives a loss vector $\ell_{i}^{t}=\left(\ell_{i}^{t}\left(a_{i}\right)\right)_{a_{i} \in A_{i}}$, where $\ell_{i}^{t}\left(a_{i}\right) \leftarrow \mathbb{E}_{a_{-i}^{t} \sim \prod_{j \neq i} i_{j}^{t}}\left[C_{i}\left(a_{i} ; a_{-i}^{t}\right)\right]$.

- In the rest of the semester, we focus on mechanism design, where we will try to design our own games.

Source: https://img.etimg.com

- In the rest of the semester, we focus on mechanism design, where we will try to design our own games.

Source: https://img.etimg.com

Thank you for your attention.

