Algorithmic game theory

Martin Balko

8th lecture

November 25th 2021




Regret minimization



BN
Our notation



Our notation

e Agent A with actions X = {1,..., N} selects a probability distribution
pt=(pi,...,py) ateverystept =1,..., T.



Our notation

e Agent A with actions X = {1,..., N} selects a probability distribution
pt=(pi,...,py) ateverystept =1,..., T.

e After that, the adversary environment selects a loss vector
(t=(t . 05 e[-1,1]V ateverystept =1,..., T.



Our notation

e Agent A with actions X = {1,..., N} selects a probability distribution
pt=(pi,...,py) ateverystept =1,..., T.

e After that, the adversary environment selects a loss vector
(t=(t . 05 e[-1,1]V ateverystept =1,..., T.

e The agent A receives loss (4, = SN pt(t at step t.



Our notation

e Agent A with actions X = {1,..., N} selects a probability distribution
pt=(pi,...,py) ateverystept =1,..., T.

e After that, the adversary environment selects a loss vector
(t=(t . 05 e[-1,1]V ateverystept =1,..., T.

e The agent A receives loss (4, = SN pt(t at step t. His cumulative loss
after all stepsis L} = S° /4.



Our notation

e Agent A with actions X = {1,..., N} selects a probability distribution
pt=(pi,...,py) ateverystept =1,..., T.

e After that, the adversary environment selects a loss vector
(t=(t . 05 e[-1,1]V ateverystept =1,..., T.

e The agent A receives loss (4, = SN pt(t at step t. His cumulative loss
after all steps is L} = S°/, ¢4. The cumulative loss of action i is

Ll = 23—:1 4



Our notation

e Agent A with actions X = {1,..., N} selects a probability distribution
pt=(pi,...,py) ateverystept =1,..., T.
e After that, the adversary environment selects a loss vector
(t=(t . 05 e[-1,1]V ateverystept =1,..., T.
e The agent A receives loss (4, = SN pt(t at step t. His cumulative loss
after all steps is L} = S°/, ¢4. The cumulative loss of action i is
LiT = 23—:1 0.
e Given a comparison class Ax of agents A; that select a single action i
in all steps, we let L], = minjcx{L, } be the minimum cumulative loss

of an agent from Ax.



Our notation

e Agent A with actions X = {1,..., N} selects a probability distribution
pt=(pi,...,py) ateverystept =1,..., T.

e After that, the adversary environment selects a loss vector
(t=(t . 05 e[-1,1]V ateverystept =1,..., T.

e The agent A receives loss (4, = SN pt(t at step t. His cumulative loss
after all steps is L} = S°/, ¢4. The cumulative loss of action i is
T _ T
Li - thl g:t
e Given a comparison class Ax of agents A; that select a single action i
in all steps, we let L], = minjcx{L, } be the minimum cumulative loss

min
of an agent from Ax.
-

min-*

e Our goal is to minimize the external regret R} =L} — L



Our notation

e Agent A with actions X = {1,..., N} selects a probability distribution
pt=(pi,...,py) ateverystept =1,..., T.
e After that, the adversary environment selects a loss vector
(t=(t . 05 e[-1,1]V ateverystept =1,..., T.
e The agent A receives loss (4, = SN pt(t at step t. His cumulative loss
after all steps is L} = S°/, ¢4. The cumulative loss of action i is
LiT = 23—:1 0.
e Given a comparison class Ax of agents A; that select a single action i
in all steps, we let L], = minjcx{L, } be the minimum cumulative loss
of an agent from Ax.
-

min-*

e Our goal is to minimize the external regret R} =L} — L

e We now restrict ourselves to losses from {0, 1}.



BN
Example



Example

No Regret Learning E:E -
(review) | ﬁ

No single action significantly

outperforms the dynamic. |0 1

Weather

Algorithm

Umbrella

Sunscreen

Source: No regret algorithms in games (Georgios Piliouras)





https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications
https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications

Besides game theory, the “multiplicative weight update method” has
many applications in various fields of science, for example in
optimization, theoretical computer science, and machine learning.

X~ 4 5
X-4x <0

n(BNC)=22

n(BUC) =n(B)+n(C)n(BNC)

He = 4002602

I

I"ﬂ 6—

0g,a

rlog,x

log,x + log,y

log,x - log.y a(be) = (ab)c

a+b=b+a (1002)a+100b,
alb+c)=ab+ac 100002 +100b-

126 =6xy
2x+2y=20

Sources: https://clubitc.ro


https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications
https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications

e Besides game theory, the “multiplicative weight update method” has
many applications in various fields of science, for example in
optimization, theoretical computer science, and machine learning.

X~ 4 5
X-4x <0

n(BNC)=22

n(BUC) =n(B)+n(C)n(BNC)

He = 4002602

I

I"ﬂ 6—

0g,a

rlog,x

log,x + log,y

log,x - log.y a(be) = (ab)c

a+b=b+a (1002)a+100b,
alb+c)=ab+ac 100002 +100b-

126 =6xy
2x+2y=20

Sources: https://clubitc.ro

e See https://en.wikipedia.org/wiki/Multiplicative_weight_
update_method#Applications


https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications
https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications

e Besides game theory, the “multiplicative weight update method” has
many applications in various fields of science, for example in
optimization, theoretical computer science, and machine learning.

X

X-4x <0

n(BNC)=22

log,x + log,y

log,x - log,y alba) = (ablc

a+b=b+a (1002)a +100b

B alb+c)=abtac 100002+ 100b-
126 =6xy
x+2y=20

Sources: https://clubitc.ro

e See https://en.wikipedia.org/wiki/Multiplicative_weight_
update_method#Applications

Thank you for your attention.


https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications
https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications

