Algorithmic game theory

Martin Balko

5th lecture

November 4th 2021

Nash equilibria in bimatrix games

Best response polyhedra

Best response polyhedra

- Last lecture we introduced a greedy algorithm to find all Nash equilibria in bimatrix games.

Best response polyhedra

- Last lecture we introduced a greedy algorithm to find all Nash equilibria in bimatrix games.
- We noticed that there was a geometric structure behind this task.

Best response polyhedra

- Last lecture we introduced a greedy algorithm to find all Nash equilibria in bimatrix games.
- We noticed that there was a geometric structure behind this task.
- The best response polyhedron for player 1 in G is defined as

$$
\bar{P}=\left\{(x, v) \in \mathbb{R}^{m} \times \mathbb{R}: x \geq \mathbf{0}, \mathbf{1}^{\top} x=1, N^{\top} x \leq \mathbf{1} v\right\}
$$

Similarly, the best response polyhedron for player 2 in G is

$$
\bar{Q}=\left\{(y, u) \in \mathbb{R}^{n} \times \mathbb{R}: y \geq \mathbf{0}, \mathbf{1}^{\top} y=1, M y \leq \mathbf{1} u\right\} .
$$

Best response polyhedra

- Last lecture we introduced a greedy algorithm to find all Nash equilibria in bimatrix games.
- We noticed that there was a geometric structure behind this task.
- The best response polyhedron for player 1 in G is defined as

$$
\bar{P}=\left\{(x, v) \in \mathbb{R}^{m} \times \mathbb{R}: x \geq \mathbf{0}, \mathbf{1}^{\top} x=1, N^{\top} x \leq \mathbf{1} v\right\}
$$

Similarly, the best response polyhedron for player 2 in G is

$$
\bar{Q}=\left\{(y, u) \in \mathbb{R}^{n} \times \mathbb{R}: y \geq \mathbf{0}, \mathbf{1}^{\top} y=1, M y \leq \mathbf{1} u\right\} .
$$

- A point (x, v) of \bar{P} has label $i \in A_{1} \cup A_{2}$ if either $i \in A_{1}$ and $x_{i}=0$ or if $i \in A_{2}$ and $\left(N^{\top}\right)_{i} x=v$.

Best response polyhedra

- Last lecture we introduced a greedy algorithm to find all Nash equilibria in bimatrix games.
- We noticed that there was a geometric structure behind this task.
- The best response polyhedron for player 1 in G is defined as

$$
\bar{P}=\left\{(x, v) \in \mathbb{R}^{m} \times \mathbb{R}: x \geq \mathbf{0}, \mathbf{1}^{\top} x=1, N^{\top} x \leq \mathbf{1} v\right\}
$$

Similarly, the best response polyhedron for player 2 in G is

$$
\bar{Q}=\left\{(y, u) \in \mathbb{R}^{n} \times \mathbb{R}: y \geq \mathbf{0}, \mathbf{1}^{\top} y=1, M y \leq \mathbf{1} u\right\} .
$$

- A point (x, v) of \bar{P} has label $i \in A_{1} \cup A_{2}$ if either $i \in A_{1}$ and $x_{i}=0$ or if $i \in A_{2}$ and $\left(N^{\top}\right)_{i} x=v$.
- A point (y, u) of \bar{Q} has a label $i \in A_{1} \cup A_{2}$ if either $i \in A_{1}$ and $(M)_{i} y=u$ or if $i \in A_{2}$ and $y_{i}=0$.

Best response polyhedra \bar{P} and \bar{Q} for the Battle of sexes

Best response polyhedra \bar{P} and \bar{Q} for the Battle of sexes

$$
\bar{P}=\left\{\left(x_{1}, x_{2}, v\right) \in \mathbb{R}^{2} \times \mathbb{R}: x_{1}, x_{2} \geq \mathbf{0}, x_{1}+x_{2}=1, x_{1} \leq v, 2 x_{2} \leq v\right\}
$$

$$
\bar{Q}=\left\{\left(y_{3}, y_{4}, u\right) \in \mathbb{R}^{2} \times \mathbb{R}: y_{3}, y_{4} \geq \mathbf{0}, y_{3}+y_{4}=1,2 y_{3} \leq u, y_{4} \leq u\right\}
$$

Best response polytopes P and Q for the Battle of sexes

$$
\begin{aligned}
& \begin{array}{r|ll}
(0,1) & { }^{2} \cdot\left(\frac{1}{2}, 1\right) \\
3 & Q & 1 \\
(0,0) & & \bullet\left(\frac{1}{2}, 0\right)
\end{array} \\
& P=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}, x_{2} \geq 0, x_{1} \leq 1,2 x_{2} \leq 1\right\} \\
& Q=\left\{\left(y_{3}, y_{4}\right) \in \mathbb{R}^{2}: y_{3}, y_{4} \geq 0,2 y_{3} \leq 1, y_{4} \leq 1\right\} .
\end{aligned}
$$

Lemke-Howson on the Battle of sexes $(k=3)$

Lemke-Howson on the Battle of sexes $(k=3)$

Lemke-Howson on the Battle of sexes $(k=3)$

Lemke-Howson on the Battle of sexes $(k=3)$

Lemke-Howson on the Battle of sexes $(k=3)$

The Lemke-Howson algorithm

The Lemke-Howson algorithm

- Known as the best algorithm to find Nash equlibria in bimatrix games.

The Lemke-Howson algorithm

- Known as the best algorithm to find Nash equlibria in bimatrix games.
- Discovered by Lemke and Howson in 1964.

The Lemke-Howson algorithm

- Known as the best algorithm to find Nash equlibria in bimatrix games.
- Discovered by Lemke and Howson in 1964.

Figure: Carlton E. Lemke (1920-2004) and J. T. Howson (?).

Figure: A view on the complexity classes classification.
Source: https://complexityzoo.uwaterloo.ca/Complexity_Zoo

Figure: A view on the complexity classes classification.
Source: https://complexityzoo.uwaterloo.ca/Complexity_Zoo

Thank you for your attention.

