Algorithmic game theory

Martin Balko

5th lecture

November 4th 2021

Nash equilibria in bimatrix games

• Last lecture we introduced a greedy algorithm to find all Nash equilibria in bimatrix games.

- Last lecture we introduced a greedy algorithm to find all Nash equilibria in bimatrix games.
- We noticed that there was a geometric structure behind this task.

- Last lecture we introduced a greedy algorithm to find all Nash equilibria in bimatrix games.
- We noticed that there was a geometric structure behind this task.
- The best response polyhedron for player 1 in G is defined as

$$\overline{P} = \{ (x, v) \in \mathbb{R}^m \times \mathbb{R} : x \ge \mathbf{0}, \mathbf{1}^\top x = 1, N^\top x \le \mathbf{1} v \}.$$

Similarly, the best response polyhedron for player 2 in G is

$$\overline{Q} = \{ (y, u) \in \mathbb{R}^n \times \mathbb{R} : y \geq \mathbf{0}, \mathbf{1}^\top y = 1, My \leq \mathbf{1}u \}.$$

- Last lecture we introduced a greedy algorithm to find all Nash equilibria in bimatrix games.
- We noticed that there was a geometric structure behind this task.
- The best response polyhedron for player 1 in *G* is defined as

$$\overline{P} = \{ (x, v) \in \mathbb{R}^m \times \mathbb{R} : x \ge \mathbf{0}, \mathbf{1}^\top x = 1, N^\top x \le \mathbf{1} v \}.$$

Similarly, the best response polyhedron for player 2 in G is

$$\overline{Q} = \{(y, u) \in \mathbb{R}^n \times \mathbb{R} : y \ge \mathbf{0}, \mathbf{1}^\top y = 1, My \le \mathbf{1}u\}.$$

• A point (x, v) of \overline{P} has label $i \in A_1 \cup A_2$ if either $i \in A_1$ and $x_i = 0$ or if $i \in A_2$ and $(N^\top)_i x = v$.

- Last lecture we introduced a greedy algorithm to find all Nash equilibria in bimatrix games.
- We noticed that there was a geometric structure behind this task.
- The best response polyhedron for player 1 in *G* is defined as

$$\overline{P} = \{ (x, v) \in \mathbb{R}^m \times \mathbb{R} : x \ge \mathbf{0}, \mathbf{1}^\top x = 1, N^\top x \le \mathbf{1} v \}.$$

Similarly, the best response polyhedron for player 2 in G is

$$\overline{Q} = \{(y, u) \in \mathbb{R}^n \times \mathbb{R} : y \ge \mathbf{0}, \mathbf{1}^\top y = 1, My \le \mathbf{1}u\}.$$

- A point (x, v) of \overline{P} has label $i \in A_1 \cup A_2$ if either $i \in A_1$ and $x_i = 0$ or if $i \in A_2$ and $(N^\top)_i x = v$.
- A point (y, u) of \overline{Q} has a label $i \in A_1 \cup A_2$ if either $i \in A_1$ and $(M)_i y = u$ or if $i \in A_2$ and $y_i = 0$.

Best response polyhedra \overline{P} and \overline{Q} for the Battle of sexes

Best response polyhedra \overline{P} and \overline{Q} for the Battle of sexes

$$\overline{P} = \{(x_1, x_2, v) \in \mathbb{R}^2 \times \mathbb{R} \colon x_1, x_2 \ge \mathbf{0}, x_1 + x_2 = 1, x_1 \le v, 2x_2 \le v\}$$

$$\overline{Q} = \{(y_3, y_4, u) \in \mathbb{R}^2 \times \mathbb{R} : y_3, y_4 \ge \mathbf{0}, y_3 + y_4 = 1, 2y_3 \le u, y_4 \le u\}.$$

Best response polytopes P and Q for the Battle of sexes

$$(0, \frac{1}{2}) \xrightarrow{P} (1, \frac{1}{2})$$

$$(0, 0) \xrightarrow{Q} (\frac{1}{2}, 1)$$

$$(0, 0) \xrightarrow{Q} (\frac{1}{2}, 1)$$

$$(0, 0) \xrightarrow{Q} (\frac{1}{2}, 0)$$

$$P = \{(x_1, x_2) \in \mathbb{R}^2 \colon x_1, x_2 \ge 0, x_1 \le 1, 2x_2 \le 1\}$$

$$Q = \{(y_3, y_4) \in \mathbb{R}^2 \colon y_3, y_4 \ge 0, 2y_3 \le 1, y_4 \le 1\}.$$

The Lemke–Howson algorithm

The Lemke–Howson algorithm

• Known as the best algorithm to find Nash equlibria in bimatrix games.

The Lemke-Howson algorithm

- Known as the best algorithm to find Nash equlibria in bimatrix games.
- Discovered by Lemke and Howson in 1964.

The Lemke–Howson algorithm

- Known as the best algorithm to find Nash equlibria in bimatrix games.
- Discovered by Lemke and Howson in 1964.

Figure: Carlton E. Lemke (1920–2004) and J. T. Howson (?).

Source: https://oldurls.inf.ethz.ch

Figure: A view on the complexity classes classification.

Source: https://complexityzoo.uwaterloo.ca/Complexity_Zoo

Figure: A view on the complexity classes classification.

Source: https://complexityzoo.uwaterloo.ca/Complexity_Zoo

Thank you for your attention.