Algorithmic game theory

Martin Balko

3rd lecture

October 21st 2021

Proof of the Minimax Theorem

The Minimax Theorem

The Minimax Theorem

- For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number v such that, for any worst-case optimal strategies x^{*} and y^{*}, the strategy profile $\left(x^{*}, y^{*}\right)$ is a Nash equilibrium and $\beta\left(x^{*}\right)=\left(x^{*}\right)^{\top} M y^{*}=\alpha\left(y^{*}\right)=v$.

The Minimax Theorem

- For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number v such that, for any worst-case optimal strategies x^{*} and y^{*}, the strategy profile $\left(x^{*}, y^{*}\right)$ is a Nash equilibrium and $\beta\left(x^{*}\right)=\left(x^{*}\right)^{\top} M y^{*}=\alpha\left(y^{*}\right)=v$.

Figure: John von Neumann (1903-1957) and Oskar Morgenstern (1902-1977)

Duality of linear programming

Duality of linear programming

	Primal linear program	Dual linear program
Variables	x_{1}, \ldots, x_{m}	y_{1}, \ldots, y_{n}
Matrix	$A \in \mathbb{R}^{n \times m}$	$A^{\top} \in \mathbb{R}^{m \times n}$
Right-hand side	$b \in \mathbb{R}^{n}$	$c \in \mathbb{R}^{m}$
Objective function	$\max C^{\top} x$	$\min b^{\top} y$
Constraints	i th constraint has \leq	$y_{i} \geq 0$
	\geq	$y_{i} \leq 0$
	$=$	$y_{i} \in \mathbb{R}$
	$x_{j} \geq 0$	j th constraint has \geq
	$x_{j} \leq 0$	\leq
	$x_{j} \in \mathbb{R}$	$=$

Table: A recipe for making dual programs.

Nash equilibria in bimatrix games

Nash equilibria in bimatrix games

Nash equilibria in bimatrix games

- We try to design an algorithm for finding Nash equilibria in games of two players (bimatrix games).

Nash equilibria in bimatrix games

- We try to design an algorithm for finding Nash equilibria in games of two players (bimatrix games).
- We state some observations that yield a brute-force algorithm.

SIMPLY EXPLAINED:
BRLITE FORCE ATTACK

Nash equilibria in bimatrix games

- We try to design an algorithm for finding Nash equilibria in games of two players (bimatrix games).
- We state some observations that yield a brute-force algorithm.

SIMPLY EXPLAINED:
BRLITE FORCE ATTACK

MEETING AN OLD SCHOOLMATE
Source: https://pinterest.com

- Later, we show the currently best known algorithm for this problem.

Examples of polytopes

Examples of polytopes

Best response polyhedra \bar{P} and \bar{Q} for the Battle of sexes

Best response polyhedra \bar{P} and \bar{Q} for the Battle of sexes

Best response polytopes P and Q for the Battle of sexes

- Now we are (almost) ready to present the Lemke-Howson algorithm, the best known algorithm to find Nash equilibria in bimatrix games.
- Now we are (almost) ready to present the Lemke-Howson algorithm, the best known algorithm to find Nash equilibria in bimatrix games.

- Now we are (almost) ready to present the Lemke-Howson algorithm, the best known algorithm to find Nash equilibria in bimatrix games.

Thank you for your attention.

