Algorithmic game theory

Martin Balko

3rd lecture

October 21st 2021

Proof of the Minimax Theorem

The Minimax Theorem

The Minimax Theorem

• For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number v such that, for any worst-case optimal strategies x^* and y^* , the strategy profile (x^*, y^*) is a Nash equilibrium and $\beta(x^*) = (x^*)^T M y^* = \alpha(y^*) = v$.

The Minimax Theorem

• For every zero-sum game, worst-case optimal strategies for both players exist and can be efficiently computed. There is a number v such that, for any worst-case optimal strategies x^* and y^* , the strategy profile (x^*, y^*) is a Nash equilibrium and $\beta(x^*) = (x^*)^T M y^* = \alpha(y^*) = v$.

Figure: John von Neumann (1903–1957) and Oskar Morgenstern (1902–1977)

Duality of linear programming

Duality of linear programming

	Primal linear program	Dual linear program
Variables	x_1,\ldots,x_m	y_1, \ldots, y_n
Matrix	$A \in \mathbb{R}^{n \times m}$	$A^{\top} \in \mathbb{R}^{m \times n}$
Right-hand side	${\color{blue}b}\in\mathbb{R}^n$	$c \in \mathbb{R}^m$
Objective function	$\max c^{ op} x$	$min\ b^\top y$
Constraints	i th constraint has \leq	$y_i \geq 0$
	≥	$y_i \leq 0$
	=	$y_i \in \mathbb{R}$
	$x_j \geq 0$	j th constraint has \geq
	$x_j \leq 0$	<u>≤</u>
	$x_j \in \mathbb{R}$	=

Table: A recipe for making dual programs.

• We try to design an algorithm for finding Nash equilibria in games of two players (bimatrix games).

- We try to design an algorithm for finding Nash equilibria in games of two players (bimatrix games).
- We state some observations that yield a brute-force algorithm.

SIMPLY EXPLAINED: BRUTE FORCE ATTACK

Source: https://pinterest.com

- We try to design an algorithm for finding Nash equilibria in games of two players (bimatrix games).
- We state some observations that yield a brute-force algorithm.

SIMPLY EXPLAINED: BRUTE FORCE ATTACK

Source: https://pinterest.com

Later, we show the currently best known algorithm for this problem.

Examples of polytopes

Examples of polytopes

Best response polyhedra \overline{P} and \overline{Q} for the Battle of sexes

Best response polyhedra \overline{P} and \overline{Q} for the Battle of sexes

Best response polytopes P and Q for the Battle of sexes

• Now we are (almost) ready to present the Lemke–Howson algorithm, the best known algorithm to find Nash equilibria in bimatrix games.

• Now we are (almost) ready to present the Lemke–Howson algorithm, the best known algorithm to find Nash equilibria in bimatrix games.

• Now we are (almost) ready to present the Lemke–Howson algorithm, the best known algorithm to find Nash equilibria in bimatrix games.

Thank you for your attention.