
Algorithmic game theory

Martin Balko

7th lecture

November 19th 2020



Regret minimization



Our notation

• Agent A with actions X = {1, . . . ,N} selects a probability distribution
pt = (pt1, . . . , p

t
N) at every step t = 1, . . . ,T .

• After that, the adversary environment selects a loss vector
`t = (`t1, . . . , `

t
N) ∈ [−1, 1]N at every step t = 1, . . . ,T .

• The agent A receives loss `tA =
∑N

i=1 p
t
i `

t
i at step t. His cumulative loss

after all steps is LTA =
∑T

t=1 `
t
A. The cumulative loss of action i is

LTi =
∑T

t=1 `
t
i .

• Given a comparison class AX of agents Ai that select a single action i
in all steps, we let LTmin = mini∈X{LTAi

} be the minimum cumulative loss
of an agent from AX .

• Our goal is to minimize the external regret RT
A = LTA − LTmin.

• We now restrict ourselves to losses from {0, 1}.



Our notation

• Agent A with actions X = {1, . . . ,N} selects a probability distribution
pt = (pt1, . . . , p

t
N) at every step t = 1, . . . ,T .

• After that, the adversary environment selects a loss vector
`t = (`t1, . . . , `

t
N) ∈ [−1, 1]N at every step t = 1, . . . ,T .

• The agent A receives loss `tA =
∑N

i=1 p
t
i `

t
i at step t. His cumulative loss

after all steps is LTA =
∑T

t=1 `
t
A. The cumulative loss of action i is

LTi =
∑T

t=1 `
t
i .

• Given a comparison class AX of agents Ai that select a single action i
in all steps, we let LTmin = mini∈X{LTAi

} be the minimum cumulative loss
of an agent from AX .

• Our goal is to minimize the external regret RT
A = LTA − LTmin.

• We now restrict ourselves to losses from {0, 1}.



Our notation

• Agent A with actions X = {1, . . . ,N} selects a probability distribution
pt = (pt1, . . . , p

t
N) at every step t = 1, . . . ,T .

• After that, the adversary environment selects a loss vector
`t = (`t1, . . . , `

t
N) ∈ [−1, 1]N at every step t = 1, . . . ,T .

• The agent A receives loss `tA =
∑N

i=1 p
t
i `

t
i at step t. His cumulative loss

after all steps is LTA =
∑T

t=1 `
t
A. The cumulative loss of action i is

LTi =
∑T

t=1 `
t
i .

• Given a comparison class AX of agents Ai that select a single action i
in all steps, we let LTmin = mini∈X{LTAi

} be the minimum cumulative loss
of an agent from AX .

• Our goal is to minimize the external regret RT
A = LTA − LTmin.

• We now restrict ourselves to losses from {0, 1}.



Our notation

• Agent A with actions X = {1, . . . ,N} selects a probability distribution
pt = (pt1, . . . , p

t
N) at every step t = 1, . . . ,T .

• After that, the adversary environment selects a loss vector
`t = (`t1, . . . , `

t
N) ∈ [−1, 1]N at every step t = 1, . . . ,T .

• The agent A receives loss `tA =
∑N

i=1 p
t
i `

t
i at step t.

His cumulative loss

after all steps is LTA =
∑T

t=1 `
t
A. The cumulative loss of action i is

LTi =
∑T

t=1 `
t
i .

• Given a comparison class AX of agents Ai that select a single action i
in all steps, we let LTmin = mini∈X{LTAi

} be the minimum cumulative loss
of an agent from AX .

• Our goal is to minimize the external regret RT
A = LTA − LTmin.

• We now restrict ourselves to losses from {0, 1}.



Our notation

• Agent A with actions X = {1, . . . ,N} selects a probability distribution
pt = (pt1, . . . , p

t
N) at every step t = 1, . . . ,T .

• After that, the adversary environment selects a loss vector
`t = (`t1, . . . , `

t
N) ∈ [−1, 1]N at every step t = 1, . . . ,T .

• The agent A receives loss `tA =
∑N

i=1 p
t
i `

t
i at step t. His cumulative loss

after all steps is LTA =
∑T

t=1 `
t
A.

The cumulative loss of action i is

LTi =
∑T

t=1 `
t
i .

• Given a comparison class AX of agents Ai that select a single action i
in all steps, we let LTmin = mini∈X{LTAi

} be the minimum cumulative loss
of an agent from AX .

• Our goal is to minimize the external regret RT
A = LTA − LTmin.

• We now restrict ourselves to losses from {0, 1}.



Our notation

• Agent A with actions X = {1, . . . ,N} selects a probability distribution
pt = (pt1, . . . , p

t
N) at every step t = 1, . . . ,T .

• After that, the adversary environment selects a loss vector
`t = (`t1, . . . , `

t
N) ∈ [−1, 1]N at every step t = 1, . . . ,T .

• The agent A receives loss `tA =
∑N

i=1 p
t
i `

t
i at step t. His cumulative loss

after all steps is LTA =
∑T

t=1 `
t
A. The cumulative loss of action i is

LTi =
∑T

t=1 `
t
i .

• Given a comparison class AX of agents Ai that select a single action i
in all steps, we let LTmin = mini∈X{LTAi

} be the minimum cumulative loss
of an agent from AX .

• Our goal is to minimize the external regret RT
A = LTA − LTmin.

• We now restrict ourselves to losses from {0, 1}.



Our notation

• Agent A with actions X = {1, . . . ,N} selects a probability distribution
pt = (pt1, . . . , p

t
N) at every step t = 1, . . . ,T .

• After that, the adversary environment selects a loss vector
`t = (`t1, . . . , `

t
N) ∈ [−1, 1]N at every step t = 1, . . . ,T .

• The agent A receives loss `tA =
∑N

i=1 p
t
i `

t
i at step t. His cumulative loss

after all steps is LTA =
∑T

t=1 `
t
A. The cumulative loss of action i is

LTi =
∑T

t=1 `
t
i .

• Given a comparison class AX of agents Ai that select a single action i
in all steps, we let LTmin = mini∈X{LTAi

} be the minimum cumulative loss
of an agent from AX .

• Our goal is to minimize the external regret RT
A = LTA − LTmin.

• We now restrict ourselves to losses from {0, 1}.



Our notation

• Agent A with actions X = {1, . . . ,N} selects a probability distribution
pt = (pt1, . . . , p

t
N) at every step t = 1, . . . ,T .

• After that, the adversary environment selects a loss vector
`t = (`t1, . . . , `

t
N) ∈ [−1, 1]N at every step t = 1, . . . ,T .

• The agent A receives loss `tA =
∑N

i=1 p
t
i `

t
i at step t. His cumulative loss

after all steps is LTA =
∑T

t=1 `
t
A. The cumulative loss of action i is

LTi =
∑T

t=1 `
t
i .

• Given a comparison class AX of agents Ai that select a single action i
in all steps, we let LTmin = mini∈X{LTAi

} be the minimum cumulative loss
of an agent from AX .

• Our goal is to minimize the external regret RT
A = LTA − LTmin.

• We now restrict ourselves to losses from {0, 1}.



Our notation

• Agent A with actions X = {1, . . . ,N} selects a probability distribution
pt = (pt1, . . . , p

t
N) at every step t = 1, . . . ,T .

• After that, the adversary environment selects a loss vector
`t = (`t1, . . . , `

t
N) ∈ [−1, 1]N at every step t = 1, . . . ,T .

• The agent A receives loss `tA =
∑N

i=1 p
t
i `

t
i at step t. His cumulative loss

after all steps is LTA =
∑T

t=1 `
t
A. The cumulative loss of action i is

LTi =
∑T

t=1 `
t
i .

• Given a comparison class AX of agents Ai that select a single action i
in all steps, we let LTmin = mini∈X{LTAi

} be the minimum cumulative loss
of an agent from AX .

• Our goal is to minimize the external regret RT
A = LTA − LTmin.

• We now restrict ourselves to losses from {0, 1}.



Example

Source: No regret algorithms in games (Georgios Piliouras)



Example

Source: No regret algorithms in games (Georgios Piliouras)



• Besides game theory, the “multiplicative weight update method” has
many applications in various fields of science, for example in
optimization, theoretical computer science, and machine learning.

Sources: https://clubitc.ro

• See https://en.wikipedia.org/wiki/Multiplicative_weight_

update_method#Applications

Thank you for your attention.

https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications
https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications


• Besides game theory, the “multiplicative weight update method” has
many applications in various fields of science, for example in
optimization, theoretical computer science, and machine learning.

Sources: https://clubitc.ro

• See https://en.wikipedia.org/wiki/Multiplicative_weight_

update_method#Applications

Thank you for your attention.

https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications
https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications


• Besides game theory, the “multiplicative weight update method” has
many applications in various fields of science, for example in
optimization, theoretical computer science, and machine learning.

Sources: https://clubitc.ro

• See https://en.wikipedia.org/wiki/Multiplicative_weight_

update_method#Applications

Thank you for your attention.

https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications
https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications


• Besides game theory, the “multiplicative weight update method” has
many applications in various fields of science, for example in
optimization, theoretical computer science, and machine learning.

Sources: https://clubitc.ro

• See https://en.wikipedia.org/wiki/Multiplicative_weight_

update_method#Applications

Thank you for your attention.

https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications
https://en.wikipedia.org/wiki/Multiplicative_weight_update_method#Applications

