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Best response polyhedra P and Q for the Battle of sexes

P={(x,x,Vv) ER*xR:x;,0>0,x +x=1,x <v,2x < v}

Q - {(Y3a}/47u) € R2 x R: Y3, Y4 Z 07)/3'1‘)/4 - 172}/3 S u,ys S U}-
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(0,1) oo (1,1)
(0,1) aumte (1,1) 309 1
(0,0%-2%1,0) (0,0) p (3,0)

P={(x1,x) €R?* x1,x0 >0,x <1,2x <1}

Q={(ys,ya) ER?: y3,y4 > 0,25 < 1,y, < 1}.
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The Lemke—Howson algorithm

e Known as the best algorithm to find Nash equlibria in bimatrix games.
e Discovered by Lemke and Howson in 1964.

Figure: Carlton E. Lemke (1920-2004) and J. T. Howson (7).

Source: https://oldurls.inf.ethz.ch






Figure: A view on the complexity classes classification.

Source: https://complexityzoo.uwaterloo.ca/Complexity_-Zoo
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Thank you for your attention.



