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Proof of the Minimax Theorem



The Minimax Theorem

• For every zero-sum game, worst-case optimal strategies for both players
exist and can be efficiently computed. There is a number v such that,
for any worst-case optimal strategies x∗ and y ∗, the strategy profile
(x∗, y ∗) is a Nash equilibrium and β(x∗) = (x∗)>My ∗ = α(y ∗) = v .

Figure: John von Neumann (1903–1957) and Oskar Morgenstern
(1902–1977).

Sources: https://en.wikiquote.org and https://austriainusa.org
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Duality of linear programming

Primal linear program Dual linear program

Variables x1, . . . , xm y1, . . . , yn

Matrix A ∈ Rn×m A> ∈ Rm×n

Right-hand side b ∈ Rn c ∈ Rm

Objective function max c>x min b>y

Constraints ith constraint has ≤ yi ≥ 0

≥ yi ≤ 0

= yi ∈ R

xj ≥ 0 jth constraint has ≥
xj ≤ 0 ≤
xj ∈ R =

Table: A recipe for making dual programs.
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Nash equilibria in bimatrix games



Nash equilibria in bimatrix games

• We try to design an algorithm for finding Nash equilibria in games of
two players (bimatrix games).
• We state some observations that yield a brute-force algorithm.

Source: https://pinterest.com

• Later, we show the currently best known algorithm for this problem.
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Examples of polytopes

Source: https://commons.wikimedia.org
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Best response polyhedra P and Q for the Battle of sexes
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Best response polytopes P and Q for the Battle of sexes
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• Now we are (almost) ready to present the Lemke–Howson algorithm,
the best known algorithm to find Nash equilibria in bimatrix games.

Thank you for your attention.
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